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Stefano Morra® Benjamin Schraen®

Abstract

Let p be a prime number, K a finite unramified extension of Q, and F
a finite extension of IF,. Using perfectoid spaces we associate to any finite-
dimensional continuous representation p of Gal(K/K) over F an étale (p, O%)-
module D% (p) over a completed localization A of F[Ok]. We conjecture that
one can also associate an étale (¢, Oj)-module D4(7) to any smooth rep-
resentation m of GL2(K) occurring in some Hecke eigenspace of the mod p
cohomology of a Shimura curve, and that moreover D 4(7) is isomorphic (up
to twist) to DY (p), where p is the underlying 2-dimensional representation of
Gal(K /K). Using previous work of the same authors, we prove this conjecture
when p is semi-simple and sufficiently generic.

Contents
I__Introductionl 3
2 Etale (,0%)-modules and Galois representations, 11

2CNRS, Batiment 307, Faculté d’Orsay, Université Paris-Saclay, 91405 Orsay Cedex, France
bDept. of Math., Univ. of Toronto, 40 St. George St., BA6290, Toronto, ON M5S 2E4, Canada
“Morningside Center of Math., No. 55, Zhongguancun East Road, Beijing, 100190, China

dLab. d’Analyse, Géométrie, Algebre, 99 Av. Jean Baptiste Clément, 93430 Villetaneuse, France
¢Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France
fInstitut Universitaire de France (IUF)



2.1 Review of Lubin—Tate and classical (¢, I')-modules|. . . . . . . . . .. 11
2.2 The (¢, OF)-module over A of a semi-simple Galois representation| . 18
[2.3 A reminder on p-divisible groups and K -vector spaces| . . . . . . . . . 22
[2.4  An analogue of the Abel-Jacobimap| . . . . ... ... ... ... .. 28
2.6 Equivariant vector bundles on Zg ~and Zpp| . . . .. ... ... 35
2.6 The (p,, OF)-module over A of an arbitrary Galois representation| . . 37
2.7 The (p, OF)-module over A associated to a Galois representation| . . 41
[2.8 Relation to classical (p,I')-modules| . . . . .. ... ... ... ... 43
2.9  An explicit computation in the semi-simple case| . . . . . . . . . . .. 46
AppendiX| . . . . . ... ol
3 Etale (, Of)-modules and modular representations of GL,| 54
13.1 A local-global compatibility conjecture for (o, O%)-modules over Al . 54
13.2  Duality for étale (p, O%)-modules over Al . . . . .. ... ... ... . 58
[3.3  The continuous morphism p: A —F . . .. ... ... .. ... ... 60
[3.4  Some combinatorial lemmas and computations| . . . . . . ... .. .. 65
(3.5 The degree function on an admissible smooth representation of GLy(K)| 72
B.6 A crucial finitenessresultl. . . . . . . ..o o 000 74
3.7 An explicit basis of Homs(Da(7), A) . . . . . . ... .. 76
13.8 The O%-action on Homa(D4(w), A) . . . . . . . ... ... ... ... 79
[3.9  Combinatorics of modular Serre weights[ . . . . . ... ... ... .. 81
£3.10 The main theorem on Dy(7)|. . . . . . . . .. ... .. .. 84
[References| 93



1 Introduction

Let p be a prime number. The main motivation of this work is the investigation of
the (hoped for) mod p Langlands correspondence for GLy(K), where K is a finite
unramified extension of Q,. The case K = Q, is now well known ([Bre03], [Coll0a],
[Eme]), whereas the case K # Q, is still resisting after more than 10 years ([BP12]).
An important aspect of the GL2(Q))-case is the construction by Colmez in loc. cit. of
an exact functor from the category of admissible finite length mod p representations
of GL2(Q,) to the category of finite-dimensional continuous mod p representations of
Gal(Q,/Q,). The construction of this functor uses, as an intermediate step, Fontaine’s
category of (p,T')-modules. In a previous article ([BHH21]), we constructed an ex-
act functor D¥ from a “good” subcategory of admissible mod p representations of
GL2(K) to a category of étale multivariable (¢, Ok )-modules. These multivariable
(p, O )-modules are A-modules with additional structures, where A is a ring ob-
tained as a completed localization of the Iwasawa algebra of Ok. In this work we
propose a construction of a functor DY from the category of continuous mod p repre-
sentations of Gal(K /K) to the category of étale multivariable (, O )-modules. This
construction is based on the equivalence, also due to Fontaine ([Fon90]), between
mod p representations of Gal(K/K) and Lubin-Tate étale (p, O%)-modules. One
of the main obstructions to pass from Lubin-Tate (¢, Of)-modules to multivariable
(o, Ok )-modules over A lies in the comparison between the Oj-action on A and the
Oj-action on (some tensor power of) the structural ring of the Lubin—-Tate group. To
solve this problem, we need to work at a perfectoid level and use the “Abel-Jacobi
map” considered by Fargues in [Far20]. We then prove, under some conditions, that
the two functors D¢ and DY satisfy a local-global compatibility property in the
completed cohomology of a tower of Shimura curves.

We now describe in more detail the content of this article.

Let F' be a totally real number field and let X be the smooth projective Shimura
curve over I associated to a quaternion algebra D of center F' (which splits at one
infinite place) and to a compact open subgroup U of (D ®p A¥)*. For v a place of F’
above p which splits D and [ a finite extension of [, (“sufficiently large”, as usual),
consider the admissible smooth representation of GLy(F,) over F

™= %ﬂ HomGal(f/F) (?7 Hélt (XU”UU XF F7 F))a (1>
Uy

where UV is a fixed compact open subgroup of (D®@pAF")*, 7 : Gal(F/F) — GLy(F)
is an absolutely irreducible continuous Galois representation such that 7 # 0, and
where the inductive limit runs over compact open subgroups U, of (D ®p F,)* =
GL2(F,). In this introduction, we moreover assume for simplicity that v is the only
p-adic place of F' and that we are in a “multiplicity 1”7 situation, which then roughly
means that U" is “as big as possible” (in general, one needs to take into account the
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action of certain operators, which requires mild assumptions on F', D and 7, see )

We know that the isomorphism class of 7 always determines the one of 7, =

T|Ga(F,/F,): See [BD14], [Schi8]. We also expect that m is always of finite length,
which is known in several cases, see [HW22], [BHH"21]. However, the representation
7 is still not understood when F,, # Q,, in particular we have the key question:

Question 1.1. Assume F, # Q,, does 7 only depend on 7,7

Question @, as routine as it may seem at first, has unfortunately proven to be
surprisingly difficult, and there is not one single instance of a 7 as in for which we
know the answer. For instance the mod p étale cohomology of the Drinfeld tower in
dimension 1, which provides a smooth representation of GLy(F},) only depending on
Ty, cannot give rise to representations like 7 as soon as F,, # Q,, see [CDN| (together
with [Sch15], [Wul). On the other hand, we know that, for F, unramified and most
Ty, the diagram (7t < 1) (where K, = 14 pMy(Op,) C I; = pro-p-Iwahori) only
depends on 7,, and this is a really non-trivial fact, see [DL21]. We do not answer
Question in this work, but we provide one further step towards the understanding
of the representation 7, and certainly Question [1.1] was a motivation. More precisely,
we completely describe the multivariable étale (¢, OF )-module D 4(m) associated to
7 in [BHH™21) §3] when F), is unramified and 7, is semi-simple sufficiently generic, in
particular we prove that it only depends on 7, and we provide a precise conjecture on
what D 4(7) should be for all 7, (and F, unramified), crucially using perfectoid spaces.
As an intermediate result, we construct a new fully faithful functor from continuous
representations of Gal(F,/F,) over F to a certain category of multivariable étale
(¢q, OF, )-modules.

Let us first recall the definition of these modules. Let K be a finite unramified
extension of Q) of degree f > 1, then we can write the Iwasawa algebra F[Ok] as
F[Y,, o:F, < F] for Y, = Yaer> o(N) 7'\ € F[Ok], where ¢ = p/ and [\] €
Ok is the multiplicative representative of A (seen in F[Ok]). We then define A to
be the completion of F[Ok][1/Y,, o:F, < F] for the (Y,),-adic topology (in a
suitable sense), see for the precise definition. In fact A is isomorphic to the
Tate algebra F((Y,)){(Yy/Y,)t, 0’ # o) for any choice of o, see Lemma [2.6.1] It is
endowed with an F-linear Frobenius ¢ coming from the multiplication by p on Og
and with a commuting continuous action of O coming from its action on F[Ok]
(by multiplication on Q). Then an étale (¢, Of)-module over A is by definition a
finite free A-module endowed with a semi-linear Frobenius ¢ whose image generates
everything and a commuting continuous semi-linear action of O%. Replacing ¢ on A
by ¢, = ¢/, we define in the same way étale (p,, O )-modules over A. When f = 1,
the two definitions recover Fontaine’s classical (¢, Z))-modules (or (¢,I")-modules)
in characteristic p.

Now let 7 be an admissible smooth representation of GLy(Ok) over F. We endow
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7V = Homg(m,F) with the my-adic topology, where m;, is the maximal ideal of
the Iwasawa algebra F[I;]. In particular we can see ¥ as an F[Og]-module via

F[Ok] = IE‘[[(}) Ok )]] C F[11]. We define

A

Da(r) = (FIOK][1/ Yo, 0:Fy = F] @ppo, 7°)

where the completion is for the tensor product topology, see [BHHT21, §3.1.1] or
Even though D4(7) is an A-module endowed with a semi-linear action of O
(coming from the action of ((90]*{ ?) on 1), it is not clear if it has good properties in
general (it might not have a Frobenius ¢, it might not be of finite type, etc.). But we
know that D 4(r) is an étale (i, O5)-module of rank 2/ for some of the 7 in (1) when
K = F, is unramified, see [BHHT21} §1.3]' together with Remark . In fact we
conjecture in this paper that D4(m) is always an étale (¢, O )-module over A (hence
equal to D4 (m)%) of rank 2/ for all representations 7 in (1)) (when F, is unramified).

In order to state our main result, we need some preliminaries. Fix p : Gal(K/K)—
GL,(F) for n > 1 a continuous representation, then for any o:F, <— F we can asso-
ciate to p a Lubin-Tate (¢,, Ok )-module. Recall that it is an n-dimensional F(Tk ,))-
vector space Dy ,(p) equipped with a semi-linear endomorphism ¢, whose image gen-
erates D ,(p) and a commuting continuous action of Of. Here ¢, is F-linear and
satisfies ¢, (Tx o) = Tk ,, and the action of O on F((Tk ) is given by the Lubin-Tate
power series associated to the choice of logarithm -, p*"TIq;U composed with o :

F, < T on the coefficients. Recall we have F((Tk ) Rp(rgty D ko (Pl S Di (7).

Assume now that p is absolutely semi-simple and define

7]

Das(p) = A ®1F((Tffl<j;)) Dy +(p) Fal, (2)

where the embedding F((T' Iq(_al ) — Asends T§ ' to ¢(Y,)/Y, € A. We endow D, (p)

with ¢, = ¢/ ® ¢,. The embedding F((qu{al ) < A does not commute with O, but
one easily checks that, for p absolutely semi-simple, there exists a unique (in a certain
sense) continuous semi-linear action of O on Dy ,(p) which commutes with ¢, and
makes Dy, (p) an étale (p,, Ok)-module over A of rank dimyp, see Lemma .
Moreover there is a canonical isomorphism id ®¢ : A @y 4 D4 gop(p) — Das(p) of
étale (ip,, OF)-modules over A, where o o p = ¢((—)?). We then define:

Di(p)= @ Daolp) (3)

A,0:F;—F

endowed with the “diagonal” action of Oj. Using the isomorphism id ®¢p, we can
define a canonical endomorphism ¢ : D%(p) — D%(p) which cyclically permutes

!Note that, with the notation of [BHHT21, §3.1.2], D () is equal to its étale quotient D 4 (m)¢*
in our case, see [BHHT21, Rem. 3.3.5.4(ii)].



the factors D4 ,(p), is semi-linear with respect to ¢ on A and is such that ¢/ =
0y @+ ® @, It is then clear that D (p) is an étale (¢, O )-module over A of rank
(dimg p)/. The following theorem is our main result:

Theorem 1.2 (Corollary . Assume that T, is absolutely semi-simple and suffi-
ciently generic (see ), and assume standard technical assumptions on the global
setting (see for precise statements). Then there is an isomorphism of étale
(0, OF)-modules Da(m) = DZ(T,(1)) over A, where 7,(1) is the usual Tate twist
of 7.

The proof of Theorem [1.2]is a long explicit computation of the dual étale (¢, O )-
module Hom4(D4(7), A). Let us briefly indicate the various steps. We first describe
Hom§™ (D4 (), F), which is not so hard, see Proposition We then prove that

there is a canonical injection
Hom 4 (Da(7), A) — Hom§™ (D 4(), F)

induced by a non-zero continuous morphism p : A — F uniquely determined (up to
scalar in F*) by the condition p o € F*u, where ¢ : A — A is a left inverse of ¢,
see Lemma |3.2.1, Proposition and . To each Serre weight o of 7./ we then
associate in (105)) a certain projective system z, = (2, x)k>0, Where x, ) € W[m’;f +1],
and we prove via Propositionthat 7, lies in Hom{™ (D 4(7), ), see Lemma
and Proposition Then the key calculation is to prove that z, actually also lies
in the submodule Hom(D4(m), A), and that the 2/-tuple (2,),ew vy even forms an
A-basis of the free A-module Hom 4(D (), A), see Theorem[3.7.1] For that we prove
a crucial finiteness result (Proposition using the technical — but important —
computations in [BHHT21, §3.2] that we need to strengthen, see Once all this
is done, it is easy to derive the explicit actions of Ok and ¢ on Homy(D4(7), A), see
Proposition and Lemma [3.10.1] We can then at last compare the two (p, O%)-
modules D4(w) and D% (T,(1)) and prove that they are isomorphic, see Theorem
[3.10.2] The same proof works verbatim for quaternion algebras D which are definite
at all infinite places (and split at v) and the representations m of GLy(K) = GLo(F,)
defined analogously to ().

There is no doubt to us that there should exist a more conceptual proof of Theorem
[I.2] which will hopefully avoid both the genericity assumptions on 7, and the technical
computations. At present however, we do not know how to do this. But the first issue
is to find a more conceptual definition of D ,(p) and of D (p). Indeed, it is likely
that, when p is not semi-simple, the recipe does not work in general because there
might not always exist a continuous semi-linear action of O on A®F((T1q;01 ) D k.o (p)Fe]
which commutes with ¢/ ® ¢, (or such an action might not be unique). Using

perfectoid spaces we give below a functorial construction of an étale (¢,, Ox)-module
D4, (p), and subsequently of an étale (p, OF)-module D% (p), which works for all p.



The first step is to replace the ring A by its perfectoid version
A ER(P7) ((Yor/Yo) 770" £ 0) (4)

which is a perfectoid Tate algebra over the perfectoid field F((Y,}/?™)) (for any o).
Using the equivalence between finite étale A-algebras and finite étale A..-algebras
together with the equivalence between locally constant sheaves of F,-vector spaces
and Frobenius-equivariant vector bundles on a normal irreducible scheme over [,
it is not hard to check that the extension of scalars (—) — (=) ®4 A induces an
equivalence of categories between étale (¢,, Ok )-modules over A and étale (¢,, Of)-
modules over A, and similarly with (¢, OF) instead of (g, O%), see Corollary 2.6.6]
Hence we may as well look for a definition of D4_ ,(p) and DY _(p).

It is now convenient to fix an embedding oy : F, — F and set o; g0 @ for
1 € Z. The second step is to consider the two perfectoid spaces

Zur = Spa (F(Ti5, ) FITRS 1) Xspa) -+ Xspar) Spa (F(T5, ), FIT0T)

f times

ZO d:“ Spa (F[[Yalo/poog .o Yl/poo]]a F[[Yalo/poov e Yl/poo]]) \ V<Y‘707 ttt Y >’

K e ] YT ofg )T Of1

where Zpr is endowed with an obvious action of (K*)/ x &, (p € K* acting via ¢,
which is now bijective) and Zp,. is endowed with an action of K* (p acting via ).
It turns out that there is a morphism of perfectoid spaces (see the beginning of §2.4)

m: it —)Z@K

such that m o ((ag,...,ar-1),w) = (I;a;) om for a; € K* and w € &y, a crucial
fact that we learnt from [Far20]. Indeed, the sheaf on the perfectoid v-site over F
represented by Zpr sends a perfectoid F-algebra R to a subset of (B*(R)#+=?)/ stable
under multiplication, where BT(R) is the (relative version of the) ring defined in
[EF18, §1.10] (a certain completion of W (R°)[1/p], where R° C R is the subring of
power-bounded elements). Likewise, the sheaf represented by Zp,. sends R to a subset
of B*(R)“’q:pf stable under multiplication, see . The map m then is induced by
the product map (BT (R)#=?)f — BT (R)#==* in the ring B*(R), which satisfies the
above relation with respect to the various group actions.

Note that Spa(As, A%) is an affinoid open subspace of Zp, by 1) Let A &
{(ag,...,a;1) € (K*)f, [Ta; = 1} and A; = AN (OF)!. The third step is to prove
that the morphism m induces a commutative diagram of perfectoid spaces over F:

Zip <—— m " (Spa(Ax, A)) = (A/AL) x &f x Spa(AL,, (A%)°) .

ZOK D — Spa(Aoo, Ago)



where the middle vertical morphism is a pro-étale A x Gy-torsor and where
Spa(AL,, (A’,)°) is an explicit affinoid open subspace of Zpr preserved by the action
of Ay which is itself a pro-étale A;-torsor over Spa(Ay, A2 ), see Proposition m,

Corollary and Lemma

Now let p be any finite-dimensional continuous representation of Gal(K /K) over
IF, then F((T}(/ gf D@ (T ) P00 (P) i the space of global sections of a K -equivariant
vector bundle V5 on Spa(F((Té{gzc)),IF[[T%gzc ). Fori € {0,...,f — 1} we define
Vg) = pr; Vs, where pr; : Zyr — Spa(IF((T}({ gzo)),IF[[T}(/ ”1) is the i~th projection.
Then V;@ is a (K*)/-equivariant vector bundle on Zpr, and thus Vg)\spa( AL (ALL)°)
is a Aj-equivariant vector bundle on Spa(A’_, (AL)°). By the third step and us-
ing [SW20, Lemma 17.1.8], we deduce that I'(Spa(A._, (Ago)°)7VéZ))A1 is an étale
(g, OF)-module over Ay, of rank dimpp, see Theorem and §2.6, Hence by

the first step I'(Spa(AL, (A%,)°), Véi))Al is the extension of scalars of a unique étale
(g, Of )-module DX) (p) over A of rank dimp p.

The following theorem sums up the main properties of the functor p — DX) (P).

Theorem 1.3. Leti € {0,...,f —1}.

(i) There is a functorial A-linear isomorphism ¢; : A ®,.4 DV (p) = DYV (p)
which commutes with (g, Ok) and is such that ¢s_1 0 ¢p_g0---0¢y: ARy 4

DY) = DY (p) is id Ry, see Corollary .

(ii) The functor p +— DS)(E) from finite-dimensional continuous representations
of Gal(K/K) over F to étale (¢,, OF)-modules over A is fully faithful, see

Corollary[2.8.3,
(ili) The surjection A — F((T) induced by the trace F[Ok] — F[Z,] = F[T] gives
an isomorphism of (pq, Z, )-modules
F(T) ©a DY (P) = Do, (7)

where Dy, _,(p) is the usual (cyclotomic) (¢q, Z, )-module over F(T))) associated
to p using oy_; to embed Fy into F, see Proposition |2.8.1]

(iv) If p is absolutely semi-simple then there is an isomorphism of (g, OF)-modules
over A

DY (p) = Dao, ().
where Do, (p) is as in @), see Theorem .

Because of Theorem (iv) it is natural to rename DY(p) as D Ao, (p) for any
p. Using Theorem |1.3(i) we can then associate to any p an étale (¢, O )-module
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D3 (p) over A of rank (dimgp)’ by exactly the same formula as in (3). Note that
by Theorem [1.3(iii) F(T")) ®4 D% (p) can be identified with the (¢, T')-module of the

tensor induction from K to Q, of p.

We can now state our conjecture:

Conjecture 1.4 (Conjecture [3.1.2)). For any m as in (with F, = K unramified)
there is an isomorphism of étale (¢, OF)-modules Ds(7) = D% (T,(1)) over A.

By Theorem [1.3{iv) we see that Theorem proves special cases of Conjecture
1.4] (but recall that our somewhat technical proof of Theorem does not use per-
fectoids). Note that Conjecture implies (the analogue of) [BHH™21, Conjecture
1.2.5] for the representations m in (I). It is also reminiscent of the plectic structure
of the local Galois action at p on the ¢-adic cohomology (¢ # p) of certain Shimura
varieties recently proven in [LH], where the above map m also plays a key role.

We finish this introduction by going back to Question [I.1] assuming Conjecture
[L.4 The image of the natural map 7" — D4(m) = D%(7,(1)) is a compact F[Ok]-
submodule D4(7)% which generates D%(7,(1)) over A and is preserved by O} and
the operator 1, with moreover ¢ : D4 (m)* — D,(7)? surjective. Assuming there is
an admissible smooth representation of GLy(K) naturally associated to 7,, and that
this representation is 7 (as is the case when K = Q,), one could hope to “guess”
what D4(7)" is inside D (7,(1)), as the latter is pretty explicit, at least when 7, is
semi-simple and sufficiently generic. However, even in the simplest case where K is
quadratic (unramified) and 7, is the direct sum of two characters, where we know
that 7 is semi-simple ([BHHT21]), it seems impossible to find D4 ()% “by hand”
(there exists a natural explicit generating compact F[O]-submodule in D% (7, (1))
which is preserved by Oy and ¢ with 1 surjective, but we can prove that it cannot
be D4(m)%). Going back to perfectoids, one could hope to find instead a natural
F[Y, /7, ..., Y}/?" ]-submodule D4 (7)" inside DY _(7,(1)) = Ao ®4 DF(T,(1)) and
from there go to Da(7)? in a similar way as what was done by Colmez when K = Q,
in [Coll0Obl, §IV.2]. However, even though there is a natural candidate, namely the
FIY, /7, ..., Y}/P " ]-submodule

(0) (f-1)\2*6s
F(ZLT, VFv(l) ®OZLT T ®OZLT V?v(l) )

_ ° 0 —1 AXIGf ~ _
C T(m ! (Spa(Aus, 42)), Vi) @0, -+ B0, WD) 2 DS (7(1)),

Tv

computations for f = 2 show no evidence for this submodule to be large enough (or
even non-zero when 7, is irreducible).

