Multivariable $(\varphi, \mathcal{O}_K^\times)$-modules and local-global compatibility - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Multivariable $(\varphi, \mathcal{O}_K^\times)$-modules and local-global compatibility

Résumé

Let $p$ be a prime number, $K$ a finite unramified extension of $\mathbb{Q}_p$ and $\mathbb{F}$ a finite extension of $\mathbb{F}_p$. Using perfectoid spaces we associate to any finite dimensional continuous representation $\rho$ of $Gal(\overline{K}/K)$ over $\mathbb{F}$ an étale $(\varphi, \mathcal{O}_K^\times)$-module $D^{\otimes}_A(\rho)$ over a completed localization $A$ of $\mathbb{F}[[ \mathcal{O}_K]]$. We conjecture that one can also associate an étale $(\varphi, \mathcal{O}_K^\times)$-module $D_A(\pi)$ to any smooth representation $\pi$ of $\mathrm{GL}_2(K)$ occurring in some Hecke eigenspace of the mod $p$ cohomology of a Shimura curve, and that moreover $D_A (\pi)$ is isomorphic (up to twist) to $D^{\otimes}_A (\rho)$, where $\rho$ is the underlying 2-dimensional representation of $Gal(\overline{K}/K)$. Using previous work of the same authors, we prove this conjecture when $\rho$ is semi-simple and sufficiently generic.
Fichier principal
Vignette du fichier
BHHMS3-ArXiV.pdf (1.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03840843 , version 1 (06-11-2022)

Identifiants

Citer

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, Benjamin Schraen. Multivariable $(\varphi, \mathcal{O}_K^\times)$-modules and local-global compatibility. 2022. ⟨hal-03840843⟩
74 Consultations
30 Téléchargements

Altmetric

Partager

More