Geometric rigidity of quasi-isometries in horospherical products - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2022

Geometric rigidity of quasi-isometries in horospherical products

Rigidité géométrique des quasi-isométries des produits horosphériques.

Tom Ferragut
  • Function : Author
  • PersonId : 1183270

Abstract

We prove that quasi-isometries of horospherical products of hyperbolic spaces are geometrically rigid in the sense that they are uniformly close to product maps, this is a generalisation of the result obtained by Eskin, Fisher and Whyte in [7]. Our work covers the case of solvable Lie groups of the form R ⋉ (N 1 × N 2), where N 1 and N 2 are nilpotent Lie groups, and where the action on R contracts the metric on N 1 while extending it on N 2. We obtain new quasi-isometric invariants and classi cations for these spaces.
Fichier principal
Vignette du fichier
Geometric rigidity of quasi-isometries in horospherical products.pdf (915.54 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03843098 , version 1 (07-11-2022)
hal-03843098 , version 2 (20-01-2023)

Identifiers

Cite

Tom Ferragut. Geometric rigidity of quasi-isometries in horospherical products. 2022. ⟨hal-03843098v1⟩

Collections

UNIV-MONTPELLIER
67 View
36 Download

Altmetric

Share

More