We fix a few general notation (most of them have already been introduced above,
but we recall them). We fix K a finite unramified extension of Q, of residue field
Fy = F,r, so Ox = W(F,) and K = Ok[1/p]. We normalize the local reciprocity

9



map so that it sends p € K* to (the image of) the geometric Frobenius z +— 2% We
fix an algebraic closure K of K with ring of integers Oz and maximal ideal mz. We
denote by IF the coefficients, which is a finite extension of F, that we always tacitly
assume to be “large enough”. We fix an embedding oy : F, < F (which is sometimes
omitted from the notation when the context is clear) and we let o; = o o ¢ for ¢
the Frobenius on F, (i.e. ¢(x) = 2P) and i € Z.
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2 Etale (¢,0%)-modules and Galois representations

In this section we functorially associate to any finite-dimensional continuous repre-
sentation of Gal(K/K) over F an étale (p,,05%)-module D4 ,(p) of rank dimp p over
the ring A of [BHH'21) §3.1.1] (depending on an embedding ¢ : F, — F) and an
étale (p,0%)-module D%(p) of rank (dimp p)/ over A. We prove various properties
of these modules and we make them explicit when p is absolutely semi-simple.

If X is an adic space over I, we denote by hx the functor Homgp, e m(—, X) from
the category of adic spaces over I to the category of sets. If R is an adic Huber ring,
i.e. a topological ring whose topology is I-adic for a finitely generated ideal I (see for
instance [SW20, §2.2]), we use the shorthand Spa(R) for the adic spectrum Spa(R, R).
We denote by Perfr the category of perfectoid spaces over F. For background on adic
spaces or perfectoid spaces we refer (mostly without comment) to [Hub96], [Sch12]
or [SW20].

Let A be a (commutative) ring and let ¢ be a ring endomorphism of A. We
define a w-module over A as a finite free A-module D endowed with a y-semi-linear
map ¢ : D — D. We say that a p-module over A is étale if the A-linear map
idyg ®p : A®, 4 D — D is an isomorphism. Assume moreover that A is a topological
ring and that there exists a continuous action of an abelian topological group I" on A
via endomorphisms commuting to ¢. We define a (¢, I')-module over A as a p-module
D over A endowed with a continuous semi-linear action of I' such that, for a € A,
veDandyel:

p(y(v)) = v(p(v)).

Moreover we say that a (¢, I')-module is étale if its underlying ¢-module over A is so.

2.1 Review of Lubin—Tate and classical (p,I')-modules

We review Lubin—Tate and classical (p, I')-modules associated to a finite-dimensional
continuous representation of Gal(K/K) over F.

We denote by G the unique (up to isomorphism) Lubin-Tate formal Og-module
over Ok. Let Tk be a formal variable of Gy, we have power series:

CLLT(TK> € aly + T}%’OKHTK]] for a € Ok.
Note that the commutativity of the action of a € Ok with [F,] implies in fact
arr(Tx) € aTx + THOK[TE ' (5)

and recall that pyr(Tk) € TE + pOk|[Tk]. We denote by K, the abelian extension
of K generated by {z € mz, plr(z) = 0 for some n > 1} and recall that we have the
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commutative diagram:

Gal(K/K) — Gal(K /K)*® — Gal(K,/K) — Gal(K("V1)/K)

T e

KX 2 pf x O% o5 X

where the left vertical injection is the local reciprocity map, the bottom left horizontal
surjection is the projection sending p to 1, and the bottom right horizontal surjection
is the norm map.

We define a continuous F-linear endomorphism ¢ of F®g, Fq(Tx)) (the Frobenius)
and a continuous F ®p, Fy-linear action commuting to ¢ of O on F ®g, F,(Tx))
satisfying the following conditions for A € F, ¢, € F, and a € O:

(A D (Cseae ) = A® (soe AT )
(A ® (Lo aTH))) = A® (s o a0 (Tic))")

where we still denote by air(Tk) € F,[Tk] the reduction mod p of ayr(Tk) €
Ox[Tk].

Identifying Gal(K ./ K) with O, it follows from Wintenberger’s theory of the field
of norms ([Win83]) and Fontaine’s theory of (y,I')-modules ([Fon90]) that there is a
rank-preserving (covariant) equivalence of categories compatible with tensor products
between the category of finite-dimensional continuous representations of Gal(K/K)
over IF and the category of étale (p, Ok )-modules over F ®g, F,(Tx)). Note that the
condition on the image of ¢ implies that the endomorphism ¢ of an étale (¢, O )-
module over F ®p, F,((Tk)) is automatically injective.

The isomorphism

F &, Fo(Tk) — F(Tkoo) X F(Tro,) % -+ X F(Tro,) @)
A® (Zn>—oo CnTITé) — (Zn>—oo AO—U(CH)TI%,U()’ SRR Zn>—oo )‘Uf—1<cn)TI7é,af_1>

induces an analogous decomposition for any F ®p, F,((Tx))-module Dg:
DK SN DK,UO X X DK7Uf71.

If Dg is an étale p-module over F ®, F,(Tk)), then ¢ induces a morphism (still
denoted) ¢ : Dg o, — Dgo,_, such that ©(3,5_ o chTR,,0) = Xpsoo TRy, ,0(V)
for ¢, € Fand v € Dk ,,. By a standard argument, the functor Dg —— Dk ,, induces
an equivalence of categories (compatible with tensor products) between the category
of étale (¢, O )-modules over F ®p, F,(Tx)) and the category of (p,, Of)-modules
over F(Tk ,)), where F(Tk , ) is endowed with an F-linear endomorphism ¢, (= ¢)
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and a continuous F-linear action commuting to ¢, of O satisfying the conditions for
¢, €F,and a € O%:

Pq ((Zn>foo CnTI%,ao)) = n>—oo CnTITé?ao
(Lo i) = Sons oo Cnlavr (T o)™
In @D we have defined:
art(Tr,oo) = 00(a1r(Tk)) € 00(@)Ti oo + Tih o FITE 0,

where og(apr(Tk)) is the image of app(Tx) € Fy[Tx] via Fy[Tk] — F[Tk el
Yons—oo R = Yns_so 00(Cn)TR 4, If one chooses the embedding o; for some
ie{l,...,f—1} instead of oy, one goes from Dk ,, to Dk, by the isomorphism

Id ®90f*i : FIITK,OU;:[I ®<Pf_i:F[[TK,ao]] DK,OO ;> DK,ai-

(9)

We can also work with the infinite Galois extension K (?V/1) instead of K, (see
@) Let T be a coordinate of the formal group G,,. We endow the topological ring
F®g, Fq(7) with an F-linear endomorphism ¢ and a continuous F®g, F,-linear action
commuting to ¢ of Z) satisfying the following conditions for A € F, ¢, € F;, and
a€”y:

@(O‘ ® (Cn>—o CnT”))) =A® (Cns—oo RT™) (10)
(A ® (Tusoo ™)) = A @ (Lo Cnla(T))").
We have as before a rank-preserving (covariant) equivalence of categories compati-
ble with tensor products between the category of finite-dimensional continuous rep-
resentations of Gal(K/K) over F and the category of étale (¢,Z))-modules over
F @, Fy(T)).

Here a standard choice is to take 7' such that a(T) € al + TPF,[T77'] C
al + TPF,[T?P'] is the reduction mod p of (1 +T)* — 1 € Z,[T]. Using a de-
composition analogous to , we again have an equivalence (compatible with tensor
products) between the category of étale (¢, Z))-modules over F @, F (7)) and the
category of étale (g, Z))-modules over F((1'), where F((T") is endowed with an [F-
linear endomorphism ¢, (= ¢/) and a continuous F-linear action commuting to ¢, of
Z, satisfying the conditions for ¢, € F and a € Z;:

@Q((Zn>—oo CnTn>> = Zn>—oo Cnan (11)
((Zs o0 nT™)) = Lsoo nlal(T))"
If p is a finite-dimensional continuous representation of Gal(K/K) over F, we
denote by:

Dk(p)  its (o, Ok)-module over F ®g, F,(Tk))

Dk ,(p) the associated (¢,, Ok )-module over F(Tk 4,))

D(p) its (¢, Z,)-module over F ®g, F, (1)

Dgy(p)  the associated (¢, Z, )-module over F((71).

13



We will mostly use Dk ,,(p) and Dy, (p) in the sequel.

We now relate Dk (p) and D(p), Dk o, (p) and D,,(p). In order to do so, we have
to use the perfectoid versions of F,(7x)), F,(Tx.0,)), etc.

We let F [T "] be the completion of the perfection U,soF [T% "] of Fy[Tk]

with respect to the Tk-adic topology and F,(T% ) the fraction field of F,[T% .
Concretely:

- dfﬁ dn .
F,7% 1= {chng , en €Wy, dy € Lo, — — +00 in Q when n — +oo}
n>0 p

and F, (TP 7)) =F, [[Tf{oo]][T ]. We define in a similar way F,[7?7 ~] and F, (77 ™).
Let C, = Oc,[1/p], where O, is the p-adic completion of O and (C; = im C,, then

TP

C; is an algebraically closed field of characteristic p which is complete with respect

to the valuation v((2)m>1) = val(x), where z,, € C,, 22, = x,,_; (for m > 1) and

val is the usual p-adic valuation on C, normalized by val(p) = 1. Moreover its ring
of integers {z € C), v(z) > 0} is:

0% X lim O¢, % lim Og,/(p) 2 lim Ox/(p) = lim Ox/(p)

=P TP =P =

(which Fontaine used to denote R) and (C;7 = Frac(@ﬁ’cp). There is an action of

Gal(Q,/Q,), hence of Gal(Q,/K), on C, which preserves Op. . The following well-
known theorem follows from the work of Wintenberger ([Win83]) and the Ax—Sen—
Tate Theorem, see for instance [CE14, Cor. 3.4]:

Theorem 2.1.1. We have isomorphisms of topological rings compatible with the ac-
tion of Oy (via (d])):

b Gal(K/Koo) oo b Gal(K /Koo)

F,[1% ] = O} and F(T% ") = C,

and isomorphisms of topological rings compatible with the action of Z; (via @) :

, Gal(K/K(PV1)) , Gal(K /K (PV1))

p

F [T7 7] = O, and F (TP ") =C

In particular, F,[TP "] = FQHT}'}_OO]]GB‘I(KW/K(Z)O%)) — Fq[[T[Z;_OO]] and F,(T7 7)) =

Fy (T ™)tk /KCVD) oy By (T ).

By Theorem we have in particular an embedding F,[T] < F,[T% " ].
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Proposition 2.1.2. Let p be a finite-dimensional continuous representation
of Gal(K/K) over F. There is a canonical F,(T% ~)-linear isomorphism which
commutes with the actions of OF and :

— o0

Fo(Th ™) @,z D(0) == Fo(Th ) ®,1y0) Dic(P) (12)

where O, ¢ act diagonally on each side, O acting on D(p) via the norm map
0% —» ZX.

Proof. Denote by F,(Tx))*P (resp. F,((T"))*P) the separable closure of F,(Tx)) (resp.
F,(T)) in (Cb via the canonical embeddings F,(Tx) C F (T% ~) < (C; (resp.
F,(T) C (( ") = C}) in Theorem m, and recall that we have

Gal(F,(Ti)*® /F,(Tic)) = Gal(K /Koc), Gal(F,(T)f /F,(T) = Gal(K/K(*VD))

and

Dic(p) = (o (L) @x, 7)™, D) = (F(T)™ 8,

Since we have for any integer n > 1:
H'(Gal(F, (Tk )™ /o (T ), GLy (Fy(Ti )*®)) = 1

as follows by taking inductive limit from [Ser68, Prop. X.1.3], we have a canonical
isomorphism

)Gal(K/K<P°°ﬁ)>

Fo(Ti )™ @r, (1) Dic(P) — Fo(Tr )™ @r,, P (13)
that is compatible with the actions of ¢ and Oj, and likewise with F,((7")*®, IF,(T)

and D(p). Tensoring by C over F ((TK))sep, resp. its analogue over F (7)),
we obtain a canonical isomorphism

C), ®r,(1x) Dr(p) = C; @5, p < C;, @s,(r) D(p)
compatible with the actions of ¢ and OF. Taking invariants under Gal(F/ K.,

oo

which acts trivially on Dg(p), D(p), and remembering (C;Gal(K/ Kee) _ F, (T% )
from Theorem we obtain the desired isomorphism ((12)). O

Let F(TF :z ) resp. F((TP" ™)) be the completion of the perfection of F((Tk o, ) resp.
F(75,)). Applying F ®,,r, (=) to Theorem we deduce embeddings F((T)) —
F(T? ™) — F(T},,) and F[T] — IF[[TP*""]] < F[[Tﬁjj;’ I
Corollary 2.1.3. There is a canonical IF((T}}_;Z )-linear isomorphism which commutes
with the action of O and py:

F((T% o) @5(1) Dou(P) = F(Tk 1, ) ©5(Tic ) Din (P)

where Oj, @, act diagonally on each side, Ok acting on Dy, (p) via the norm map
OF — L.
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Proof. This follows from Proposition 2.1.2] and a discussion analogous to the one
following the proof of loc. cit. (the details of which are left to the reader). O

Remark 2.1.4. Arguing as in the proofs of Theorem and Corollary be-
low, the functor Dk, — F(T I’{;; ) ®F(Tx 0, ) Doy in fact still induces an equiv-
alence of categories from the category of étale (¢,, Ok)-modules over F((Tk s, ) to
the category of étale (¢,, Ok )-modules over F((7] f{;j ). Likewise with the functor
Dy, = F(TP ) g1y Do, and étale (¢q, ZX)-modules.

We finally recall a convenient explicit presentation of D ,,(p) for p absolutely
semi-simple (or equivalently for p absolutely irreducible).

For simplicity, we now choose the formal variable T such that apr(Tx) = aTk
when a € [F,] (so a(Tky,) = 00(a)Tkq, for a € [F,]); for instance, this holds if
Tk is such that the logarithm of the Lubin-Tate group Gprr (|[Lan90, §6]) is the
series Y ,50p "Tf . Note that in that case F(Tk,) ] = IF((T;’(,_;O ). We recall the
following straightforward lemma.

Lemma 2.1.5. Let p be a finite-dimensional continuous representation of Gal(K /K)
over F. Denote by D q,(p)Fe) the F((T%T;O))-vector subspace of Dk »,(p) fized by

[Fx] € Of. Then Dk o, (p)Fal is preserved by @, and the action of Oy, and we have
an F(Tk 4, ))-linear isomorphism compatible with ¢, and Ok :

]F((TK,O'O)) ®]17((T}1(T;0)) DK,UO (p) Tl AN DK,cro (p)

where the actions of ¢, and O on the left-hand side are the diagonal ones.

Proof. 1t is enough to prove that the morphism in the statement is an isomorphism,
everything else being trivial. It is enough to prove

H'([F], GL,(F(Tk0,))) = 1

for any integer n > 1. But this is again the generalization of Hilbert 90 applied to the
Galois extension F((Tk o, ) /F (T Iq(,_alo ) (which has Galois group [F]), see for instance
[Ser68l, Prop. X.1.3]. O

We now give explicitly D o, (7)) for an absolutely irreducible 7.
For A € F* denote by unr(\) the unramified character of Gal(K/K) sending the
Frobenius z — 29 to A™!. For f’ > 1 denote by wp : I — IF;f/ Serre’s fundamental

character of level f’, where Iy C Gal(K/K) is the inertia subgroup. We also denote
by wy (instead of oy o wy) the composition
g

Ix 5 FX & Fx (14)
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and again w; its unique extension to Gal(K /K) such that w¢(p) =1 (via local class
field theory). Recall that w; : Gal(K/K) — F* is the composition by oq : F, = F
of the mod p Lubin-Tate character of Gal(K/K). For d € Zs,, it goes back to Serre
that any absolutely irreducible d-dimensional representation of Gal(K/K) over F is

isomorphic to (ind wgf) ®@ unr(A) for some A € F* and some positive integer h which

is not of the form m;:,__ll for some m € Z>; and some d' € {1,...,d — 1}, where

indw}; is the induction from Gal(K/Ky) to Gal(K/K) of the mod p Lubin-Tate
character of Gal(/K/K4) (seen with values in F via any embedding F,« — F lifting
00), where K is the unramified extension of K of degree d. Equivalently ind w(’}f is
the unique representation of Gal(K/K) over F with determinant w/ - unr(—1)4-" such

that (indwl)|r, = Wl Gwly & - & wg}Hh (for any choice of embedding Fa < F).
Note that
(ind wgf) ®@unr(A) = (ind wg}) ® unr(\)

if and only if &’ = ¢*h mod ¢% — 1 for some i € {0,...,d — 1} and \4 = N9,
For a € Oy, we set:

LT def (LT aet 00(@) Tk
def Tr o) & 20/ Koo
f(l fa ( K7 0) a(T ’0-0)

Note that fi" =1 if a € [F)] and that (5) implies

€14+ Tk oo F[Tk 0]

e 1+ TE  FITE .
Lemma 2.1.6. Let p be an absolutely irreducible continuous representation
of Gal(K/K) over F and write p = (indw}j;) ® unr(X\) for some d,h,\ as above.
Then Dk o, (p) = F(Tk o)) Rp(ret ) Do (p)Fa] (Lemma|2.1.5), where D o, (p)Fa]
500

is explicitly described as follows:

Dicoy(P)F1] = @) F(TH 5, )es
QOQ(BZ‘) = €it1, 1<d—1
)\d
Qﬁq(€d_1) = Weo (15)
K,o0
hqt(g—1)
a(e;) = fl e a € OF.

Moreover a basis (e, ..., eq—1) = (€9, pq(€o), - - - ,@3*1(60)) as in is uniquely de-
termined up to a scalar in F*. Finally, if ' = ¢h + m(q? — 1) for some j €
{0,...,d—1} and some m € Z, then the unique basis (¢}); = (€), q(€p), - - -, 00 (ep))
mn corresponding to h' is given by e}, = ﬁej (up to a scalar in F*).

K,oq

Proof. The first statement is [PS, Cor. 3.4]. We prove the uniqueness of the basis (e;)
in (up to scalar). Let (fo,..., fs—1) be another basis of Dy ()] satisfying
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1) it is enough to prove fy € Feg. Write fy = Y%} ze; for some z; € F(T quglo )-
; e A4 1 1

Since ¢{(fo) = = Jo and pl(e;) = —anGa T ¢ We deduce gz = Tqih(q,l)@g(%)
K,oq K,oq K,o0 K,o0

for i € {0,...,d — 1}, ie. l(z;) = T[}éfgo_l)(qi_l)xi. This easily implies z; € FT"%

where mn; & M@0 ¢ Zo. If x; # 0, since (q—1)|m; in Z, we obtain h = 2 41

qé-1 q—1 ¢ -1
for some i € {1,...,d — 1} which contradicts the assumption on h. Hence x; = 0 for
all © # 0 and thus fy € Feg. The last statement is an easy check that is left to the
reader. ]

Remark 2.1.7. One can prove that the action of @ € OF in (15) is the unique
semi-linear action on Dy 4, (p)F7] which commutes with ¢, and is such that a(e;) €
e, + T Iq(;,lo >0 IE‘[[TI%T;O]]ej for all . The argument is the same as in the proof of
Lemma 2.2.1] below.

As a special case of Lemma [2.1.6] we have:

Lemma 2.1.8. Let x : Gal(K/K) — F* be a continuous character and write x =
wjfxunr(/\x) for hy € Zso and A\, € F*, then (for a € OF):

Doy (0)Fe] - = F((%:}?,_;o Jex

pq(ex) = ThT)éfl)ex
;00

aley) = (fa") e

If p is any finite-dimensional continuous representation of Gal(K /K) over FF, write
Dk o (P)(X) for Di o(P) ®F (7% ) Prc,oo (X) With tensor product structures. Then we
have Dy o, (P ® X) = Dk o, (p)(x) as follows from the compatibility of Dk ,,(—) with
tensor products.

2.2 The (p,, O)-module over A of a semi-simple Galois rep-
resentation

To an arbitrary semi-simple 7 we associate by an elementary recipe an étale (¢,, Of)-
module Dy ,,(p) over A (depending on the fixed choice of the embedding o).

Let Ny & ((1) OIK) C GL2(Ok) and my, the maximal ideal of IF,[No]. Recall that
F,[No] = F,[Yo,...,Ys1] and my, = (Yo, ..., Y1), where

Y, 3 <(1) @) € F,[No].

AEFY
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As in [BHH"21), §3.1.1] consider the multiplicative system
SE{(Yo - Y-0)", k2> 0} CF[No]

and A, = IFq/[[N\O]]S the completion of the localization F,[Ny]s with respect to the
ascending filtration (n € Z):

e 1 kf—n 1 kf—n
Fo(F [Nos) € Y o, = U e m (16)
Dol = 8 " = v

where m% = F,[No] if m < 0 (see [BHH*21] §3.1.1]). We denote by F,A, (n € Z)
the induced ascending filtration on A, and endow A, with the associated topology
([LyO96, §1.3]). The ring A, contains IF,[Ny] and the F,-linear action of O on F,[No]
(induced by the multiplication on Ok = Ny) canonically extends by continuity to A,
(but not to F,[No]s as it does not preserve S). We will write this action of O on
F,[No] and A, as a(x) for (a,z) € O x A,. In fact using a — [a] € pOk one has for
a€ Ok and i € Z:
a(Y;) € @Y + my;, C my,

which implies

i 1 i
a(Y;) € a” Y;(l + ?m%0> Ca’Yi(l+ FipA,) € A;. (17)

We define a Frobenius ¢ on F,[Ny] by the usual Frobenius ¢ — ¢” on the coefficients
F, and the multiplication by p on Ny = Ok, i.e. by

(‘O(ZCQYOTLO .. anjfl) def ch%pno . 'Yff{ul’

where n = (ny, . .. JNf_1) € Z’;O and ¢, € F,. It canonically extends by continuity to
A, and obviously commutes with the action of O on F,[Ny], hence on A,.

Let A be the complete filtered ring in [BHH"21, §3.1.1]. Recall that A is defined
similarly to A, replacing F [No] by F[No] ezcept that the Frobenius ¢ on F[Ny] is
now F-linear. Asin (8), we have an isomorphism F®p, A, — A X A x --- x A which

f times

sends A ® 32, ¢, Y5 - Y/ € F @, A to:
()\ Z 00(Cn) Yo -+ Ya’;ffll, A Z o1(Cn) Y0 Y )\Z af,l(cﬂ)Ya’;Oil . 'YJ’;f:Ql)

where we set for o : F, — IF:

VY o) (é [i}) & F[No] C A. (18)

AEFy
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It induces an analogous decomposition for any F ®@g, A,-module D4, :
DAq%DA7O'0 X"'XDA,of_1~ (19)
We extend F-linearly the Frobenius ¢ and the action of Oy from A, to F ®g, A,.

Note that we have ¢(Y,,) = Y2  for i € Z (see [BHHT21, §3.1.1], where ¢ on A is

denoted ¢). We let ¢, e o/ on A. As in , the functor Dy, +— D, induces an
equivalence of categories between the category of étale (¢, O )-modules over F ®r, A,
and the category of étale (p,, Ok )-modules over A.

The embedding of F-algebras

n(q— Ya "
FTEL) = 4, 3 eIpeh s 3 cn<¢(°)> (20)
’ n>-—oo ’ n>-—00 YC’O
trivially commutes with ¢, and [FX] (the latter acting trivially on both sides). For p
an absolutely semi-simple finite-dimensional continuous representation of Gal(K /K)

over IF, we define:

Dag(p) = A ®F((T;1<j;0)) D o (p)" (21)

where D o, (p)F4] is as in Lemma [2.1.5] It follows from its definition that D4 ,,(p)

is an étale p,-module over A if it is endowed with the endomorphism ¢, o ©q ® Qg

For a € O}, we set (see (L7)):

ad o 0p(a)Yy,
(npoéﬁnﬁgygﬂ.”,xﬁﬂ)ifglglgg

s € Fi_,A. (22)

Lemma 2.2.1. Let p be an absolutely irreducible continuous representation of
Gal(K/K) over F and (eq, ..., eq-1) a basis of Dg o, (p)F¢] as in Lemma . Then
we have:

Dao(p) = S A(l®e;)
@q(1®62) = 1®€i+1,i<d—1
Y.

0 (1®eq ) = Ad(ﬂym))h(l@eo)'

Moreover there is a unique structure of (g, Of)-module over A on D 4 ,,(p) such that

d—1
a(l®e) €l®@e;+ Y (FipyA)(1®e;) for alli and a € Of.
=0

This action of O is explicitly given by (i € {0,...,d -1}, a € OF):
fa,oo
Sp(fa,ao)

and does not depend (up to isomorphism) on the choice of the basis (e;); of
DK,Uo(p)[F;]'

hqi

) (1®e) e (1+ FnpA1@e) (23)

a(l®e;) = (
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Proof. The first part of the statement follows from the definition of D4 4, (p) in (21)).
Fix a € O} and write a(l ® ey) = Y91 Ci(1 ® ;) for some Cy € 1+ Fy_,A and
C; € Fi_pAif i # 0. Assume C; # 0 for some 7 # 0 and let m; > p — 1 be the
maximal integer such that C; € F_,,, A\ F_,41)A. Since a(1 ® eg) and the 1 ® e;
are fixed by [Fy], the constants C; are also fixed by [F;] in A for all j, and thus in
particular by [F], from which it is an exercise to deduce that we must have (p—1)|m;.

@h
Since pl(1®@e;) = /\d<¢(1;‘jfo)> (1®e;) for all j, the equality a(¢l(eo)) = ¢2(a(eo))

yields for j € {0,...,d — 1} (using o¢(@)?! = 1):

Cj = (@{;:;))h(@gijo))(qj_l)hwﬁ(cj) (24)

which implies in particular —m; = (¢* — 1)h(p — 1) — ¢%my, ie. (¢¢ — Dh(p — 1) =

(¢* — 1)my, i.e. h = ‘j;:ll 2, which contradicts the assumption on h since 2 € Z.

h
Hence we must have C; = 0 if ¢ # 0. When i = 0, 1) is just Cy = ((p(f]‘i"’o )) gpg(C’o),
a,o(

which has a unique solution in 1 + F;_,A given by:

o= Ta(() ) - GG) = (Gh)
- ()

where the second equality uses 27" = z if € F,. Then immediately follows,
from which the continuity of the action of Oy is clear (as it is continuous on A). If
one changes the basis (e;);, or equivalently by (the last statement in) Lemma
changes the integer h, the last statement easily follows from the last statement of

Lemma 2.1.6 O
Remark 2.2.2.

(i) The uniqueness of the action of Ok in the proof of Lemma works just
assuming a(l ®e;) € 1 ®@e; + Z?;é(F_lA)(l ® e;) (and lands automatically in
1®€z‘|‘ ;l;é(Fl_pA)(1®ej))

(ii) Definition does not need the semi-simplicity of p, but we will only use it
in that case, see also Remark below.

Let us finally make twists explicit. Let y : Gal(K/K) — F* be a continuous
character and write y = w?xunr()\x) for hy, € Z>o and A\, € F*, then (using Lemma
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2.1.8) the étale (¢,, O )-module D4, (x) is explicitly given by (a € OF):

Dan(y) = Allee)

p(l®ey) = )‘X(SD(;:)> X<1®ex) (25)
(am B

alee) = (Ss) 1oe)

One has an action of O on D4 ¢, (F@X) = Dagy(B) @4 Das,(x) by taking the tensor
product action. We leave to the reader the exercise to check that, when p®@yx = 7' ®x/,
then Do, (P @ X) = Dags(p' @ X') as (¢4, Ok )-modules over A.

2.3 A reminder on p-divisible groups and K-vector spaces

We review some results on constructions of Fargues and Fontaine ([FF18]) related to
p-divisible groups (in a relative context, see for example [LB18, §5.1]) and we define
the important perfectoid spaces Zyr and Zp, over F.

Let R be a perfectoid F-algebra and w a pseudo-uniformizer of R. As usual we
denote by R° the subring of power-bounded elements in R and by R°° C R° the
subset of topologically nilpotent elements (i.e. those a € R such that a™ converges
to 0 in R). We fix a power-multiplicative norm |-| on R defining the topology of R.
Such a norm exists and can be explicitly given by

la| = inf{2% , (m,n) € Z x Z+o, w™a" € R°} € Qs (26)

(so la] <1 < a € R°). We endow the Witt vectors W(R°) with the (p,[w])-

adic topology (where [-] is the multiplicative representative) and write Yspa(r re) =

Spa(W (R°)\V (p[w]). Let B*(R) = OF;

YvSpa(R,RO
on the adic space Ygpa(g,re). This is a Fréchet K-algebra which can

)(YSpa( r,R°)), the global sections of the

+
sheaf Oy, ...

be more explicitly described as the completion of W (R°)[1/p] for the family of norms
||, 0 < p < 1 defined by

= sup(|z|p"). (27)
nez

n>>—0o0

Z [xn]pn

It is endowed with a continuous K-semi-linear endomorphism defined by

o (Z[%]ﬁ) =2 ="

n n

and we define ¢, = o/ which is K-linear.
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When 1 < d < f, it follows from [FS, Prop. I1.2.5(iv)] that the functor R
B*(R)#="" is “represented” by the topological ring F[[x(l)/ P xi/ 71, the com-
pletion of the perfection of Flzy, ..., x4 1] for the (xo, ... ,l‘d,_1) topology (we put “”

as F[[l‘(l)/ P xd 71 is not a perfect01d ring). More precisely, if R is a perfectoid
F-algebra and (ro,...,ra_1) € (R°°)%, let

F(?"O, e 1 def Z Z —i— "f 1+nd c B+<R)<qupd (28)
neZ 1=0

then we have:

Lemma 2.3.1. Let 1 < d < f. For each perfectoid F-algebra R, the following
functorial map is a bijection:

Homﬁ;‘f;lgagﬂml/p ’ :L.Cll/ﬁo1 INE (Roo)d N B+<R)<pq:pd
(To,...,Tdfl) — F(To,...,T’dfl).
Proof. Mutatis mutandis, this is the proof of [FE18 Prop. 4.2.1]. ]

Remark 2.3.2. If R is a Huber ring over F and R C R° is an open and integrally
closed subring ((R, R") is then called a Huber pair), we have R°® C R* so that, by
[Hub94l, Prop. 2.1(i)]

Homgpar) (Spa(R R*),Spa(F[z" ... al" ))
= Homgy, (Fw™™ . /2], B)

Thus Lemma [2.3.1] and [SW20, Lemma 18.1.1] imply that the functor (R, R") —
B*(R)#*="" can be extended to a sheaf on the site Perfr of perfectoid spaces over F
endowed with either the pro-étale topology or the v-topology.

Remark 2.3.3. Let (R, R") be a perfectoid Huber pair over F. If = € Spa(R, R™),
then its residue field k(z) is a perfectoid field containing F (see for example [Schi2,
Cor. 6.7(ii)]). If z € BT(R)#*="", we let z, be its image in B* (k(z))?=*". Then the
functorial bijection of Lemma [2.3.1] induces a functorial bijection:

(Spa(IF[[x(l)/p R DN AT ,xd,l))(R, RN2{z € BT (R)*7* 2, # 0V z}.

The following remark will be used in §2.9

Remark 2.3.4. There exists a norm |-|; on BT(R) which induces on W(R°)[1/p] the

Z [zn]p"

n>>—o0

= sup{|z,|, n € Z} € [0,1] C Rx,
1
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and is such that |z|; = lim,<i|z|, (see [EF18, Prop. 1.10.5 & Prop. 1.6.16]). Equiva-
p—1

lently, there exists a valuation vy : BY(R) — [0, 400] such that
Vo= > [z)p" € W(R)[1/p], wo(z)=inf{v(z,), n€Z},
n>>—00

where v is the valuation —log|-| on R. This description implies that if (z_,),>0 is a
sequence of elements of R such that Y, «4[z,]p" € BT(R) and such that there exists
0 <c<1with |z_,| <cforall n >0, then

Z [xn]pn

n<0

<ec.

1

Note that |-|; : BY(R) — [0,1] is not continuous since, for instance, |p"|; = 1 for
n € Z although p" — 0 in BY(R) when n — +o0o (in fact |-|; induces the discrete
topology on K C BY(R)).

Now we review the interpretation of B+(—)9"q:pd in terms of p-divisible groups in
the two extreme cases d =1 and d = f.

The case d =1 Let Grr be the Lubin—Tate formal group of §2.1 As at the end
of loc. cit. we choose an isomorphism Gprr = Spf(Ok[Tk]) such that the logarithm
map logg, .. : GrE — GigK (where G, i is the additive formal group over Of and
“rig” the rigid analytic generic fiber) is given by the series 3, p_”TIq:. Let Gip &
@p(GLT Xsp(0x) SPE(Fq)) = Spf(IF, [75/*"]) be the universal cover of Gpr X $pf(Ox)
Spf(F,) (see for instance [SW13, §3.1]). The action of Ok on Grr extends to an
action of K on Grr. Note that if R is a perfectoid F-algebra, we have GLT(R) =5
(Grrr X sp(0x) SPE(Fg)) (R) = Grr(R) (see for example [SW13|, Prop. 3.1.3(iii)]) so that
Grr(R) already has a structure of a K-vector space. By [FF18, Prop. 4.4.5] or [ES,
Prop. 11.2.2], for each perfectoid F-algebra R, we have an isomorphism of K-vector
spaces Gpr(R°) = Bt (R)#*= given by

r€ R = Gup(R°) — F(r) < Y [r "p" € BT (R)#= (29)

neL

(this is the isomorphism of Lemma when d = 1, where the variable z in loc. cit.
is denoted Tk). Note that on the left-hand side, the K-linear structure is given by
(for r € R°)

(30)

VneZ, pr)=r7,
Vae Ok, a(r)=ayr(r),

where we view the coefficients of the power series arr in F via O — F, 4 F. We
let

Zir = ((Gur Xspecr,) SPEEF))™ \ {0})/, (31)
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where (Gpr Xspt(r,) SPE(F))™ is the adic space associated to the formal scheme
Grr X spt(r,) SPE(F) and {0} is the closed analytic subspace image of the 0-section, i.e.
f-times the fiber product of (Grr X spt(r,) SPE(F))*\ {0} over Spa(F) (still using o).
Using obvious notation, we have an isomorphism of adic spaces

Zix 2 Spa(FITE - TS\ V (Tico T ) (32)
and there is an action of (K*)/ on Zyr given by

Va=(ap,...,a5-1) € (K, a(Txs) = aiir(Tki)-

The case d = f Let Gs s be the p-divisible group over F,, defined in [FEF18| §4.3.2]
(with O = Z,) as the kernel of V/ — 1 on the group scheme of Witt covectors CW
(we use without comment the notation of loc. cit., for instance V' is the Verschiebung,
F is the Frobenius, see [FEF18| §1.10.2] for CW, etc.). The base change of Gy ; to I is
endowed with an additional structure of functor in Og-modules. Namely if R is an
[F-algebra, then CW(R) is an O = W (F,)-module via oy : F, < F and the action
of Ox on CW(R) commutes with V/ and F/ (but not with V and F).

As ker(V — 1) C ker(V/ — 1), there is a natural injection of p-divisible groups
G1,1 = Gy.5 which induces a morphism of p-divisible groups over F with Og-action

Ok ®z, G117 — Gy fF- (33)

Lemma 2.3.5. The map is an isomorphism of p-divisible groups over F with
Ox-action.

Proof. In this proof we will use (contravariant) Dieudonné Theory ID(—) for p-divisible
groups over I,. Recall that it yields free Z,-modules, and that when the p-divisible
group is over F it yields free W (IF)-modules. The map corresponds to a non-zero
map of Dieudonné modules which is both Og-linear and W (F)-linear:

D(Gysr) — D(Ok ®z, Gi1r) = Homyz, —moa(Ox, D(G117))
= Homgz, —mod(Ok, W(F)) @wm D(G1,1r) (34)

where O acts on the right-hand side via its natural action on Homgz, _mea(Ox, W (F)).
Note that D(Gyrr) = W(F) ®z, D(Gy,¢), where the Dieudonné module D(Gy ;) has
a Z,-basis (eg,e1 = V(eg),...,e;1 = VI7Y(eg)) such that F(e;) = pe;; for all
0 <i < f—1 (see [EF18, §4.3.2], we write ey : Gfy — CW for the canonical
embedding e of loc. cit. and we use the convention that i = i + f). Moreover the
action of O on Gy s induces an action of Ox on D(Gy s r) = W(F) ®z, D(Gy f) such
that a(1 ®e;) = ¢ (a) ® ¢; for a € Ok, where ¢ is the absolute Frobenius on W (FF)
and Ok is seen in W (F) via oy : F, < F. Using the Og- and W (F)-linearities, and
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the commutativity with F', one checks that there is an isomorphism W (F) = D(G; 1 r)
such that the map is given by

-1 -1
Z )\z X e; — (a — Z )\ZQO_Z(G)> < Homzp,mod(OK, W(IF))
=0 =0

(in particular, ey maps to the inclusion Ok — W(F)). To conclude the proof we need
to show that the elements a — ¢ ~%(a), 7 € {0,..., f — 1}, generate the W (F)-module
Homyz, —mod(Ox, W(IF)). This can be checked after reduction mod p and we have to
prove that the elements a +— ab', i € {0,..., f — 1}, generate the F-vector space
Homp, _vs(Fy, F), which is a consequence of the linear independence of characters. [

By [FF18|, Prop 4.4.5] (replacing F, by F, the field F' by a perfectoid F-algebra
R and where the variable z; of loc. cit. is reindexed z;_; here for i € {1,..., f — 1},
xo being unchanged) there exists a coordinate z (resp. coordinates zo,...,zy_1) on
the formal group Gy 1 (resp. Gy rr) such that the following map is an isomorphism
of Q,-vector spaces (resp. K-vector spaces) for any perfectoid F-algebra R:

C Gur(R) =  BF(R)#P
e z = Znez[zp_n]pn
N _f (35)
(TeSp Y Gr.4%(F) = B+(R)<pq-_pf )
T (o, apn) D S Saenlat

(we use G117(R) = Gi11r(R) by [SWI3, Prop. 3.1.3(iii)] for the structure of Q,-vector
space on Gy 1 r(R), likewise with G rr(R)). Moreover these isomorphisms are given
by the composition of the isomorphisms in the following diagram (we only give ~;
and refer to loc. cit. for the notation):

f

Homyy (py(F1 (D(Gf, 7)), BW(R)) i>H0mvv([mp] (D(Gy,f7), BT (R)) == BT (R)¥9=P

lg (36)

G, 4,6(R) —— Homyy my( ) (D(Gy, .5), CW (R))

where the vertical isomorphism is a consequence of [FF18, Prop. 4.4.2] and the first
top horizontal isomorphism a consequence of [FFIS8, Prop. 4.2.1]. We deduce from
the commutativity of the following diagram of Q,-vector spaces:

gLLF(R) _m . B+(R)9”:p

| |

Grrr(R) — 1= BH(R)#=
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and thus the commutativity of the following diagram of K-vector spaces:

oy ®m

Ok ®z, Gi1r(R) —— Ok ®z, BY(R)¥7P

J F (37)

G rr(R) ——L—— BY(R)#=',

Let @m,Fp be the multiplicative formal group over [F,, and @mJF its base change over IF,
we have Gi1 = G, 5, (see [FF18, Ex. 4.4.7]) and isomorphisms of p-divisible groups
over F with Og-action

Homyz, —mod(Ok, Zyp) @1z, @m,IF =~ Ok @z, Giar — Grpr (38)
using the isomorphism of Og-modules
OK ;> Homprmod(OK, Zp), a+— TrK/Qp (CL) (39)

and Lemma [2.3.5] Here, the Og-action on the left-hand side of is via the action of
Ok on Homgz, _0d(Ok, Zy) given by a(\)=A(a—) (a € Og, A€ Homg, _1oa(Ok, Zy)).
Using

HOHIICFO_Hilg(FHOK]], A) = Homzp_mod<01(, Aoo) = Homzp_mod(OK, Zp) ®Zp A°°

for any complete topological F-algebra A, we deduce from an isomorphism of
formal modules over F with Og-action

Gr.rr = SPHF[OK]), (40)

where Ok acts (continuously) on F[Ok] by multiplication on itself. It follows that
Grir & @p Gr.rr is represented by the formal scheme Spf(F[KT]), where F[K] is
the mp,-adic completion of F[K]| ®gjo,] F[Ok] (me, being the maximal ideal of
F[Ok]). Tt also follows from the formula for v in (35) that there exist elements
Xo, ..., X51 € F][Ok] satistying F[Ok] = F[Xo,..., X 1]] such that we have iso-
morphisms Gy rr(R) = Homg™,, (F[Ok], R) = B*(R)‘Pq_p for any perfectoid F-
algebra R, where the second isomorphism is given by (where X; — x; € R)

(%o, ... x5_1) € (R) —> Z S [t = F(ag, .. xp) € BY(R)P

1=0 n€Z

We then easily check that, in the coordinates X;, the action of K* on F[K] has the
following properties

i

<i< f— (X >
{VO_Z_f 1,Vn€Z, p(Xl) Xz—n. (41)

VO<i<f-1,YVa€eFs, [d(X,)=o0(a)"X;
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(with the usual convention that X;,; = X;). Finally, we let
Zoyw = Gy \ {0}, (42)

where QN?SI,F is the adic space over F associated to the formal scheme Q ¢ ¢ We have
an isomorphism

Zoy = Spa(F[X™"" ..., X/ DA\ V(Xo, .., Xpa). (43)

Note that the adic spaces Zir and Zp, are both in Perfy.

2.4 An analogue of the Abel-Jacobi map

We define and study certain open subspaces of the perfectoid spaces Zir and Zp,. of
as well as a canonical map m : Zyr — Zp,. preserving these subspaces.

For any perfectoid F-algebra R, the product in the ring B*(R) induces a functorial
map:
(BT (R)#=P)f — BH(R)#=r

44
(21y..,27)  +—>  z1--2f (44)

meg:

Using Remark [2.3.3] the fact that each BT (k) is a domain for k a perfectoid field
(see [FF18, Thm. 6.2.1 & Thm. 3.6.1]) and [SW20, Prop. 8.2.8(2)], the family of maps
(mpg) induces a morphism of perfectoid spaces over F

m: Zyr — ZOK‘ (45)

The map mp being compatible with the actions of (K*)/ (on the source) and K*
(on the target), we deduce that m is compatible with the actions of (K*)7 and K*
on Zyp and Zp,, i.e. mo (ag,...,ar-1) = ([I;a;) om. For 0 <i < f —1 let j; be the
morphism K* — (K*)/ sending a to the f-uple with 1 at all entries except at the
i-th entry where it is a, then for all a € K* and 0 < i < f — 1, we have in particular

mo ji(a) =aom: Zyr — Zo,. (46)

Remark 2.4.1. The map m can be seen as an analogue of the Abel-Jacobi map (cf.
[Far20]). Namely the sheaf on the pro-étale site of Perfr associated to the quotient
presheaf (B*(—)#«=?\ {0})/K* is isomorphic to the pro-étale sheaf Divy of degree
1 divisors on the relative Fargues—Fontaine curve over F and likewise (B*(—)#e=?" \
{0})/K* is isomorphic to the pro-étale sheaf Divl of degree f divisors. The map m
induces a morphism of pro-étale sheaves (Divi)/ — Div{ which is given by the sum
of divisors, cf. [Far20l §2.4].
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The group & acts on the left on (K*)/ by permutation of coordinates:

def

Voe &,V (aocicy1 € (KX), a(a;) = (ag-10)-

The group & acts likewise on Zir by permuting the factors (GLT Xspi(0x) SPE(F) \
{0})2® so that the action of (K*)’ on Zyp extends to an action of the semi-direct
product (K*)¥ x &;. Let A be the kernel of the multiplication (K*)/ — K* and
A; = AN (0F). Then A x & is a subgroup of (K*)/ x &; and the map m is
invariant under the action of A x &;. By [Far20, Lemme 7.6]%, the map m induces
an isomorphism of pro-étale sheaves on Perfp

A X Gf\ZLT = Z@K. (47)

We let Z3" be the open subspace of Spa(F[K]) defined by the relations
Ok
‘;(0‘ ’4(f—1’ 7 0

(it is open as it is the intersection over i € {0,...,f — 1} of the rational open
subsets U(X(’?f(f‘l) of Spa(F[KT])). Note that we have Z§" C Zo,. We also define

ZEE = mH(ZE"), an open subspace of Zyr, so that Z&" and ZEf are both in Perfp.

We now give explicit descriptions of Zg" and Zf7'.

: en def en . .
\Zi\{ggnstart with Z@ . We denote by A = Oy, (Z5,) the ring of global sections
on Zg.

Lemma 2.4.2. The following statements hold.

(i) The ring A is the perfectoid F-algebra
. X\ TP
e (() rsisso1)
Xo

(ii) We have Z§,! = Spa(Ass, A%,), in particular Zg is affinoid perfectoid.

(iii) There exists a multiplicative norm |-| on Ay such that | Xo| = p~! inducing the
topology of Ax.

(iv) Any quasi-compact open subset of Zo, whose points of rank 1 are exactly the
points of Zg. of rank 1 is necessarily Zg itself.

ZNote that [Far20, Lemme 7.6] extends scalars to F,, however the proof works the same without
extending scalars as it is based on the proof of [Far20, Prop. 2.18] where one does not extend scalars.
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Proof. Define the adic spaces

T = | Xo| = = | X1 # 0} € T = Spa(F[Xo, ..., X;1]).

gen

It is enough to prove (i), (ii) and (iii) replacing everywhere Z§5" C Spa(F[K]) by
T C T (i.e. completed perfection will not change the arguments in the proof below).
Moreover, as the map T = Spa(F[Xo, ..., X;1]) — Spa(F[Xy"", ... ,X}/_pfo]]) is a
homeomorphism, it is also enough to prove (iv) with 7% and 7'\ V(Xo, ..., X;_1).

We first show the analogue (iii). Let S = ]F((XO))<())§Z')i1, 1<i< f— 1> that

0
we endow with the Xp-adic topology (it is a Tate algebra), then the norm in (iii) is
the unique multiplicative extension to S of the Gauss norm on the restricted power
series IF((XO))<(§—;) ,1<i < f— 1> (which is well-known to be multiplicative). Note

° ¥\ *1 . . . .
that S° = IF[[XO]]<(X;) ,1<i< f— 1> is the unit ball for this norm.

Let us prove (the analogues of) (i) and (ii). Looking at continuous valuations, it
is clear that the morphism of adic spaces Spa(S,S°) — T factors as Spa(S, S°) —
T C T. In order to prove that the morphism of adic spaces Spa(S, S°) — T8 is an
isomorphism, it is enough to prove that it induces an isomorphism Spa(S, S°)(W) =
Tee" (W) for any analytic adic space W over F, and it is enough to take W =
Spa(R, R") for an arbitrary complete analytic Huber pair (R, R™) over F (the case

R Tate would be enough). Then this easily follows from the definitions of 7" and S.

Let us finally prove (the analogue of) (iv). First note that 7'\ V(Xo,..., X;_1)
is the analytic locus of the adic space T, the only non-analytic point of T be-
ing the unique (rank 0) valuation with kernel the maximal ideal of the local ring
F[Xo,...,X¢_1]. Let U be a quasi-compact open subset of T\ V(Xo,..., X;_1)
whose points of rank 1 are the points of 75" of rank 1. For ¢ € {0,..., f — 1} con-
sider the open subset U; of T' defined by |X;| < |X;| # 0 for all j, or equivalently (by
the same argument as for the proof of (i))

Us = pa (B0 (S5 # 1) FIXD (3205 £ 1) ) € TAV (Ko, Xpm).

Then UNU; and T%" = N;U; are two open subsets of U; with the same points of rank
1, and thus a fortiori with the same points with residue field being a finite extension
of F((X;). Let U® C U; (vesp. (T&™)" C Te) be the subset of points of U; (resp.
Te") with residue field being a finite extension of F((X;)), then U/ (resp. (T5)")
can be identified with the affinoid rigid analytic space over F((X;)) corresponding to
U; (vesp. T#") by [Hub96, (1.1.11)(a)], and we have U N U;*® = (T&")"8, Note that
U, U; and T are quasi-compact (U by assumption, U;, T8 as they are affinoid).
As T is a quasi-separated adic space (being spectral as the adic space associated to
a Huber pair, see for instance [Mor, Cor. I11.2.4]), the open subset U N U; is still
quasi-compact. As U; 8 i quasi-separated, we deduce U NU; = T8 from U N U; 8 —
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(Te*™)"e by [Hub96l (1.1.11)] (see also [Schi12l Thm. 2.21]). Since U = U;(U NU;) (as
UCT\V(Xo,...,Xs_1)), we finally obtain U = 7% in T. O

Lemma 2.4.3. The following statements hold.

(i) The open subset Z§," of Zo, is stable under the action of K*.

(ii) The open subset ZEx of Zyr is stable under the action of (K*)¥ x &;.

Proof. (ii) can be easily deduced from (i) and Zf' = m~1(Z"), so we only prove

(1)-

The fact that Z§ is stable under the actions of p and p~' on Zp, is a direct
computation on F[X/*™, ... ,X}/_pfo]] — A2 using . Let us show that Zg is
stable under the action of O). It follows from Lemma [2.4.2(iv) that it is sufficient
to check that Z&(C, O¢) is stable under the action of O on Spa(F[K])(C, O¢) =
B*(C)#=?" for C' a perfectoid field containing F (using Zo, (C,CT) = Zo, (C,O¢)
for any open bounded valuation subring C* C (). We will use Newton polygons

as in [FF18, §1.6.3]. Recall that B*(C)#e=*" is the set of converging power series in
Bf(C):

f-1 .
—i=nfy ian
F(xo,...,xf_l):ZZ[xf ]p+f

n€z i=0
where |z;| < 1 for all ¢ with || a fixed power-multiplicative norm on C' (e.g. as in (26))).
A point = € BH(C)#=' is in ZE(C,O0¢) if and only if 0 # |zg| = -+ = |z;_1| < 1,
equivalently if and only if its Newton polygon (see [FE18, Déf. 1.5.2, Déf. 1.6.18,
Déf. 1.6.21 & Ex. 1.6.22]) has slopes {cp”, n € Z}, where ¢ = (p—1)v(z0) € Qs and
v: C — Qs is defined as in [FF18, §1.1] by |-| = ¢~ *0). As the Newton polygon of
x only depends on the norms |z|, for 0 < p < 1 (see [FF18, Ex. 1.6.22] and for
|-|,), it is enough to show that |z|, does not change if we multiply x by an element
of Of. This follows from the multiplicativity of |-|, (see [FF18, Prop. 1.4.9]) and the
fact that |-|, induces the p-adic norm on K. O

From Lemma we deduce a continuous action of K* on the topological IF-
algebra A,,. We denote by ¢ the endomorphism of A, induced by the action of
p € K*. It is F-linear and satisfies (see (41)))

(X)) =Xl for0<i< f—1 (48)

2

(with X_; = X;_; as usual). We also note ¢, = ¢/ (which coincides with z — 29 on
A when F, =F).

We now give an explicit description of ZE7.
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Recall first that if a locally profinite group H acts continuously on a perfectoid
space X' over I, a morphism X’ — X in Perfy (H acting trivially on X) is a pro-
étale H-torsor if there exists a pro-étale cover Y — X in Perfy such that there is an
isomorphism X’ xx Y =2 H x Y in Perfy, where H is the sheaf on Perfr defined by
H(T) = Cont(|T|, H), |T| being the underlying topological space of the perfectoid
space T (note that H x Y is perfectoid by [Sch, Lemma 10.13]).

Let Z/ /7 be the additive group quotient of Z/ by the diagonal embedding of Z
into Zf. If n = (ng,...,ns_1) € ZJZ we let U, be the open affinoid perfectoid
subspace of Zyr C Spf(F[Tk, ..., Tk r—1]) defined by the relations

|TK7i|an‘ — |TK’j|p”i 7& O, v 0 < i,j < f _q

or equivalently |Tx ;| = Tk """ " for 0 <i < f — 1. Note that U, is well-defined as
it only depends on the class of n in Z//Z, and that U, is disjoint from U, if n # n’
in Z' /7. The group &; acts on Z//Z by permutation, for 0 € &; and n € Z/ /Z we
have

o(n) = (No-1() Jozizs1

and we check that o(U,) = Uy). Moreover, if a = (ag,...,a;_1) € (K*)7, we also
easily check that (where v, is the unique valuation on K with v,(p) = 1):

Q(Uﬂ) = U@Jrfvp(g)'

Proposition 2.4.4. Let ng = (0,1,..., f — 1), we have in Zyr

Ziy = H H Ua(no)+fm~ (49)

o€y meZf )7

Moreover for each U, in @) the map m : Zfp' — Zg. restricts to a pro-étale
gen

Ay-torsor mly, : Uy — Z5 .

Proof. We first check that the two sides of have the same rank 1 points, i.e. the
same (C,Oc¢)-points, where C is a perfectoid field containing F (recall
that Zpr(C,CT) = Zir(C,0O¢) for any open bounded valuation subring C* C
(). We use Newton polygons and notation as in the proof of Lemma If
(F(to),...,F(t;—1)) € (BT (C)?s=P)! the element F(t;) has slopes {(¢—1)v(t;)q", n€
Z} (see the references in loc. cit.) and recall that (F(t),..., F(t;-1)) € Zit (C, Oc¢)
if and only if F(t)--- F(t;_y) € BH(C)#=" lies in Z&(C,0¢). As the slopes
of the Newton polygon of a product ab in BT(C) is the union of the slopes of
the Newton polygons of a and b (see |[FEF18, Prop. 1.6.20] for instance), we see
that F'(to)--- F(tj—1) € Z5(C,O¢) if and only if there exists ¢ € Q¢ such that
Ui{(g — Du(ti)q", n € Z} = {cp™, n € Z} (see the proof of Lemma [2.4.3). Equiva-
lently F(to)--- F(ty—1) € Z§5, (C,O¢) if and only if there exist ¢ € Qs¢, 0 € &y and
mo, ...,ms_1 € Z such that v(t;) = ep” @O mi for 0 < i < f —1 if and only if there
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exist ¢ € &, and my,...,ms_ € Z such that v(t;) = plo OFfma—(e7 O)+fmo)y (1))
for 0 <4 < f —1if and only if F'(to) - F(t;-1) € Us(ng)+fm-

For a point x of the analytic adic space Zyr define & € Zyr as its maximal
generization, then the corresponding valuation |-|; is of rank 1, i.e. real valued (see
for instance [Hub96, Lemma 1.1.10] or [Mor, Cor. 11.2.4.8]). Thus one can define
continuous maps as in [SW20, proof of Prop. 4.2.6]:

‘ def log(|Tk,ilz)
kit Zur —]0,+00[, z = k(@) = et

For n € Z/ /7, define the closed subset of Zi
Vn d:mc ’%_l(pno_nla ce apno_nf_l)’

where k = (ko1,...,ko0,f-1). For x € U,, we still have € U, by [Hub96, Lemma
1.1.10(v)] applied to X = U, =Y < Zur, hence we have an inclusion of topological
spaces U, C V,. Let us prove that the open subspace Zf}' of Zyr is contained in
V= Hoes, Umezsjz Votng)+fm- Let @ € Zip" of rank 1, then x € U,, C V, for some n
by the first paragraph. As V, is closed, we have {z} C V,. Now let x € Z& be any
point and Z its maximal generization (which is in Zf' by [Hub96, Lemma 1.1.10(v)]
applied to Z8" < Zir), then 7 is of rank 1 and # € {#}, which implies z € V,, for
some n, i.e. ZE C V. As ZE2 is open in Zir, we have Z52 C V C V, where V is
the interior of the topological space V in Zy (V is then open in the perfectoid space
Zyr, hence itself a perfectoid space). Let = € f/, then x € V,, for some n. But V,
is open in V' as V is the inverse image by x of a discrete set and V}, is the inverse
image of a single, hence open, element in this discrete set. Hence there exists an open
subset U of Zyr such that V, = UNV. Asx € UN V which is open in Zyr, we
deduce x € VQ which proves that V= Hoes, Unezs/z XO/U(EOH #m- Thus we finally have

ZEr Cllyes s Umez/z ‘O/U(HO)JF #m Which implies

ziv =11 I (Z&% NVewy)sm) (50)

O'EGf mEZf/Z

as open (perfectoid) subspaces of Zyr.

Now we go into group actions. Recall that the group A x & acts on Zpr. It
is not hard to check that A x & stabilizes V', more precisely ¢ € & sends V,, to
Vo, (p%,....pY=1) € An (p”)! sends V, to Vi pa.. y and A; preserves each

V,, (indeed, using that f(Z) = f(z) for any x € Zyr and any endomorphism f of
Zyr by [Hub96, Lemma 1.1.10(iv)&(v)], it is enough to check this for rank 1 points,
i.e. (C, O¢)-points for perfectoid fields C' containing F, which is an easy exercise left
to the reader). Then by continuity of the action of A x & the same holds for the

interiors ‘D/Q, and thus also for Z&7' N YO/Q by Lemma M(u) In particular, the group

odf 1
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(AN (p?)7) x & permutes transitively the perfectoid spaces Z&x' NV, for n € Z/ /7
of the form o(ny) + fm as in , and the group A, preserves each ZE N V,,. Thus
the associated sheaf A acts on (the sheaf corresponding to) Z87' N ‘o/ﬂ, and one easily
checks that the group A; moreover acts freely on the (C, O¢)-points of ZEx NV,. By
the proof of [Weil7, Prop. 4.3.2], ZE*NV,, is a pro-étale A;-torsor over Ay \(ZENV,),

seen as a pro-étale sheaf on Perfp. Since A; is a normal subgroup in A x &y, we
deduce with that ZFT' is a pro-étale A x & s-torsor over

AxGAZE = (AN ")) x Sp)\(ANZEY)
= (AN @) %1 SN TTANZE N Vatag)+rm)

o,m

= ANZE N V)

for each n of the form o(ny) + fm. Now, it follows from (47) (and Lemma [2.4.3) that

we have an isomorphism A x &\ Zf1" = Z§" of pro-étale sheaves, hence A\ (ZFp' N
f/ﬂ) = Zp. for each n of the form o(ng) + fm.

We now finish the proof. As Z§ is affinoid perfectoid by Lemma [2.4.2(ii), each
Zﬁf}nﬂf/ﬂ is affinoid perfectoid by [SW20, Prop. 9.3.1], in particular is a quasi-compact

open subset of Zpr. The quasi-compact open subspaces ZF' N \D/Q and U, of Zyr C

Spa(F[K])\V (T ) have the same points of rank 1 by the first paragraph of this proof,
and we can then argue in a similar way as for the proof of Lemma [2.4.2)iv), applying
the results in [Hub96l (1.1.11)] (or [Schi12, Thm. 2.21]) to the affinoid rigid analytic
space over F((Tx ) associated to Spa(F[Tk,,-.., Tk s-1]) \ V(Tk,) (recalling that
Spa(F[Tko, .- Tk r-1]) — Spa(F[[Tll{{goo, o ,Tll(/,?o_ol]]) = Zyp is a homeomorphism).
In particular, we obtain U, = Z&" 0V, for all n € Z//Z of the form o(ngy) + fm,
which finishes the proof. m

As a consequence of the above proof and of [Schl, Lemma 10.13], we also obtain:

Corollary 2.4.5. The map m : Zfy — Zg.. is a pro-étale A x &-torsor, in partic-
ular is a pro-étale cover.

Remark 2.4.6. Note that Zfy' is not affinoid (contrary to Zg) as it is not quasi-
compact.

Let us denote by A’ = O(U,,) the ring of global sections on U, . The following
result on A/ can be proved exactly as Lemma [2.4.2] and we leave the details to the
reader.

Lemma 2.4.7. The following statements hold.
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(i) The ring AL is the perfectoid F-algebra

T +1/p*
]F((Té/,é’w>)<(Tf,ﬁ’i) , 1§i§f—1>.

K.,0

(ii) We have U, = Spa(AL,, (AL)°).

(iii) There exists a multiplicative norm |-| on AL such that |Txo| = p~" inducing
the topology of AL_.

(iv) Any quasi-compact open subset of Zyr whose points of rank 1 are ezactly the
points of Uy, of rank 1 is necessarily U, itself.

2.5 Equivariant vector bundles on Z3" and Z7'

We show that continuous (K*)¥ x & ;-equivariant vector bundles on Zf{' and étale
(p, Ok )-modules over A, are the same thing.

Recall first that if X is an adic space with a left action of a group H, an H-
equivariant vector bundle on X is a locally finite free O x-module V with a collection of
Ox-linear isomorphisms (cp, : h*V = V) ey satisfying the relation cp,p, = cx, 0h(ch,)
for all hy, hy € H. This induces a right action of H on I'(X, V) given by

¢t T(X,V) =T (X, h*V) =5 (X, V).

Now assume that X is perfectoid space (the only case we will use) and that H is
a locally profinite topological group acting continuously on X. Let V be a vector
bundle on X, for an open affinoid perfectoid subspace U = Spa(A, A™) C X, the
finite projective A-module V(U) is endowed with the Banach topology given by the
quotient topology of any surjection of A-modules A®¢ — V(U). If U C X is any open
subspace, we endow V(U) & lim V(U ") with the projective limit topology, where U’
U'cU

ranges over open affinoid subspaces of U, and we define Hy = {h € H, h(U) = U},
which is a closed subgroup of H by continuity of the action of H on X. We then define
a continuous H-equivariant vector bundle on X as an H-equivariant vector bundle V
on X such that for any open subspace U C X the natural map Hy x V(U) — V(U),
(h,s) — c;(s) is continuous (for the product topology on the left).

By Lemma [2.4.2(i),(ii) and [KL15, Thm. 2.7.7], the functor of global sections
induces an equivalence of categories from the category of vector bundles on Z§" to
the category of finite projective A,-modules. This equivalence is rank preserving
and compatible with tensor products. As a finite projective A,-module is in fact

always free (see [DH21, Thm. 2.19]) and as the action of K* on Z§ is continuous,
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we see that the functor of global sections induces an equivalence of categories which is
rank preserving and compatible with tensor products from the category of continuous
K*-equivariant vector bundles on Z§" to the category of étale (¢, O )-modules over

As, where p on A, is given by .

As ZET" is perfectoid and as the fibered category of vector bundles on Perfy is a v-
stack by [SW20, Lemma 17.1.8], we easily deduce from Corollary an equivalence
of categories between the category of (continuous) A x & s-equivariant vector bundles
on Zfy' and the category of vector bundles on Z§" (the continuity condition is then
automatic in that case, as A x & acts continuously on ZF7'), hence also between
the category of continuous (K*)/ x & j-equivariant vector bundles on Zf' and the
category of continuous K*-equivariant vector bundles on Z§". In both cases this
equivalence is given by the two functors V ~ (m, V)7 and W +— m*W, where
m o ZEY — ZEe. IV is (K*)! x & -equivariant, the K*-equivariant structure on
(m, V)25 can be made explicit as follows. For a € K* and any i € {0,..., f — 1}
we have an isomorphism using the notation in (46))

a'm.V = (a”)omV = (a7 'm).V = (mgi(a) )Y = m.(ji(a) ).V = mugi(a)V

(where the first isomorphism is id € Hom(m,V, m,V) = Hom((a"!)*a*m.V, m,V) =
Hom(a*m.,V, (a™!).m.V), the third comes from and the last is analogous to
the first). We then obtain an isomorphism of sheaves for ¢ € K* and any i €
{0,....f—1}

m.(Cyy) * &MY = m,ji(a)V = mV

which preserves the subsheaf (m,))27®/ (as A x & is a normal subgroup of (K*)f x

S/) and induces an isomorphism m.(cj;a)) : a*(mV)>*%7 5 (m, V)29 which does
not depend on i.

We deduce from Proposition that we have an isomorphism of perfectoid F-
algebras A, = (AL )*1, and as above using [SW20, Lemma 17.1.8] that there is also
an equivalence of categories between the category of Aj-equivariant vector bundles
on U, and the category of vector bundles on Z%e;;. Using again [KL15, Thm. 2.7.7]

and [DH21, Thm. 2.19], we deduce:

Theorem 2.5.1. The functor Da — Al ®a, Da, induces an exact equivalence
of categories which is rank preserving and compatible with tensor products from the
category of finite free Aoo-modules to the category of finite free AL -module with a
semi-linear action of Ai. A quasi-inverse is given by D+ Dﬁio.

Let 6 € & be the cyclic permutation ¢ — i+ 1 (with f — 1+ 0). If 0 € &y,
let p, = (1,...,p,...,1) € (K*)f with p at the o(0)-th entry. From the discussion
before Proposition [2.4.4) we get

(Po 0 0)(Un,) = Po(Us(ny)) = Usé(ng)-
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In particular, ps-1 067! : Un, = Uy, and we define an F-linear continuous automor-
phism ¢ of A, = O(U,,) by

P = (ps1007) = (67") o pjai. (51)
Using and since §71(0) = f — 1 this automorphism is easily checked to satisfy
QO(TK,l‘) = TK,z‘-{—l for ¢ 7é f — 1 and QO(TK,f—l) = qu(,O' (52)

In particular, ¢/ on AL, is F-linear and such that /(T ;) = Tf; for all i. Moreover
if a € (OF)7, we have poa = §(a) o @, where §(a) = (a;_1)o<i<f—1 (With a_y = a;_1),
in particular ¢/ commutes with (Ox)/. As m : Zi7" — Z§ is K*-equivariant and
G j-equivariant, the action of K on ZF}' being through j; for any 0 <i < f —1 and
the action of &7 on Z&. being trivial, the isomorphism Ay, = (AL )** commutes
with the actions of ¢ and O on both sides (see for p on A).

The following result sums up the previous discussion and gives a more explicit
way to compute the (¢, OF)-module over A, associated to a continuous (K*)f x & -
equivariant vector bundle on Zf7'.

Corollary 2.5.2. There is an equivalence of categories between the category of con-
tinuous (K*)/ x &-equivariant vector bundles on Z{y' and the category of étale
(¢, OF)-modules over As. If V is a continuous (K*)! x & ;-equivariant vector bun-
dle on Z§y', its associated As-module is T'(Zg . (m,V)2*S1) which is isomorphic to
F(UQO,V|UEO)A1. The action of a € O on T(Zgy, (mV)2797) is induced by the ac-
tion of (a,1...,1) = jo(a) onI'(Uy,, V|u,,) and the action of ¢ on L@ZEY, (m, V)27
s induced by

(5_1)* Op371 : F(Uﬂo’ VlUEO) = F(Uéil(ﬂ0)7 (pgflv)IU(;fl(ﬂO))
= D(Unys (P51 007 ) V)lv,) = T(Un,, Vv, )-

2.6 The (¢, Or)-module over A of an arbitrary Galois repre-
sentation

To an arbitrary p we functorially associate an étale (¢,, Ok )-module DX) (p) over A
fori € {0,...,f—1}.

Let p be a continuous representation of Gal(K/K) on a finite-dimensional F-
vector space and D ,,(p) its Lubin-Tate (p,, Of)-module (see §2.1). The (¢,, OF)-
module IF((TII(/ g:" ) @F(Tx»y) Do (p) 1 the space of global sections of a continuous
K*-equivariant vector bundle V; on Spa(F((Tll({go ) IF[[Tfl({go D). Forie{0,..., f—1}
we define

1) def ~ —
V) = Oz, Opri/r=y ., Vo = Ozip O8(ic00) i Do (P);

00
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where ¢; denotes the F-linear embedding IF((T;(/ gzo ) — Oz, corresponding to Tk ,,
Tk,;. Each Vp(i) is a A-equivariant vector bundle on Zpr with (ag,...,a;-1) € A C
(K*)7 acting on F((Tll{{go ) @F(Tk 0y) Pr.oo(P) Via a;. In particular, VS)IUHO is a Aj-

equivariant vector bundle on U, and I'(U,,, Vg)hjﬁo) = Al OF (T oy )i Drc.oo(P). We
define for i € {0,...,f — 1}

DY (P) E T (Uny, Vi 0,)™ = (Al (16 000 Dicors(P) ™ (53)
which is a finite free A,-module of rank dimg p by Theorem [2.5.1]

The endomorphism z ® v — ¢f (1:) ® ¢q(v) on AL Or(Ty o )i Drc,oo(P) (Where

x e A, v € Dk, (p) and see below for ¢/ on A’_) commutes with the action of

A; and 1nduces a @,-semi-linear automorphlsm of D( % " (p), which is thus naturally a

@g-module (see below (4§ . 8) for ¢, on Ay,). The action of O K O AL OF(Tx o )i DKoo (P)

defined by a(z ® v) = ji(a)(z) ® a(v) induces a continuous semi-linear action of O

on DXZO (p) (with respect to the action of O on A.) which commutes with ¢,.

In particular, DE& (p) is naturally an étale (¢,, O )-module over A,. Note that

the functor p — D(i) ' (p) from continuous representations of Gal(K/K ) on finite-

dimensional [F-vector spaces to étale (¢,, Ok )-modules over A is exact and F-linear.

We also have isomorphisms of functors for 0 < i < f — 1 (where x € A, v €
D K,Uo(_)):

PRL(=) = DEV(-)
O; o s o(r)®v ifi<f—1 (54)
p(0) @ pylv) iHi=f—1.

We now show that étale ¢,-modules over Ay, and hence étale (¢,, Ok )-modules
over A, canonically descend to the ring A of §2.2] First we need an easy lemma.

Lemma 2.6.1. The ring A of can be identified with the ring of global sections
of the structure sheaf O on the rational open subset of the adic space Spa(F[Ok])
defined by the relations

|Y00| == |Y0'f—1| # 0,

where the variables Y,, € F[Ok] are in (18).

Proof. Recall that A is by definition the completed localization (F[Ox]y,. Yo, )=
(FlYzy, -5 Yo, ] ao"'Yof_l))/\’ where the completion is for the (Y, ... ,Ygffl) -adic

topology. Then using (for instance) [BHHT21, Rk. 3.1.1.3(iii)] one easily checks that

A2 F((Yo /Y™y (Yo, /Yo P Yo L/ i)
> F(You ) (Yor /Yoo s, (Yo, [ Yor)H),

where () means, as usual, the corresponding Tate algebra with respect to the non-
archimedean local field F((Y,,)). This is exactly the Tate algebra of the statement. [
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Note that the open subset of Lemma [2.6.1] is stable under the endomorphisms
deduced from the actions of p and O on O by multiplication, in particular the
F-linear endomorphism ¢ on A sending Y,, to Y, | (see §2.2) is the one deduced
from the action of p.

Remark 2.6.2. It follows from Lemma and |Lit77, Satz 3, p. 131] (we thank
Ofer Gabber for pointing out this reference to us) that any projective A-module of
finite type is actually free.

Let Xo,..., X _1 be as at the end of , we have F[Ok] = F[Xo, ..., X;1] =
F[Ys, ..., Y5, ], and from the second equality in we deduce for i € {0,..., f—1}

X; =Y, + (degree > 2 in the variables Yj). (55)

This easily implies an isomorphism of completed localized rings

(F[Xo, .. ,Xf_l]](xo._,xffl))A = (F[Ys,, .. ’Y”f*I]](Yao---Ygffl))A A

where the completion on the left-hand side is for the (X --- X;_1)-adic topology. In
other words we can use the variables X; defined in instead of the variables Y, to
define the ring A. In particular, the perfectoid Tate algebra A, in Lemma [2.4.2]is the
completion of the perfection of A and the action of ¢ and O on A, are compatible
with the corresponding actions on A.

We will use the following result:

Proposition 2.6.3. Let X be a normal reduced and irreducible scheme over F,. There
is an equivalence of categories between the category of locally constant étale sheaves
of F,-vector spaces on X and the category of pairs (V, ¢), where V is a vector bundle
on X and ¢ is an isomorphism ¢}V = V (where p,(—) = (=)?). This equivalence is
given by the two inverse functors L — (v.(L®r, Ox),Id®¢) and (V, ¢) — (v*V)*=,
where v : Xg — Xyar 1S the restriction from the étale topos to the Zariski one. In
particular, this equivalence is rank-preserving and compatible with tensor products.

Proof. This is [Kat73, Prop. 4.1.1]. O

Let AVP™ = lim A = URZO]F[[Xé/pn, . ,X}épln]] be the perfection of the ring A.
TP

It follows from [AGVTT73, VIII Thm 1.1] that the étale topos of Spec(A) and the
étale topos of Spec(AYP™) are equivalent. It follows from [SW20, Thm. 7.4.8] (more
precisely the discussion following loc. cit.) that there is an equivalence of categories
between the category of finite étale A'/P™-algebras and the category of finite étale
As-algebras. Combining these two equivalences, it follows that the pullback functor
induces an equivalence of categories from the category of locally constant étale sheaves
of finite-dimensional F -vector spaces on Spec(A) to the category of locally constant
étale sheaves of finite-dimensional F -vector spaces on Spec(Ax).
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Theorem 2.6.4. The functor Dy — Ay ®a D4 induces an equivalence of categories
from the category of étale p,-modules over A to the category of étale pg-modules over

A

Proof. If F =F,, this directly follows from Proposition m, [KL15, Thm. 2.7.7] and
the above discussion. In general, let A, be the ring of §2.2] i.e. A, is A but with F,
instead of IF, and A, , its perfectoid version, then one can see an étale ¢,-module over
A (resp. Ax) as an étale ¢,-module over A, (resp. A, ) together with the structure of
an F-vector space compatible with the action of F, (seen in F via 0y). We only prove
essential surjectivity (full faithfulness being easy). Let D4 be an étale ¢,-module
over A.. By the equivalence of categories for F = F,, there is an étale ¢,-module
D4 over Ay, which is also an F ®p, A, = A-module, such that

Agoo ®a, Da = (F ®r, Agoo) ®Fap, 4, Da = Ace ®4 Da — Da,.

As A, is faithfully flat over A, we deduce that D, is finite projective over A by
faithfully flat descent of projectivity, hence is free by Remark [2.6.2] hence is an étale
pg-module over A. m

Remark 2.6.5. We thank Laurent Berger for a discussion around Theorem [2.6.4]
and Laurent Fargues for suggesting to use Proposition in its proof (our first
elementary proof was based on the operator 1). Note that one can characterize the
subspace AYP™ @4 D4 of an étale pg-module Dy over Ay as the A-submodule of
Dy, of elements d € D4, such that >°,~, Apy(d) is a finite type A-module.

Corollary 2.6.6. The functor Dy v+ Ay ®a D4 induces an equivalence between the
category of étale (pq, O )-modules (resp. étale (o, O )-modules) over A and the cat-
egory of étale (¢,, Ok )-modules (resp. étale (¢, Ok )-modules) over As,. This equiva-
lence is rank-preserving and compatible with tensor products.

Proof. Let D4 be an étale (¢4, Of)-modules over A,,. Any a € Of gives an iso-
morphism of étale ¢, -modules id ®a : a*D4_ = D4 which canonically descends to
an isomorphism of étale p,-modules a*D 4 = D4 by Theorem Now let Dy be
an étale (¢, Of)-modules over A, then replacing ¢ by ¢, & ol it is also an étale
(g, Of)-module over A,,. Let ¢*Dy_ AL ®p A Da, then id ®p induces an
isomorphism of étale p,-modules ¢*D, = D4 which canonically descends to an
isomorphism p*D 4 — Dy by Theorem giving the endomorphism ¢ on Dy4. The
action of Oy canonically descends too by the first case of the proof and commutes
with ¢ (using Theorem again). The rest of the statement is easy and left to the
reader. O]

From (53), and Corollary [2.6.6] we deduce:
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Corollary 2.6.7. Fori € {0,...,f — 1} there is a covariant exact F-linear func-
tor p — DX) (p) compatible with tensor products from continuous representations of
Gal(K/K) on finite-dimensional F-vector spaces to étale (v,, Ok)-modules over A,
these functors being related by functorial A-linear isomorphisms ¢; - A®%ADX) (p) —
DXH)(E) which commute with (pg, Ok) and are such that ¢r_q 0 g0 --- 0 ¢g :

A®@,r.4 DY (p) = DY (p) is id @,

Remark 2.6.8. One can check that DS)) (p) x Di{_l)(ﬁ) X Dgf_z) () X -+ % DS)(E)
can be given the structure of an étale (¢, Oy )-module over F ®g, A, in the sense of

2.2

2.7 The (¢, Of)-module over A associated to a Galois repre-
sentation

To an arbitrary p we associate an étale (¢, O )-module D (p) (which will be partic-
ularly important when dimgp = 2).

Keep the notation of and let V? Tl pr; V5 be the f-th “exterior tensor

)

product” of V; on Ziz = (Spa(F(T2 ), FITWE 1))/, where
pr; : (Spa(F(Txs, ) FITKp, DY — Spa(F(T/5, ), FIT s, 1)

is the i-th projection (so pr;Vj; is the sheaf Vg) of s) As V5 is a continuous K *-
equivariant vector bundle, VE 7 is naturally a continuous (K*)/-equivariant vector
bundle. We promote it to a (continuous) (K*)/ x & j-equivariant vector bundle using
the commutativity of the tensor product (where o € Gy):

/-1 f-1 -1 . fo1
x4 yX * * ~ *_ % ~ * ~ * X
¢y 0V =0 <®Pfivp> = Qo pr Vs = Q@ prioi Vs < Qpri Vs = V5
1=0 =0 =0 i=0

We define DY _(p) as the A-module with a continuous semi-linear action of K*
obtained as the global sections of the continuous K *-equivariant vector bundle on
Zg corresponding to V¥ | zsen, more concretely (see §2.5):

DS (p) =T (28, (mu (V57 | )27 ) = T(ZET, V) A1Ss,

This is an étale (¢, Ok )-module over A, (recall ¢ is bijective).

Using Corollary and we can give a more explicit description of D?foo (P).
Note that we have:

DS (p) = T(Uny V5 [0,
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and that the vector bundle VE T s isomorphic to the tensor product

(0) (f-1)
V5 ®o,. ®o, Vs

As the equivalence with vector bundles on Z§7, i.e. finite free A-modules, is com-
patible with tensor products (see §2.5)), we deduce an isomorphism of A.,.-modules

Di?oo (p> = (A/OO ®]F((TK,00))»LO DK,UO (p))Al QA BAn (Ago ®F((TK,00))M'—1 DK#TO (p))Al

Lemma 2.7.1. There is a functorial isomorphism of étale (¢, OF )-modules over An,

1
D% _(p) = QDY (p)
=0

where the automorphism ¢ on the right-hand side is given by (see (54}) for ¢;)
(oo ® -+ ®@vs1) = ¢y-1(v5-1) ® Po(v0) @ -+ @ Pp—2(vy-2)

(and the action of O is as defined in on each factor DXZO (P))-

Proof. Recall that § € &y sends ¢ to i + 1. Let a; : (671)* Vél RN V be the
tautological isomorphism deduced from the identifications

(6 VD = (67 pri Vs 2 (pri_y 081V = priVy = VY.

Recall that ps-1 € (K*)/ is defined in and let 3; : pi- 1V = V be the
isomorphism of sheaves on Zj defined by ( f € Oz, v € V5 and compare Wlth .

FOv—s f(ps-1(=)) @ ifi#f—1
fps-1(=)) @ pq(v) ifi=f—1
We obtain isomorphisms of sheaves on Zir for ¢ € {0,..., f — 1}
@, 1)~ ey (i—1) ~ s
;0 (07 (Bia) s VI = (3 o s )WY S (7)Y V0 (56)

The isomorphism ¢, o5-1 @*VE N V? f (with the notation as at the beginning of
§2.5)) is easily checked to decompose as a tensor product

-1 -1
( ﬁz)) . *ng ~ ®Q0*V(Z 1) o~y ®V
=0 =0

Taking global sections on U, and A;-invariants, we obtain the desired formula. [
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From Lemma and Corollary 2.6.6| we deduce DS _(p) = Ay, ®4 D5 (p) for a
unique étale (¢, O K) module D (p) over A such that

f-r
D3(p) = @ D () (57)

with the same ¢ and action of O on the right-hand side as in Lemma [2.7.1]
Remark 2.7.2. Note that, for 0 < i < f—1, the isomorphism ¢; in is induced by

I

the natural A.-linear isomorphism ¢*ijio(—) =~ DS:U(—), whereas ¢;_; coincides
with the A, -linear isomorphism

e DY V(=) = " (") DY () = ;DY (=) — DY) (-)

induced by the ¢,-semi-linear automorphism ¢, of fo;(—). Therefore the isomor-
phism class of the (p, Ok)-module DY (p) (equivalently of D% (p)) is completely

characterlzed by the isomorphism class of the (¢,, Ok )-module DY ) ~ (p) (equivalently
of DY (7)).

2.8 Relation to classical (p,I')-modules

We show that the étale (p,, Of)-module DS)) (p) is related in a simple way to the
(usual) étale (¢y, Z))-module Dy, (p) of §2.1|and derive some consequences.

As in [BHHT21) §3.1.3], let tr : A — F((T")) be the ring surjection induced by the
trace tr : F[Ok] — F[Z,] = F[T]. Since the map tr commutes with ¢ (hence ¢,)

and the action of Z), we deduce that F((T") ®4 DS)) (p) is an étale (4, Z, )-module.

Proposition 2.8.1. We have a functorial isomorphism of (¢4, Z))-modules

F(T) ©4 DY(P) = Doy ().
where D, (p) is as in §2.1]

Proof. The trace tr : F[K] — F[Q,] = F[7? ] induces a ring surjection tr : A, —»
F(T? ™)) commuting (in an obvious way) with tr : A — F((T")). Using Corollary
it is enough to prove F(77 ) @4, DY (7) = F(17)) @e(r) Doy (7).

For any perfectoid F-algebra R we have a commutative diagram

i - (58)



where the top horizontal injection sends z € B*(R)%=? to (z, o(z),...,o/ 1(x)) €
(BT(R)?a=P)/ the left vertical map sends x € B*(R)#=P to zp(x) - ¢/ L(x) €
B*(R)#=P and where the bottom horizontal injection is the canonical injection. Note
that the left vertical map commutes with the action of K, Where K acts on BY(R)#=P
via Normg,g, : K — Q,. As at the beglnnmg of using Remark [2.3.3] and
[SW20), Prop. 8.2.8(2)], we deduce from (58) a correspondlng commutative diagram
of perfectoid spaces over F:

(Grr Xspiqr,) SPE(E) \ {0} Zi 1

i (59)
Zy, Zo

P K

where the top horizontal map is r +— (7,77, ... ,rpf_l) on the coordinates and the right
vertical map is the map m in . From the discussion above, the map Zz, — Zo,
commutes with the action of K, where K* acts on Zz, via Normg/g,. Also, it
follows from the end of (see in particular (37)), (38), and (40)) that the
bottom horizontal map is induced by the morphism F[K] — F[Q,] deduced from
the trace Trg/q, : K — Q,. Hence we deduce from a commutative diagram of
perfectoid rings over F:

oo

A, *»}F Tlp(cro))

J (60)
o Tp )

where the top horizontal surjection sends Tlp(;n to Tfé;g fori € {0,...,f —1}. Let
us prove that the right vertical injection coincides with the one above Corollary
As it commutes With OK (acting on F((T? ™)) via the norm O — ZX)
we deduce from Theorem (and @ that it induces an injection of perfect01d
fields F(7? ™)) — IF((T,’;OO))GB‘I(KOO/K( VD) =~ (TP ™). But since this injection
commutes with the action of Z;, one easily checks that it must be an isomorphism
(any continuous F-algebra homomorphism F(Q,)) — F(Q,)) commuting with the
action of Z sends [1] € F((Q,)) to [A] € F((Q,)) for some A € Q).

Now let 7 be a continuous representation of Gal(K/K) on a finite-dimensional
F-vector space, using the isomorphism A’ QF (T, )0 DI ool(p) = AL Dg)o)o 2
from Theorem we deduce from ([60)):

— o0

F((Tlp(,oo )) ®]F((TK,GO)) DK,UO (p) = F((Tlp(;:; )) ®A{X> (Afx, ®]F((TK,GO)),L0 DK,UO (p))
F(T} ) ©ar, (AL ®a. DY ()
F(T% ) @pro—ey (F(T7 ) ®a. DY ().

I

I
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By Corollary [2.1.3 we also have

F(T% o) ®F (T y) Picioo(P) = F(TE 1)) @piro— (F((Tp_oo)) ®r (1) Doy (ﬁ))-

oo

Since the action of Gal(K/K("V1)) = Gal(F(Tk ,, )/F(TP ™)) is trivial on both
F(T7 ™ )®a. DY) (p) and F(T7 )@y Doy (), we deduce F(T7 ) @4 DY ()=
F(T? ™)) ®r(ry Do, (p) by Galois descent. All the above isomorphisms are functorial
in p. O

We can also consider the tensor product F((T")) ®4 D% (p) for tr : A — F((T)). It
is obviously an étale (p, Z)-module.

Corollary 2.8.2. The (¢, Z))-module F(T)) ®4 D5 (p) is the (@, Z))-module of the

tensor induction ind?}(@”p.

Proof. This easily follows from (57), Proposition[2.8.1] Corollary[2.6.7/and the “tensor
product version” of [Brelll, Lemma 3.6] (which we leave to the reader). O

Proposition also enables to prove the following full faithfulness statement.

Corollary 2.8.3. Fori € {0,...,f — 1} the functor p DEZ) (p) from continuous
representations of Gal(K /K) on finite-dimensional F-vector spaces to étale (pg, OF)-
modules over A is fully faithful.

Proof. By Corollary [2.6.7] it is enough to prove the statement for ¢ = 0. We have
morphisms:

Homg, g, /i) (P:7) — Hom o (DY (7). D (7)) — Hom,, ) (Doy (7). Doy (7)) (61)

where we use Proposition for the second. By the theory of (¢4, Z))-modules
(see e.g. , we know that the composition of the two morphisms is bijective.
Hence the first morphism is injective. Let us prove that the second morphism is also
injective. Let f : fo) (p) — D'Y(7') mapping to 0 i.e. f(DS)) (7)) € pDY (), where
p = Ker(tr : A — F(T)) (a maximal ideal of the noetherian domain A). Using
the fact that fo) (p) is étale and that f commutes with ¢,, we derive f (fo) (p)) C
ng(p)Dg}) (p') for any n > 0. For those n such that x — 29" is F-linear, the map
@t on A s just x — 27", hence ¢! (p) C p?" for those n, and thus F(DW(p)) C
(ﬂmzopm)Dg)) (') = 0. As the first and last F-vector spaces in have the same
dimension, we finally have

. ~ 0)/— 0)/— ~ _ .
Hom g, /) (7, 7) = Homy,, o2y (DY (5), DY (7)) = Hom,, 1) (Doy (5), Dory (7))

whence the result. O
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Remark 2.8.4.

(i) We do not expect the functor p DY P ( ) to be essentially surjective (for any
i). It is probably an interesting question to characterize its essential image.

(i) Tt is not true that the functor p — D% (p) is fully faithful, as in general the iso-
morphism class of the (¢, O )-module D (p) does not determine the one of the
Galois representation p. For instance, one can check by an explicit computation
using Theorem[2.9.5|below that, if f = 2 and 7 = (ind w?)@unr(\) is irreducible,
D%(p) only sees X, i.e. does not distinguish p and (indw’) ® unr(X'), where
A% = —\2. However, one can also check (again using Theorem that, at
least when p is 2-dimensional and semi-simple, D% (p) determines p if p is split
or if det(p)(p) = 1.

2.9 An explicit computation in the semi-simple case

When 7 is semi-simple we show that the explicit étale (p,, O )-module Dy, ()
defined in is isomorphic to the (¢4, Of)-module fo) (p) defined in .

It follows from (55)) that for all « € O and 0 < i < f — 1, we have (using as
usual oy : F, — F) (XZ) = @” X; modulo terms of degree > 2. Therefore we have
the following result:

Lemma 2.9.1. For 0 <i < f —1, we have a(X;) € @ X;(1 + A®).

We define
X def aX

fa
O a(Xo)
(note that by - in fact coincides with fo g, in (22)) up to a factor in 14 F_5A).

€E1+F 1 A=1+A"C1+ A7

Lemma 2.9.2. There exists u € O(Up, ) 420 guch, that

wi—l = f 1 . SD(XO) cA C A — O( )A1 C O(Un )(l—i-p(')K)f'
X() XO =0

Moreover we have

Va=(ap,...,ar—1) €Ay alu) =au

. (% N\
Vae Ok (a,l,...,l)(u):a(w(ffOJ u
X ﬁ fX
noting that ( (fX )) is well-defined in 1+ F_1 A C 1+ A2 since <p(a7£) €el1+F_A.
a,0
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Proof. Let |-| be a multiplicative norm on A’ = O(U,,) such that |Tf ;| = |Tlp<z’0| =
p? for 0 < i < f — 1 whose existence comes from Lemma (iii)&(i). Let ||y be
the associated norm on B* (AL ) defined in Remark As |- is multiplicative, the
same proof as in [FF18, Prop. 1.4.9] shows that |-|; is multiplicative.

By definition of the map my, in ([#4), we have the relation in B*(A.,)

f—1
I1 (Z T, ”) 3 Z Xt = F(X, . X ). (62)

1=0 \nez neZ =0

For ¢ € Ry let p. be the ideal of B*(AL)
pe = {z € BY(AL), |2l <p™} C BF(AL)

(note that it is an ideal as |-|; is multiplicative and with values in [0, 1] C Rxg). Let
c=1+p+-+-+p As|Ti,| =p 77" < p " <pcforn > 1, we have
‘an_l[TIq&n]pn‘l < p 7" < p~¢, see Remark [2.3.4] hence we obtain from 1)

F-1
H (Z[qu(zn]Pn) — F(Xo,..., Xf 1) € pe

=0 \n>0

and we deduce from Lemma below applied to the element

f-1 .
v S TLCITE 1p") — F(Xo, . Xpoa) = X [walp” € BY(AL)
i=0 n>0 nez

that we have

—_

f-1 f* 4
> lzalp" =] (Z [T%, ] ”) a Tt e p..

n>0 1=0 \n>0 n>0 2:0

Note that the left-hand side is now in W ((A% )°). As a consequence, we have
|20l = [Tro- Tkp1 — Xo| <p~°
so that we can write in (A )°
Xo=Tkp Tk -1(1 + wo) (63)
with |w| < p=et@tpt+2") — 1 je wy e (A.)°. Applying the automorphism
et of A7 to and since ¢! respects (A’_)° and (A% )°° (as it is continuous) we

obtain in (A/ )°
—1 —1
X{) = TK70TK’1 cee qu(,ffl(l + 'lU1>
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with w; = ¢~ (wg) € (AL ). We deduce the equality XoXl_’f1 € Téij:; (14 (AL)>)
which gives (raising everything to the ¢)

XUXTT e T (14 (AL)™). (64)

If we apply o=~ to we obtain
X7 Xg" € Tieg (1+ (AL)*).
Using that x — 297! is bijective on 1 + (A/_)°°, we see that there exists a unique
u € Tio(1+ (AL)*°) such that u?! = X7, X5,
As A; acts trivially on A, we have a(u)?! = u??! for all @ € A;. Therefore
there exists a character y of A; with values in Fy 2 F such that

VaeA, a(u)=x(a)u

Writing v = Tk o(1 + w) with w € (A7), this gives aoTx o fr (T o) (1 + a(w)) =
X(Q)U, where f;JT(TKp) = aTKyo((ILT(TKp))_I el+ (A&)oo. As u € TK70<1 + (Ago)oo)
this implies

x(@)ag ™" € (14 (A)*) NEFy = {1}

which proves x(a) = ap.
For the last relation, we have

((CL, 1’ o 1)<u>>q—1 _ (CL, 1’ e 1)<uq—1> _ G(X§,1X61> — ( (%0)) — cpgzgfo))

)ql

so that as above there is a character x : Ox — F) C F* such that (a,1,...,1)(u

_ fi,(o SD(XO): f&),(o Wit —
90( fo) Xo <P( j,(o)

x N\ b |
x(a) (w(“£0)> u. But u € Tko(l + (AL)°°) implies (a,1...,1)(u) € aTko(1 +
« N
(AL )°°) so that x(a) = @ since (w(f]‘i’;? )) lel+ A2, This finishes the proof. O
a,0

Lemma 2.9.3. Let R be a perfectoid F-algebra and let (z,)ez a family of elements
of R® such that the series Y, cz]x,]p™ converges to an element x in BT (R). Assume
that |x|; < ¢ for some ¢ € [0,1[. Then we have

> lzalp"

n<0

<c.
1
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Proof. Recall that |z|; = ligl]:c\ o (see the reference in Remark [2.3.4)). Therefore we
o

p—1
can find 0 < p < 1 such that |z|, < ¢. This implies sup,cz{|z.|p"} < ¢ and thus for

n < —1, |z,|p" < ¢ which implies |z,| < ¢p < ¢. The claim then follows from Remark

2.3.4] applied to cp. 0
2.3.4 app p

Remark 2.9.4. An examination of the proof of Lemma shows that u actually
oo \E1/p>®
lies in F,(T/5)((2) ™) € AL, = O(U,,) (using o9 : F, — F as usual). This

pt
Tk o

implies in particular ¢/ (u) = u? in A’_.

def

Let v = uTyy. We have v € 1+ O(U,, ), so that, for each r € Z,) (= Z localized
at the prime ideal (p)), the element

o <T> (0= 1)" € 14 O(U,,)
n>0 n B

exists. By Lemma [2.9.2] we have

Vae A V71 €Ly, a)=ft(Tko) v (65)

Now, let p be an absolutely irreducible continuous representation of Gal(K/K) on
a finite-dimensional F-vector space and choose a basis (e, . .., e4-1) of the F((qu{; o )-

module Dy 4, (7)) as in . We consider the associated étale (¢,, Ok )-module
Dyo(p) = A®F«T}q;1 ) Do (P) 4] defined in Lemma [2.2.1] where A has the structure
500

of IF((T;’(,_;O )-algebra given by .

Theorem 2.9.5. Assume that p is absolutely irreducible. The étale (¢4, Of)-module

fo)(ﬁ) in Corollary [2.6.7 is isomorphic to the étale (¢, Ok )-module D4 ., (p) in
Lemma

Proof. By Corollary it is enough to prove the same statement after extending
everywhere scalars from A to Aw. Recall we have Dy o, (p) = F(Tk 0,)) Rp(raty
200

Dy o, (p)Fe] with basis (1®e;)o<i<q—1 as in Lemma and let u € Tk (14 (AL )°°)

as in Lemma Then using (53), and the action of O in we obtain

% d—1 _hat(g=1)
Ase @4 DY (D) = (A Opry1 ) 00 Prcn(@F)™ = @ Anc(uTich)” 7= (1@0¢s).
’ =0

Moreover it follows again from the last equality in Lemma that we have in
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Al Brry2 )1 Dicoo(P)1) for a € OF

ha'(a—1)
) _1 T d_q1
_ hq'(g—1) X a1 qT -t hq® (q 1)
— a,0 K,0 _
a((UTK,IO) ad-1 (1®€Z>> - ((SO( X)) CL(TKQ)UTK’B) C%T(TK,O) a- (1@61)
G,,O ’
X 1 _ hgi(g—1)
_ (9”( ;0)>q (WTh) ™ 1 (1@e).
a,0

We define an A-linear isomorphism Ao ®4 D4 o, (p) = A ®]F((T§<;10 ) Do (p)lFal =

hgt(g—1)

As@4 DV (p) by 1@6e; (uTxp) @1 ®e;fori € {0,...,d—1}. This isomorphism
commutes with the actions of O on both sides by the above computation (together
with Lemma [2.2.1)). It also commutes with ¢,, namely we have in A QT2 )10

K,oq
D o, (p)Fe] (using Remark [2.9.4):

_hd'(g=1)

)
QOQ((UTI;}O) -1 ® ei) = (UT[;})) 91 X €it1 for 1<d—-1

and (using the formula for «?~! in Lemma [2.9.2)

hg?=1(g-1)

_ _ha=1)
eo((uTice) 7 @ean) = (uTicy) "V Ticy)” Y@ XM e,

h(g—1)

= u’h(q’l))\d((uTI}}))_qdif1 ® eo)
—h
»(Xo) _p -
- Ad( Xo > (<UTK710) “ ®eo). =

Remark 2.9.6. Theorem [2.9.5|shows that, when p is absolutely semi-simple, one can

obtain the étale ¢,-module D}’ (p) from the Lubin-Tate (¢,, O )-module D ., (p) =

F((Tx o)) Rg(ry ) Proo (p)[F2] by the simple recipe 1) However, we do not expect
»00

this recipe to work in general when p is not semi-simple.

Define D4 ,(p) as Da gy, (p) (see §2.2) but using the embedding o instead of oy.
From one easily checks that there are canonical A-linear isomorphisms for i € Z

Id®(,0 A®¢ADAU( )—>DA01 1(p) (66)

which commute with O and ¢, on both sides. Comparing the isomorphism ¢; in
Corollary with the isomorphism ([66|) we see that we have for i € {0,..., f — 1}

DY(p) = Dao,,(p). (67)
Using (]@ and we have therefore
D3 (p) = Doy (p) ©4 Doy (p) @a -+ ®4 Dag, ,(p)- (68)
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When dimgp = 1, i.e. for xy : Gal(K/K) — F* a continuous character, we will
need in §3| the (very simple) description of D% (x).

Lemma 2.9.7. Viewing x as a character of K* wvia the local reciprocity map, we
have (for a € OF):
Di(x) = AF,
p(F) = x(p)Fy
a(Fy) = x(a)Fy.
)

In particular, D% (p ® x) equals D%(p), but with the action of v multiplied by x(p)
and the action of a € O multiplied by x(a).

Proof. By (66) and (68) replacing p by x we can describe DY (x) as AF,, where
Ey = e ®pley) ® - @l ey) with ¢7(ey) € Dao, ,(x) (noting e, instead of
1®ey). Write x = w’;Xunr()\X) for hy € Zso and A\, € F*. Set F, < Y/xE,, then

one computes:

p(Fy) = (P(YOO)hX(P(Ex> = @(Yoo)hx@f(ex) ®pley) @+ ® Sofil(ex)

Y, \M
— oY, hx( "0) E, = A\ F, = x(p)F
X( 0) QD(YJO) X X+ X ()X

where the third equality follows from . An analogous computation using a(Yg};X) =

@i fity and () = (285205) P, ) (e again 23)) sives a(Fy) =
oo(@)"™ F,. But 00( )hX = x(a) (see (14))). The rest of the statement follows from the
dlscusswn after O

Appendix

We prove a lemma on sheaves on Perfy represented by (non-perfectoid) Huber rings
F[z}/"", ..., z1/P]. The result is not needed in the text, but can be used to show

) m

that some maps in §2| between perfectoids come from maps between such Huber rings.

Lemma 2.9.8. For m > 1, let S,, < ]F[[x}/poo, .., xP7]. For all integers m > 1
and n > 1, the map

HomSpa(F) (Spa(Sn)7 Spa<Sm)) — H0m<hSpa(Sn) ’Perf]ya hSpa(Sm) |Perf]p)
s an isomorphism.

Remark 2.9.9. If X is an adic space over F, note that hx|pet, is the diamond over
[F associated to X by [SW20, Def. 10.1.1].
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Proof. Recall first that for any integer d > 1 the adic space Spa(IF[[ti/poo, . ,ti/poo]])\
V(t1,...,tq) is a perfectoid space, as it can be covered by the perfectoid affinoid open
subspaces for i € {1,...,d}

Spa (P ) ()" d #4) FE1((2)d #4) )

By [SW20, Lemma 18.1.1] the presheaf hgpacs,,)|perty is @ sheaf for the v-topology
on Perfr. Let U be the open subset of Spa(S,[t'/?™]) defined by |z;| < |t| # 0,
i € {1,...,n}. Then U is affinoid perfectoid as a rational open subset of the perfectoid
space Spa(S,[t'/?*]) \ V(z1,...,2,,t). Let us prove that the map U — hgpa(s,,)|perts
is an epimorphism of v-sheaves on Perfr (here and in what follows we write U for
hy|perts)- Let Spa(R, RT) be an affinoid perfectoid space and |-| a power-multiplicative
norm on R, then z € hgpacs,)(Spa(R, RT)) corresponds to some y = (y1,...,Yn) €
(R*°)"*. If w is a pseudo-uniformizer of R, there exists r € Qo such that |y;| <
"], i € {1,...,n}. Then the unique # € Spa(S,[t'/?”])(Spa(R, R*)) above x
obtained by sending ¢ to w"” lies in U(Spa(R, R")). Therefore U — hgpa(s,)|perty is a
universal effective epimorphism in the category of v-sheaves on Perfy by [DGA™T11] TV.
Prop. 4.4.3] (together with [DGAT11, IV. Déf. 1.3]). This implies that Agpa(s,)|perts
is the coequalizer in the category of v-sheaves on Perfy of the diagram

U Xhgposy U = U
Thus Hom(hgpa(s,)|pertes spa(s,) [perts) 18 the equalizer of
HOHI(U, hSpa(Sm)|Perf[F) = HOIH(U XhSpa(Sn) U’ hSpa(Sm)‘Perf]F)'

Using Hom(U, hgpa(s,)|perts) = Pspa(s,,)(U) = (O(U)°)™, we need to prove that the
equalizer of this double map is exactly the subset (S5°)™ C (O(U)*°)™. One easily
checks that it contains (S;°)™, hence it is enough to prove that it is contained in
(5°°)™. Let U, = Spa(Sn)\V (21, ..., x,) which is a perfectoid open subset of Spa(.S,,).
Then UXpg,, s\ Un = U\V (21, ..., 3,) is perfectoid as an open subset of the perfectoid
space U. By base change ([Sch12, Prop. 6.18]) U Xy, s U Xng,.s,, Un = (U Xng s
Upn) xu, (U X hspa(sn) Uy,) is also in Perfy. Moreover the map U X hspacs,y Un = Un is an
effective epimorphism in the category of v-sheaves on Perfp as the base change of a
universal effective epimorphism. It is then not hard to check that it is a v-cover in the
category Perfy, i.e. any quasi-compact open subspace V,, C U, is the image of a quasi-
compact open subspace of U Xy o Up. As U, is perfectoid and X — O(X) is a sheaf
of rings on the v-site Perfr ([Sch, Thm. 8.7]), we have O(U,,) = ker(O(U X spa(s,)Un) =
O<U X hspa(sn) U X hspa(syy Un))- Denote by (Uni)ief1,...,

at the beginning of this proof. For each i € {1,...,n} there exists a finite union of
affinoid open subsets (V; ;); of U Xgpa(s,) Un whose images cover U, ; in U, so that (by
the open mapping theorem for Banach spaces) O(U,,;) C &,0(V; ;) is an embedding of
Banach spaces. In particular, any element of O(U,, ;) which is topologically nilpotent
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in @;0(V;,) is topologically nilpotent in O(U, ;). Since the topology on O(U,) is
the one induced from the embedding O(U,) < @&;0(U,,;), we see that any element
of O(U,,) which is topologically nilpotent in &, ;O(V; ;) is topologically nilpotent in
®,0(U,,;) hence also in O(U,,), which implies

O(U,)*° = ker (O(U Xspa(s,) Un)* = O g5, U Xngpuisny Un)™)-

From the commutative diagram induced by the open embedding U Xy, s , Un < U:

HOIII(U, hSpa(Sm) |Perf]F) = HOHl(U XhSpa(Sn) U, hSpa(Sm) |Perf]F>)
1

Hom(U XhSpa(Sn) Un7 hSpa(Sm)|Perf]F) ﬁ Hom(U XhSpa(Sn) U XhSpa(Sn) Una hSpa(Sm)|Perf]F))

we deduce that the equalizer of
HOHI(U, hSpa(Sm)‘Perf]F) = HOHI(U thpa(Sn) U, hSpa(Sm)’Perfﬂ:»

lies in the preimage of (O(U,,)°°)™ C Hom(U X hspags,y) Uns Pspa(Sm) [pertr) = (O(U X spa(s,)
U,)°°)™ in (O(U)*°)™ = Hom(U, hgpa(s,.)|perty). Using that the restriction map
(OU)*°)™ = (O(U Xspas,) Un)°°)™ is injective by [SW20, Prop. 5.3.4], the result fol-
lows easily from the topological isomorphism S,, =2 O(U,,)* (and thus S5° = O(U,,)*°)
which can be checked directly using the covering at the beginning of this proof. [J

We can use Lemma [2.9.8] as follows. The functorial bijection of Lemma [2.3.1
induces a map of commutative rings

Endgy, (Flzo™ .., 2% 1) = Endspaqe (Spa(Flay™, ..., 2 1))
— End(B*(—)# "),

where the right-hand side means the endomorphisms as sheaves of sets on Perfp. It
follows from Lemma[2.9.8 that the last map is a bijection. In particular, using Lemma
2.3.1|and the above discussion, we see that the map m in extends to a morphism
between adic spaces over [F

m : (Grr Xspir,) SPE(F))* — G ¢ = Spa(F[K]).

Likewise the diagram comes from a commutative diagram of Huber rings

FITYS ... T —=F[T% ]
FK] FIQ,].
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3 Etale (¢, 0})-modules and modular representa-
tions of GLs

In this section we prove that the étale (¢, Ok )-module D4(m) over A associated in
[BHH™21) §3] to certain automorphic admissible smooth representations 7 of GLy(K)
over F is isomorphic to (a certain twist of) the étale (p, O))-module D (p) of §2]
where 7 is the underlying 2-dimensional representation of Gal(K /K) over F, which is
assumed semi-simple and sufficiently generic. We conjecture that an analogous state-
ment holds without these assumptions and for any automorphic admissible smooth
representation of GLy(K) over F.

0% Ok
pOK OF

the first congruence subgroup, I; & (1;(’52’( 1 S)@K) the pro-p radical of I and Z; the

center of I;. We recall from that Ny = <(1) OIK)Q I,. If C is a pro-p group we
denote by F[C] its Iwasawa algebra over I (a local ring), and m¢ the maximal ideal
of F[C]. If M is a filtered module in the sense of [LvO96, §1.2] with (F, M ),cz its
ascending filtration, we define gr(M) & GnezFnM/F,_1M. When R = F[C] and M
is an R-module, the filtration F,M = mz"M if n < 0 and F, M = M if n > 0 is
called the mp-adic filtration on M.

We let [ < ( ) be the Iwahori subgroup of GLy(Ok), K e (HPOK POx )

pOr 1+pOk

3.1 A local-global compatibility conjecture for (¢, O )-modu-
les over A

We conjecture that any automorphic smooth representation of GLy(K) over F gives
rise to an étale (¢, Of)-module over A which is (up to twist) a direct sum of copies
of the module DY in of the corresponding local Galois representation at p. We
state our main results.

First, we quickly review the construction of the A-module D4(7) associated to
certain smooth representations m of GLy(K) over F in [BHHT21) §3.1].

Let 7 be an admissible smooth representation of GLy(K) over F with a central
character and endow the F-linear dual 7" with the my,-adic filtration, or equivalently
the my, /2 -adic filtration (which, in general, strictly contains the my,-adic filtration).
We endow

def
(WV)(YUO"'Yaf_l) = F[[NO]](Yao"'Yaf_1) QF[No] TV
with the tensor product filtration (where the localization F[[NO]](YUO~-Yaf_1) is endowed

with the filtration described by (16), replacing F, by F) and define Da(7) as the
completion of (WV)(YUO...ny_l) for this filtration ([LvO96, §1.3.4]). Then Dy(7) is a
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complete filtered A-module and the action of O on 7" extends by continuity to
D 4(m). Moreover the action f+— fo ({)’ (1)) on 7" gives rise to a continuous A-linear
morphism (see [BHHT21), §3.1.2])

B:DA<7T)—)A®%ADA<7T), (69)

where ¢ on A is as in §2.2] We let C be the abelian category of those 7 such that
gr(Da(m)) is a finitely generated gr(A)-module. Then for any 7 € C, the A-module
D 4(m) is finite free (see [BHHT21), Cor. 3.1.2.9] and Remark [2.6.2)).

The following straightforward lemma will be used. For y : K* — F* a smooth
character, denote by Da(x) the rank 1 étale (¢, Ok )-module over A defined by Ae,

with o(ey) = x(p)ey and a(ey) = x(a)ey for a € OF.
Lemma 3.1.1. Let x : K* — F* be a smooth character and w in the category C,
then Da(m @ x) = Da(m) ®4 Da(x™') with diagonal ¢ and action of O}.

Proof. This directly follows from the definitions of D4(7), of ¢ and of the action of
O on Dy(m). O

For 7 in C, when 3 is moreover an isomorphism, its inverse 7! = Id ®p makes
D4 () an étale (¢, Of)-module.

We now go to the global setting.

We fix a totally real number field F' that is unramified at p. We fix a quaternion
algebra D of center I’ which is split at all places above p and at not more than
one infinite place. When D is split at one infinite place we say that we are in the
indefinite case, and in the definite case otherwise. For a compact open subgroup
U=T1IU, C(D®rA¥)* we let Xy be the associated smooth projective algebraic
Shimura curve over F' (see [BHH™21, §8.1] and the references therein for more details).

Fix an absolutely irreducible continuous representation 7 : Gal(F/F) — GLy(F)
and for a finite place w of F we write 7, = ﬂGal(Fw/Fw)' We let Sp be the set of finite
places where D ramifies, Sr the set of (finite) places where 7 is ramified and S, the
set of (finite) places above p. Finally, we fix a place v € S,. Let w = w; denote the
mod p cyclotomic character.

For any compact open subgroup U’ = [, Uy C (D ®r AF"")* we consider the
following admissible smooth representation 7 of GLs(F,) over F with central character
(wdet (7))t

7 < lim Homg,y 7, (7, Hi(Xvou, xp F,TF)) (70)
Uy

where the inductive limit runs over the compact open subgroups U, of (D ®p F,)* =
GLy(F,). In the definite case, we replace Homg, /) (T, Hy(Xv xr F,F)) by the
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Hecke eigenspace S(U,F)[m] C S(U,F) = {f : D*\(D ®p A¥)*/U — F} associated
to 7 (see [BHHT21) §8.1]) and define analogously

m = lim S(U*U,, F)[m]. (71)

We also need the “multiplicity 1”7 variants of the representations w. For that, we
need to assume that p > 5, that Fle{m is absolutely irreducible, that the image
of 7(Gpg)) in PGL2(F) is not isomorphic to As, that 7, for w € S, is generic in
the sense of [BP12, Def. 11.7] (which implies S, C S7) and that 7, is non-scalar if
w € Sp. Under these assumptions, a so-called “local factor” is defined in [BD14] §3.3]
(in the indefinite case and when 7, is reducible for all w € S,) and in [EGS15] §6.5]

(without these two conditions):
- HomUU(W, Hom, 7/ r) (T, ligHélt(XV Xp F, IB‘))) [m'] (indefinite case) (72)
v

o HomUU<Mv, lim S(V, F) [m]) [m'] (definite case) (73)
v

where the inductive limits run over the compact open subgroups V' of (D ®p A¥)*,
and where we refer to loc. cit. for the definitions of the compact open subgroup
U’ C (D ®p A%")*, of the (finite-dimensional) irreducible smooth representation
M" of U? over F and of the maximal ideal m’ in a certain Hecke algebra.

Conjecture 3.1.2. Let 7w be as in (@, , (@ or and assume w # 0. Then

7 is in the category C, B in @ is a bijection and we have an isomorphism of étale
(¢, OF)-modules Da(m) = DY (7,(1))®" for some integer v > 1 which is equal to 1
when m is as in (@ or .

In the sequel, we prove Conjecture for 7 as in or when 7, is semi-
simple and satisfies a strong genericity hypothesis (as defined below). We actually

prove a purely local result for certain smooth representations m, that will ultimately
include the representations in and .

Let first p : Gal(K/K) — GLy(F) be a continuous representation satisfying the
genericity assumption of [BP12, Def. 11.7]. Let m be a smooth representation of
GL2(K) over F satisfying the following two conditions:

(i) there is an isomorphism of diagrams (7t — 751) = D(p)®" for some r € Z>1,
where D(p) is a diagram associated to p as in [BP12] or [BHHT21, §3.2.1] with
the constants v, for o € W (p) as in Remark below;

(ii) for any character y : I — F* appearing in 7[my,] there is an equality of multi-
plicities [w[m} ] : x] = [x[m,] : x].
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We moreover assume that p is of the following form up to twist:

=10
Y j=o (T3 TP P11 if p is reducible
Plrc = T r41)p? I r+1)pit! (74)
Wy~ O wy; ™" if p is irreducible
where the integers r; satisfy the following (strong) genericity condition:
max{12,2f — 1} < r; < p—max{15,2f + 2} if j > 0 or p is reducible (75)

max{13,2f}< ro < p—max{14,2f + 1} if p is irreducible.

The following is the main result of §3

Theorem 3.1.3 (See . Assume that p and T are as above with moreover (7't —
7512 D(p), i.e. r = 1. Then 7 is in the category C, B in (@) s a bijection and we
have an isomorphism of étale (o, OF)-modules D(7) = DG (p¥ (1)), where p¥(1) is
the Cartier dual of p.

It implies the following special cases of Conjecture [3.1.2]

Corollary 3.1.4. Let 7 be as in (@ or and assume moreover that T, satisfies
(78), (7)), and that the framed deformation ring Rr, of T, over W(F) is formally
smooth if w € (Sp U Sr) \ S,. Then Conjecture is true for .

Proof. By [DL21, Thm. 5.36] (and the references therein) 7 satisfies condition (i)
above with p = 7/ and r = 1. By [BHHT20, Thm. 8.3.14], [BHH"20, Thm. 1.5]
and [BHH™20, Rem. 8.4.5] 7 satisfies condition (ii). Hence we can apply Theorem

B.I13 O

Remark 3.1.5. Under the assumptions of Theorem (but without assuming
necessarily r = 1), we already knew the étale (¢, Z) )-module F((T)®4 D (7). Indeed,
it follows from [BHH21l Cor. 3.3.2.4], [BHH"21, Thm. 3.1.3.7], Remark [2.6.2]- and
some unravelling of the definition of the functor Vgr, of [BHHT21, §2.1.1] using
Lemma and Lemma - that D4(7) is free of rank 72/ and F((T)) ®4 Da(7)
is isomorphic to r copies of the (¢, Z))-module of the tensor induction ind (5" (1))

(compare with Corollary [2.8.2]).

The rest of this paper is devoted to the proof of Theorem|3.1.3|and to the necessary
material that needs to be introduced for that.

We fix p and 7 as in Theorem |3.1.3] Twisting both p and 7 using Lemma [2.9.
and Lemma [3.1.1} we can and do assume from now on p = (indw};) ® unr(A) or

whunr()\ ) 0 . — i
~ ! 0 W — § f 1 . +
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3.2 Duality for étale (¢, Of)-modules over A

If D is an étale (¢, Of)-module over A we equip Hom (D, A) with the structure of
an étale (¢, O )-module over A.

Fix D an étale (¢, Of)-module over A and recall that D is finite free by Remark
2.0. 21

We first equip D with a left inverse v» : D — D of ¢, as follows. Fix a set of
representatives {n} of Ny/N§ including 1. Note that as D is étale, every element x of
D can be uniquely written as x = >, /nz dnp(,), where §,, denotes the image of the

element [n] € F[N] in A. Let ¢ : D — D be defined by t(x) = x1. The following
easy lemma is left to the reader.

Lemma 3.2.1. The map ¢ : D — D is a left inverse of ¢ that is independent of any
choices. We have x = 3, /nv Snp(Y(61x)) for any x € D. Moreover, the actions of

¥ and OF commute.

To define ¢ on Hom4(D, A) recall that we have

p:D = A®,D

r =6, @, (07 ), (76)

where the sum runs over representatives {n} of Nyo/N{. Now if M, N are A-modules
with M finitely presented, we have for any A-algebra B a canonical isomorphism
B®4Homy (M, N) = Homp(B®4 M, B®4 N), hence the A-linear dual of gives
rise to

A Ry HOII]A<D, A) = HOIIlA(D, A),

in other words we get a @-linear endomorphism of Homy (D, A) that we also call ¢
(an étale Frobenius). Explicitly, this endomorphism is given by the formula

Hom4(D, A) — Homu (D, A)
hisp(h) = (= > dup(h((5, 7)) (77)

No/NP

By construction, it is independent of the choice of representatives.

Using Lemma we can rewrite formula as follows:

p(h) = 3 0np(an) = 3 0nip(h(n)). (78)

We also define the action of a € O by the formula a(h) = aohoa™'.
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Lemma 3.2.2. With the definitions above, Hom4(D, A) is an étale (¢, OF)-module.
Moreover, the natural pairing D x Homa (D, A) — A is equivariant for the actions of
¢ and O.

Fix now a smooth representation 7 of GLy(K) in the category C and endow the
finite free A-module D 4(m) with its filtration coming from the my,-adic filtration on
v, cf. . If D is an étale (¢, Oj)-module (endowed with its natural topology
of finite free A-module), recall that Hom{™™ (D, F) means the continuous F-linear
morphisms D — F, or equivalently (F being endowed with the discrete topology)
the F-linear locally constant morphisms D — F. We give F the filtration such that
FyF =0 if and only if d < 0.

We write now Y; for Y,, (as in [BHH™21, §3.1.1], note that there will be no
confusion with the variables Y; € A, in which are not used here) and Y (05ensiy—1)

for Yo - - -Yfif’ll € A (as in [BHHT21) §3.2.2]). We also sometimes use the shorthand
Y for Y2 =11/ V.

Proposition 3.2.3. There is an isomorphism of  F[Ny]-modules between
cont

Homp™ (Da(),F) and the set of sequences (xy)r>0 such that xy € m and

(i) Yap =z for all k > 1;

(ii) there exists d € Z such that x), € 7r[m£k+d+1] for all k > 0 (where 71'[‘(‘!1%1] <0
for j <0).

A continuous F-linear map h : Da(m) — F corresponds to a sequence (xy)r>o as above
if and only if
hoY %= (z, =) onn"

for all k > 0. Moreover, h is filtered of degree d if and only if x) € 7r[m£k+d+1] for all
k> 0.

Proof. Note that by definition we have

(’/TV)Sg hg 2V and F,d,l(ﬂv)sg hﬂ m{f*_d"'lq\/’
k>0 =0
Yo ¥y Yo Yy_q
SO
(m¥)s/Fq-1(m¥)s = lin 7.{.\//m£k+d+17r\/.
k>0
YO"'Yf_l
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(Explicitly, the k-th map 7 — (7V)g is given by (Yy -+ Y;_1)~*.) Therefore, we have

Hom{™ (D 4(w), F) = Hom§{™ ((7¥) g, F) = U Homp((7¥)s/F_g4-1(7")s,F)

d>0
= |J Homg((7")s/F-a1(n")s,F) = |J lim Homg(r"/mf "'z, F)
d>0 d>0 k>0
Yo Y1
=J lim w[miFratt)
>0 k%o '
Yo Y51
The final claims follow by unravelling these identifications. O]

The A-action on sequences (xx)r>o by transport of structure will be made explicit

in Lemma B.8.11

3.3 The continuous morphism p: A — F

For D an étale (¢, OF)-module over A we relate Hom (D, A) to Homg™™ (D, F) using
a certain continuous morphism p: A — F.

7777

a fixed Z,-basis of Ok. Recall that A is endowed with a map ¢ : A — A defined in
and which is a left inverse of p : A — A.

Proposition 3.3.1. Up to scalar in F* there exists a unique u € Hom§™ (A, F) such
that po € F*u. For such a p we have o = (—1)7 "1y,

It will be convenient for the proof to avoid using the variables Y;. To obtain A
from F[No] it suffices to invert elements Z; (0 < j < f —1) such that gr(Z;) = gr(Y;)
in the graded ring and then complete. We will let Z; be the unique linear combination
of the T such that gr(Z;) = gr(Y;). (Note that the Z; are not canonical but depend
on the choice of Ty, ..., Ty_y.) There exists an element of GL;(IF) that relates the Z;
and the 7. Hence we get the same description of A as in [BHH"21, Rk. 3.1.1.3(iii)]
with Z; instead of Y}, and also the valuation of an element of A is still given by the
minimal total degree as a series in Z. We note that ¢(7;) = T} and ¢(Z;) = Z7_,
(because ¢(Z;) is a homogeneous polynomial of degree p in the 7} and hence in the
Zj, and since p(Y;) =Y} ;).

Before starting the proof of Proposition we note that g o = cp (with
c € F*) is equivalent to the two conditions

p=c(poyp), (79)
p(0pp(z)) =0 VneNg\N,VaeA. (80)

This follows immediately from the definition of ¢ : D — D in §3.2
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Proof (Uniqueness). Suppose that pot = cu for some ¢ € F*. For the representatives
{n} of Ny/N§ we take n = (1 Ejlijaj> (0<i; <p—-1),5s06, =I(1+1T;)%. By
induction and — we have for any 0 <7 < p — 1 that
w(Tr(2)) = (=) u(p(x))
— (=)l ().
Take now x € Fy_;A. Then by iterating we have
ua) = eu(ITP=p(x)) = - = " p(IF=¢"(x)) = 0

for n >> 0, since 721" () — 0 in A as n — oo if z € Fy_1 A and p is continuous.
Hence

(81)

u(Fr_ A) = 0. (82)

We claim that p(Z%) for i € Z/ is an explicit multiple of ;(Z 1), only depending
on ¢. To prove the claim, we may suppose that ||7|| < —f by and we will argue
by descending induction on ||7||. Write i = r 4+ ps with 0 <r <p—1and s € 7t
Hence pu(ZY) = pu(Z-ZP) and that can be expressed in terms of various pu(T-ZP°)
with 7/ > 0 and ||7/|| = ||z||. Fix now one such term and write r’ = r” + pr’”’ with
0<7r" <p-—1and 0 < r”. Then we can express M(Iing) = u(zﬂzpﬂg@)
in terms of various pu(T™Z") with ||t]| = ||s|| + ||=””]|. By we are reduced to
+1(ZPL) = e 1 pu(ZY), where t is a cyclic permutation of ¢ and hence ||t/]| = ||t]| =
[l + 112221 = Cllell = =) /-

From [|r”|| < (p—1)f and ||i]| < —f it follows that ||i|| < ||| and moreover that
equality can only hold if 7" = p — 1 and ||i|| = —f, in which case r =1’ = p — 1 and
=0 (as Izl = 27 + Pl < (p — D). Ths Ji] < £ and we are done by
induction, except possibly when ||i|| = —f and i = —1 (mod p). Applying the same
argument to M(Zﬂ), we are done in the exceptional case except if ¢’ = —1 (mod p),
which implies s = t = —1 (mod p) and hence i = p— 1+ ps = —1 (mod p?). By
iterating we are left with the case ¢ = —1, which completes the proof of the claim.

Finally we show that ¢ is uniquely determined (assuming p # 0). Consider i = —1
above. Then

p(Z7Y) = (2P 278) = (TP 27 = de (27,

where ¢ is the coefficient of TP=L in ZP=L. Here, the second equality follows from the
analysis in the preceding paragraph (the case ||i|| = —f) that all other intervening
terms T™Z P with / > 0 and ||| = ||p — 1| lie in the kernel of p (by (82)). The third
equality follows from (81)) with ¢ = E Hence ¢ = ¢ is uniquely determined.  [J

Proof (Ezistence). We define
plr) = e (@ ]+ 1)) (83)



for x € A, where e_,(y) is the coefficient of Z “Lin gy for y € A (expanded in terms of
the Z* as in [BHH*21, Rk. 3.1.1.3(iii)]. Then p € Hom§™" (A, F), as u(FpA) = {0}.

By — it suffices to show that for 1 < i < p we have

([T + ) o) =0 ifi#p (84)

J

and
e ([T + TP e(x) = (1) ey (). (85)

j
(This time we take representatives n = (1 Zjli-faj ) with 1 <1; <p.)

Recalling that we can write

Z; =Y ayT; for some (a;;) € GL(F), (86)

we deduce (84)) and reduce to showing that the coefficient of ZE=1 in TP=L equals
(—=1)/~1. From (86)), by considering the action of ¢ and letting a; < 440, we obtain
that . .

Z; =Y al’'T; with (a?) € GL;(F).

As d? h = a;, the a; are in the image of £ in F and in fact they form an IF,-basis of
k. (If not, then >°; A\;a; = 0 for some \; € [F,, that are not all zero. This implies that

SiAa? =0forall 0 <j < f—1, contradicting that (a?') € GL(F).)
Let us now work with formal variables z = (z;)o<i<f_1 and b; (0 <4 < f —1).
Lemma 3.3.2. The coefficient of 22=1(= jxg_l) in T1;(2; bfjxi)p’l equals

[I ey =E=)® e I X eb).

ce(F)—{o})/Fy 1 ceF)—{o} *

(Note that the first product does not depend on the choice of representatives, and
for the equality note that [],cpx # = —1.)

This lemma implies what we want: as the a; form an [F,-basis of %, the lemma
(applied with z; = T}, b; = a;) shows that the coefficient of T2~ in Z2=1 equals
— (=)@ =D/ — (—1) 1 gy [[e @ = —1.

To prove Lemma [3.3.2] we use the following.

Sublemma 3.3.3. Suppose h € Flzg,...,x;1]. Then the coefficient of z2=1 in h is
invariant under any linear change of variables over I, i.e. is equal to the coefficient
of y>=L in h if x and y are related by an element v of GL;(F,).
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(This is presumably well known. For the proof we may assume that A is a mono-
mial and that v is an elementary transformation, in which case it follows from the
facts that I’ is of order p — 1 and that (pil) =0forp<r<2p-—2)

Let C denote the coefficient of 22=1(= jxg_l) in TT;(>; V)P~ Then C €
F[bo,...,bs_1] is a homogeneous polynomial of degree p! — 1, which is clearly divis-
ible by b=, For any linear change of variables z; = ¥, Aijy; with A;; € Fp, Sub-
lemma then implies that [[;(32; biAi;)P~" divides C. In particular, (3, ¢;b;)P "
divides C' for each ¢ € (FJ — {0})/F). But the product of such polynomials is al-

ready of degree p/ — 1 and they are pairwise relatively prime, hence we are done by

remarking that the coefficient of []; b7 "P=1 i5 the same on both sides. O

Remark 3.3.4. Fix p # 0 as in Proposition [3.3.1] By uniqueness we must have
poa t € Fu for any a € OF. But it is easy to compute the scalar: by applying the
explicit formula to the element [];(1+ 7;)?"'Z~* we obtain

poat =Ny, (@p VaeOf.

Remark 3.3.5. Even though Z; depends on the choice of 7} (i.e. our choice of basis
of O), if we write [[;(1 4+ 7;) = h(Z) for some h € F[Z,...,Zs_1], then h is
independent of any choices. This is easy to see from our explicit formula for p in

Proposition [3.3.1]
Suppose p € Homg™ (A, F) is non-zero such that po = (=1)/~!y and D is an
étale (¢, Ok )-module over A. Then composition with p induces an A-linear map
t : Homu (D, A) — Homg™ (D, ). (87)

Recall from Lemma that Hom 4 (D, A) is naturally an étale (¢, O )-module. The
following lemma will allow us to calculate this structure on the level of Hom§™ (D, F).

Lemma 3.3.6.

(i) The map p. in is injective.
(ii) We have . (p(h)) = (1) p(h) o 9.
(iii) We have pii(a(h)) = Nyw, (@) pe(h) 0 a™" for a € Ok.

Proof. Part (iii) follows immediately from Remark |3.3.4]

For (i) we can reduce to D = A by using that D is finite projective. Observe
then that the kernel of yu, is an Ox-stable ideal of A by (iii); but by [BHH™21, Cor.
3.1.1.7] it is zero, as it cannot be all of A. (Alternatively part (i) also follows from
the explicit formula for p above.)

Part (ii) follows from the explicit formula for ¢ on Homy (D, A) as well as
the two conditions at the beginning of the proof of Proposition [3.3.1] O

63



cont

We make part (ii) more explicit. Suppose that h € Homp™™ (D 4(7), F) corresponds
to a sequence (xy)r>o as in Proposition m Then (—1)/~'h o4 corresponds to a
sequence (z},)r>0 determined by the relation

Ty = (=177 ), (88)
since ¢ o Y 28 = Y2 04) on Dy(n).

Lemma 3.3.7. Suppose that D is a finite projective A-module. Then the image of
s 1 Homy (D, A) — Hom§™ (D, F) consists precisely of all continuous F-linear maps
h:D — T such that for all M € Z and all x € D the set X, = {i € Z/ - h(Zix) #
0, 2| = M} is finite.

Equivalently, the image of ji. : Homa(D, A) — Hom{™ (D, F) consists precisely
of all continuous F-linear maps h : D — F such that for all M € Z and all x € D
the set Xpy = {i € ZF - h(Yix) #0,|i|| = M} is finite.

Proof. For the first part it is easy to reduce to the case where D = A, using the
compatibility of yu, with direct sums D = Dy & Dy. If h = p,(a) for some a € A and
x € A, then we write az [[;(1+7;)~" = Y, \;Z* for A; € F. Then h(Z'z) = A_;_; (by
the explicit formula for pu, in , so h(Z'r) # 0 can only happen for finitely many
i of any fixed degree ||i|| = M. Conversely, if h: A — F is continuous such that for
all M € 7Z the set {i: h(Z%) # 0,]i]| = M} is finite, then by continuity of h and the
finiteness assumption it follows that a = (T[;(1 +7})) 3, M(Z)Z#1 € A, and by the
explicit formula for p, we have pu.(a) = h. )

To justify the second part, recall that Y;, Z; € F[Ny] with gr(Y;) = gr(Z;), so
Z; =Y, Y920 Fuj;, where Y; Fy ; is a homogeneous polynomial in Yy, ..., Y, of degree
d+1 and Fp; = 1. Define the subring

(&R .
A E { > ?z : Fy a homog. poly. in Yy, ..., Yy of degree d(f + 1)}
d=0 L

of A with maximal ideal my defined by the condition Fy = 0. The above observation
then implies that Z; € Y;(1 4+ my) for any j, hence

ZEe Y 1+my) VieZ (89)

Also note that

Ay = { > MYE ), € IF} (90)

kELT; kj>—||k| Vi

and that the condition k; > —||k|| for all j implies k; < f||k| for all j (and ||&|| > 0),
so that there are only finitely many terms of any fixed degree.
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Fix now 2 € D and suppose that the set Xy = {i € Z7 : h(Yx) # 0, ||i|| = N}
is finite for any N € Z. By continuity of h we know that h(Y*x) = 0 for all ||i|| > e
(some e € Z). Fix any M € Z and suppose that h(Z'x) # 0 and |ji]| = M. By
equations (89)—-(00) we get that h(YEx) #£ 0 for some k € Zf such that k; > —||k|
for all j. In particular, ||Z|| < ||z|]| + ||E|| < e, so

Xy U (Xuvm — k),

k>l Vi
0<||kll<e—M

a finite union of finite sets. The converse direction follows by reversing the roles of
Y; and Z;. O

3.4 Some combinatorial lemmas and computations

We give several technical but important lemmas (some generalizing results in
[BHH*21, §3.2]) involving the combined action of Y% (for some k € Z];O) and (8 ?)
in a representation 7 as at the end of

We recall some notation and results from [BHH™21]. We fix p as at the end of
We identify W (p) with the subsets of {0,..., f — 1} as in [Brelll, §2] and let J,
be the subset associated to o.

Let o € W(p). Denote §(0) & 6,0q(0) if 7 is reducible and §(c) = 6. (0) if 7 is
irreducible the Serre weights defined in [Brelll, §5]. We fix a non-zero vector v, € oo,
and let y, : H — F* be the H-eigencharacter of v,. As in [BP12l §2] we identify
the irreducible constituents of Ind?LQ(OK )(Xi) with the subsets of {0,..., f — 1} (for

example () corresponds to the socle o of Ind?L2(OK )(Xj)). We know that d(o) occurs

in Ind™ %) (y5) and we denote by J™(5) C {0,..., f — 1} the associated subset.
Precisely, using [BP12, Lemma 2.7] one checks that

JmaX(G) = (Jg U Jg(a)) \ (Jg N J(s(g)).

By [BHH™21, Lemma 3.2.3.2], we have |J™**(0)| = [J™**(4(0))|. As a consequence,
the quantity
m = |J"(g)| € {0,..., f — 1}
depends only on the orbit of o.
Write
o= (50,---,857-1) @1, 0(c) = (s5,...,85 1)@

Lemma 3.4.1. The vector [Tjesm(o) Y} Tjgmaso) Y7 (7 1) (vs) spans 6(0)™ as
F-vector space. Hence there is a unique scalar pu, € F* such that

o= I Y7 I Y7 (")) (91)

jejmax(o.) j%Jmax(o-)
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Proof. This is [BHH"21, Prop. 3.2.3.1(i)]. O

Y %, € o that is sent by Y to v,. The followmg result is a generahzamon of
[BHH™21) Lemma 3.2.3.5].

Lemma 3.4.2. Assume m > 0. Let k,i € Z’;O such that |ji|| < f—1 and
YE(? ) (¥ ) #0.

(i) We have
Bl <plil+ > s5+ > (-1)

jerms(o) | jgIm(o)
(i) I &[] = pllill = (f = 1) + Xjesmax(o) 8j + Zjgmex(oy(p — 1), then
Ho -KE(” 1)([%(,) =Y us0) € 8(0)
for some £ >0 with ||£]| < f —1. More precisely,

Uy =ijp+ 5 — kj if 5 € J"0),
U =ijp+(p—1) —k if j ¢ " (o).

Proof. Before starting the proof, we first remark that Lemma 3.2.3.3 and Lemma
3.2.3.4 of [BHH"21] remain true if we replace the assumption ||i|]| < m — 1 by ||i|| <
f — 1 in the statements. Indeed, for Lemma 3.2.3.3, this new assumption ||i|| < f—1
implies ¢; < f — 1, and so

2 +1<2f—1<s,

for all j (s; is denoted ¢; in loc. cit.) by the genericity assumption. Hence, [BHH™20),
Prop. 6.2.2] still applies and the rest of the proof of Lemma 3.2.3.3 works without
change. The proof of Lemma 3.2.3.4 of [BHH"21] also works through, because one
checks that besides the citation to Lemma 3.2.3.3 the condition ||i|| < m — 1 is only
used to deduce ||if| < f — 1.

Now we prove the lemma, following the proof of [BHH"21, Lemma 3.2.3.5]. We
first prove by induction on ||i]| < f — 1 the following fact: if

Ikl > plléll = (F =1+ > s+ > (-1)=B
jeTmXG) g Im(o)
and YE(7 ) (Y H,) # 0, then YE(? ) (Y 0,) = Y¥ (7, ) (v,) for some k' € Z,
such that k; = k; —d;,1p for all j. This is trivial if i = 0, so we can assume i # 0.

Moreover, as in loc. cit., by induction we are reduced to the case k; < p for all j. We
make this assumption and derive below a contradiction (so this case cannot happen).
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Define a set J as in loc. cit., i.e.
J={j € I (a),i;41 = 0}. (92)
As in loc. cit. we have

B < (p = 1)(F = 171) + D205 4 205) + 17 (7" (0) + 1)] 2 4

jeJ
and to get a contradiction it is enough to show A < B, which is equivalent to
mp +[J\ (J™ (o) + 1) < (p = 2)[li + (p = DIJ|+ C + D, (93)
where

C=m—(f-1), D=E2>"i;+ Y 8.

i¢J jeJmax(a)\J
We have the following two cases.
o If |[J™*(g)\ J| > 0, then as in loc. cit. m < ||i|| + |J|, hence (93) is implied by
mp +[J\ (" (o) + | < (p = 2)|all + (p = 2)(m = [lil)) + |J| + C + D,
or equivalently
m+(f—1)+|J\ (J" (o) +1)| < |J] + D.

This is slightly stronger than (140) of [BHH™21], but one checks that the argu-
ment in loc. cit. still allows to conclude.

o If J™*(g) = J, then as in loc. cit. we have |J \ (J™*(o) +1)| < f —m and
|J| = m, and is implied by

mp+ (f —=m) < (p=2)|lil + (p—m+C+D
or equivalently
2f —1<(p—2)|il| +m+ D.

As ||i]| > 0 and D > 0, the last inequality holds by our genericity condition (i.e.
p>4f).

This proves the desired fact. The rest of the proof is the same as the proof of [BHH" 21,
Lemma 3.2.3.5] and we omit the details. (Several times f —m = (f —1) — (m — 1)
has to be added or subtracted from expressions in the last three paragraphs of the
proof in loc. cit. to account for the weaker lower bound in Lemma [3.4.2{(ii).) O
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Remark 3.4.3. Taking i = 0 in Lemma|3.4.2, we get the following. If XE(p 1)(110) #
0 for some k € Z’;O and if

k> > si+ > (-1D-(f-1),

JETT(a) T jgIm ()

then i, -Zﬁ(p 1)(1)0) =Y tvs,) € §(0) for some ||£]| < f — 1. More precisely,

Kj = S;» - k‘j lf] c sz}x(o_)’
gj: p—l)—k] lfj¢JmaX(U)

We will need the following analogue of Lemma [3.4.2, Define ¢ € Z/ by ¢; = s if

def

Jj € J"(0), and ¢; = p — 1 otherwise.

Lemma 3.4.4. Assume m > 0. Let i € 7. Lo such that ||i]| < f —1. Let k € Z>0 and
assume that there exists 0 < jo < f — 1 such that

(a) k:jo < p(ijo-i-l - 1) (hence Z.jo-i-l > 1);

(b) N[l > pllll + llell = cso
Then YE(? ) (Y "*v,) = 0.

Proof. Assume for a contradiction that XE(” 1>(Z_%U) # 0. As in the proof of
[BHH™21, Lemma 3.2.3.5], by induction we are reduced to the case k; < p for all j;
we make this assumption from now on. Note ||c|| = 3 c max (o) 87 + 2 jg jmax (o) (P — 1).

Let J be the set defined by (92)). Then by (a) we have jo ¢ J. As explained in
the proof of Lemma [BHH™21), Lemma 3.2.3.4] still applies, and we get (see the
fourth paragraph of the proof of Lemma 3.2.3.5 of loc. cit.)

Dok < (F=1=1ID(p = 1)+ D () +24;) + [T\ (J™(0) + 1) = A.

J#jo =

On the other hand, letting v = 1 if ijo+1 > 1 and 7 <0 if ijo+1 = 1 we see that
kj, < (p—1)v (using (a) when v = 0), which together with condition (b) implies

ij>p||z'||—(—1)7+ Z s;.-|- Z (P—l)—CdeZEfB.

J#jo ]eJmax ) jéé‘]max(o.)

To get a contradiction it is enough to show A < B.
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A computation shows that A < B is equivalent to

mp + |J\ (S o) + DI < (p =2l + =D+ (p-1)A =)+ C+ D

94
— =2 (il - +1-7)+ S +1—7+C+D, OV

where

C’d:dm—cjo, DEQZZJ—F Z 8;.

i¢d jeJmax(a)\J

If j € J™(0)\ J, then ;11 > 0, so we obtain

VIV z'j+1+1=< > z'jﬂ)ﬂ'jﬁﬁ(l—zm)

Jmax(@)\(Jufjo}) Jmx(@)\(Juio})
<l + (1 = 2o 41)-

As |J™(o) \ J| =m — |J| and ij,11 > v + 1, this means
m < lf + [ J] + (1= djo40) <2l + [T] =,
Thus, to show (94) it is enough to show
mp+|J\ (J" o)+ 1)< (p—2)(m+1)+|J|+1—-v+C+D
or equivalently
2m+ [J\ (J"™ (o) + )| <|J|+(p—1—~v+C)+ D.

If |J™*(g)\J| > 0, then it is true by [BHH 21, Eq. (140)] (and using p—2+m—c;, > 0
asm > 1). If J™*(g) = J, then again as in loc. cit., we have |J\(J™*(0)+1)| < f—m
and |.J| = m, and is implied by

mp+ f-m< (p=2)[i +(p—1(m+1-=7)+(m—cj)+ D,
equivalently,

fF<p=2)l+@-DA =)+ (m—cp) + D
= (p=2)(lill =)+ (p = 1 = ¢j) + (m —7) + D.

This is true by our genericity condition: indeed, as ||| > v+ 1, m > 1, ¢;, <p—1,
and D > 0, the above inequality is implied by f <p—-2<p—1—1. O

Now, fix o € W(p) and define o; € W(p) inductively by oo = o and o; = §(0;_1)
for © > 1. Let d > 1 be the smallest integer such that o4 = 0. For convenience,
if i > 0 we set 0; = oy, where 7 € {0,...,d — 1} is the unique integer such that
i =14 (mod d). Write

o; = (S(()Z), e ,S‘EL‘Z)_I) (24 ;-
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For convenience, we introduce the following notation. For ¢ > 1, define ¢f € ZJ;O

by ‘
o d:ef {Sy) lf] - JmaX(O'l',l) (95)

p—1 otherwise
(in particular 0 < ¢7 < p — 1). Define a shift function ¢ : Z/ — Z/ by setting

)

def

0(i); = iy, 1= (i;) € Z7.

Note that ¢ does not change || - | and that Xp‘;@(p 1): (p 1)X3 We inductively

define ap € Z’;O for n > 0 as follows: ag <0 and for n > 1,

o
S

e

%
I

po(ag_1) + ¢ (96)

For example, af ; = cf ; = 55-1) if j € J"(0) and af ; = ¢f ; = p—1if j & J™(0).

For 7 > 0 let '
Vi = Vgi(e) € 0'(0)\ {0}

and p; = Usi(ey € F*, as defined in Lemma m Then by we have
Vi = Wi—1 - Xi(p 1)(?}2‘_1) V1 Z 1. (97)

Let
LEEDYIC T T =18 e (%8)

0<i/<d—1 jeJmax(gy)

where v, € F* is defined as before [BHHT21), Prop. 3.2.4.2], i.e. the eigenvalue of the
operator S¢ defined in [Brell, §4] acting on o/t. Note that v, depends only on the
orbit of o, and hence the same is true for \,.

Lemma 3.4.5. We have o
[T =20
i=0

Proof. This follows from [BHH*21, Lemma 3.2.2.5] and the definition of v,. O

Remark 3.4.6. When 7 moreover comes from cohomology, i.e. is as in or ,
it is conjectured in [Brelll §6] and proved in [DL21, Thm. 5.36] that

f—1
o if p is irreducible, then v, = (_1)%(”2]-:0 rj)(— det(ﬁ)(p))%;
dh NN (T 4 1J.14
o if p is reducible, then v, = (—1)dfh 20 J/\|0 |f/\|1 |f, where J, C {0,1,..., f —
1} is the set corresponding to o and J, denotes its complement.
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Here, h is the number attached to o in [Brelll Lemma 6.2] (it is not the integer h of
§3.1). By the proof of [Brelll, Lemma 6.2], we deduce

\ { (—=1)4 =D (= det(p)(p))? if p irreducible,

ZENPAL (99)

d
(—1)dr=n 7\l if 7 reducible.

The following result follows by induction from (97)), as well as Lemma [3.4.5|
n—1 o n
Lemma 3.4.7. For all n > 0, we have ( I1 ,uz-) -X“i(p 1) (vo) = vp. In particular,
i=0
o nd
for alln >0, Zaﬂ(p 1) (v5) = A,

Proposition 3.4.8. Let k € ZL, and n > 0. If k|| > [lagl| — (f — 1) and
Xﬁ(p 1)n(U0) # 0, then k = aj, — £ for some £ > 0 satisfying ||| < f —1 and

(E /”) 'XE(p 1)n(Uo) =Y %, € o,.

Proof. It n = 0, we necessarily have k = af = £ = 0 and there is nothing to prove.
Assume n > 1 and that the statement holds for n — 1.

Let k € ZL, with ||k|| > |la%|| — (f — 1). Write k = pd(k) + k", with &' > 0 and
0 < k" < p—1. Recalling that ||§(-)|| = || - ||, the assumption implies the following
inequalities
plIE N+ (p = 1)f Z Ikl > lla7ll = f = pllag |l - f,

from which we deduce [|&|| > [la;_, | — f, equivalently
1 = flag |l = (f = 1).
We clearly have
YE(? ) (o) =Y (7 ) (YF (7)), (100)

/ n—1
so in particular Y* (p 1) (vo) # 0. As ||E'|| > ||a5_,|| — (f — 1), by the inductive
hypothesis there exists £/ > 0 with ||£'|| < f — 1 such that

¥, — and (TLw) v4()
i=0

n—1

(vo) =Y v,y € 0p_y. (101)

We first assume m > 0 and claim that ¢ = 0. Indeed, the relation |k| >

lag|l — (f — 1) together with (101]) gives
IE" = pI€l = (f = 1) + [l -
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Lemma [3.4.2(ii) applied with o = 0,1 (and genericity) shows that kj > ¢ ,p for all
J. However, by definition 0 < k7 < p — 1, so we must have ¢, = 0 for all j. This
proves the claim.

By the claim and by equations (100)—(101]) we have &' = a9_, and

(E Mz’) ‘Zkl(p 1)%1(1}0) = Up_1, SO Xkll(p 1)(%71) £0.

By the previous paragraph we have moreover that ||£”|| > ||| — (f — 1). Remark

3.4.3| applied with 0 = 0,1 gives p,_1 -XE/(Z’ 1)(vn_1) =Y, € g, for some £ >0
satisfying [|£]| < f —1and £ = ¢] — k". As k' = aj_, we deduce £ = aj — k and the
result follows.

Y

Now we assume m = 0, equivalently ¢ = 6(c). It is easy to see that this case
only happens when 7 is reducible (split) and either J, = () or J, = {0,...,f — 1}.
In this case we have a7 = p" —1 for any n > 0, and Lemma implies that

Kﬁo’ l)n(vo) # 0. Uszlg (100) and the fact Yjug = 0 for all j, an induction shows
that if k; > p" for some 0 < j < f — 1, then
Z&(p ) )n(U()) — Yk (p 1)”(Z6*"(E)UO) =0,

where k' € ZJ;O is defined as: k; = 1 and kj, = 0 for j* # j. We deduce that

Zﬁ(p 1)n(vo) # 0 if and only if £ < a7, which implies the first assertion. The
second assertion can be proved as above, noting that Remark [3.4.3] remains true
when m = 0. [

Corollary 3.4.9. Let k € Zéo and n > 0.

@) 1F 11kl > llagll, then Y5(* )" (vo) = 0.

(i) 1f |kl = lagll and if YE(" ;)" (vo) # 0, then k = a.

Proof. Tt is a direct consequence of Proposition [3.4.8] O

3.5 The degree function on an admissible smooth represen-
tation of GLy(K)

We define and study a “degree function” on representations 7 as at the end of §3.1]

Let p and 7 be as in loc. cit. For v € 7, we define
deg(v) £ min{n > —1: v € n[m}H|} € Z>_,.

Fix ¢ € W(p) and let v, € o™ \ {0}. Define ag € Z., as in .
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Proposition 3.5.1. For alln > 0 we have
deg ((71)"(v5)) = llag]l

Proof. Put u, = (p 1 )n(vg) for simplicity. First, by the proof of [BHH™20, Cor. 5.3.5],
we know that as a gr(IF[/;/Z;])-module gr(w) is annihilated by the ideal J defined
by J & (yjz;, 2jy;;0 < j < f —1), so that gr(m) becomes a graded module over
R = gr(F[I,/Z,])/J which is commutative, isomorphic to Fy;, z;]/(y;2;;0 < j <
f —1), with y;, z; of degree —1. On the other hand, it is easy to check that w, is
annihilated by 3 \cp, AP (p[lﬂ (1))6 F[11/Z] (a lifting of z;), hence z; gr(u,) = 0 and
consequently we observe that any element in (R - gr(u,)) is annihilated by z;.

Next we note the following fact: if v € m with deg(v) > 0 and if gr(v) is annihilated
by all z;, then there exists some i € {0,..., f — 1} such that y; gr(v) # 0. (If not,
suppose v € w[m}'] \ w[m} ] for some n > 1, so Ry, the degree —1 part of R,
annihilates v. But By = my, /m? , so mpv C w[m}'], i.e. v € w[m7.], contradiction.)

As a consequence, Y;v # 0 and
deg(Y;v) = deg(v) — 1

moreover we have gr(Y;v) = y; gr(v) € (R -gr(v)). Applying this fact to u, (and to
Yiu,, etc.) and using the observation of the last paragraph, we find that there exists
ay € ZQO such that Y% v, is of degree 0, i.e. Y% v, € 7/t \ {0} and

deg(un) = [l |-

On the one hand, we have [|a;7| < |[ag|| by Corollary |3.4.9(i) (as Y%, # 0). On

n

the other hand, we have deg((p 1)n(vg)) > |[lag]| by Lemma [3.4.7, so the result
follows. O

If V is any admissible smooth representation of GLy(K') over F, we define deg(v)
for v € V' as above. On the other hand, by restricting V' to Ny, we can also define

deg'(v) = min{n > —1:v € V[m}']}.
This is well-defined as V' is smooth. It is clear that deg(v) > deg'(v).

We note the following consequence of the proof of Proposition [3.5.1] (it will not
be used in this paper).

Corollary 3.5.2. Let V be in the category C of and assume that gr(V') is an-
nihilated by the ideal J defined in the proof of Proposition |3.5.1. If v € V is an
element fized by (péK (f), then there exists k € Zéo with |k| = deg(v) such that

0 # Y™ € Vi, Moreover, we have deg(v) = deg'(v).
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3.6 A crucial finiteness result

We prove an important finiteness result (Proposition [3.6.1)) which will be crucially
used in to construct elements of Homy4(D4(7), A).

Fix 0 € W(p) and define o; € W(p), v; € 0; and d € Z>; as in (before
Lemma [3.4.5)). We have elements ¢7,a? € Z’;O defined for n > 1 (resp. n > 0) in (95)

nr-n

(resp. (96])). By induction we have

n—1

a, = pi5i(02—i)

@
Il
=)

and as ¢ is periodic with period d, we deduce
agy = " af, 1o +ag, (102)
where d' = df (so 6% is the identity).
We consider the following elements for i € Z7:
Loy E ALY (P ) (0,), (103)

where A, is defined in and n > 0 is chosen large enough so that apy— 12> 0. By
Lemma [3.4.7] the definition is independent of the choice of n.

The following finiteness result is the main result of this section.

Proposition 3.6.1. For any M € Z the set {i € Z) : x,; # 0, ||i|| = M} is finite.

For Lemmas [3.6.2| and [3.6.3| below, we assume m = |J™*(g)| > 0.

Lemma 3.6.2. Let k € Zéo andn > 1. Assume that for some 0 < jo < f —1,

(a) k:jogat7 —p—C

. I
n,J0 7,507

(b) & > flag]l = <7 50-

Then Xﬁ(p 1)n(vo) = 0.

Proof. Write k = pd(k') + k" with &', k" > 0 and k" < p — 1. Condition (b) implies

PIE + (p = 1) f > [IE]| > pllag |l + > ¢
J#jo

and consequently
plIE|| +pf > pllag_ ||
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Thus, we have ||E'|| > ||ag_,|| — f-

Assume Z%p 1 )n(vo) = 0 for a contradiction. Then by the proof of Proposition

[0¢)

/ n—1
3.4.8| we also have Y* (” 1) (vo) # 0. Moreover, by Proposition |3.4.8, there exists
1> 0 with [|7]] < f — 1 such that ¥ = a9_, —i and

(nHZ'“") 'Xkl(p 1)n_1(1}0) =Y W, €0y
=0

Thus, condition (a) translates to

p(aZ—l,joJrl - ij0+1) + k’;/o < ag,jg - P cZ,jo
from which we deduce £} < p(ij,41 — 1) using (96), and we get a contradiction
by Lemma [3.4.4] applied to &”. Indeed, YE (p 1)([1@”_1) # 0 and the equality

/I _ o
E_anfl

— 1 together with condition (b) imply
I1E"N| > pllall + lle7 ]l = <7,
which verifies the corresponding condition (b) of Lemma (with o = 0,1). O
Recall that d’ = df, that 67 is the identity, and that ¢, 1s periodic with period d.

Lemma 3.6.3. Let k € Zéo andn' >n > 0. Assume that for some 0 < jo < f —1,

(a) kj, < Ao = A jo — pnd (p+ cgyjo) and

(b) Ikl > lagall = lagll = iy, + F( = 1).
n'd
Then Z&(p 1) (vg) = 0.

Proof. Applying Lemma with n = (n/ — n)d’, we see that if k' € Zéo such that

Ky < aly_myar jo —P—Cqj, (vecall that ¢ ; is periodic) and if |E']| > [|af, )z [l — 7,
’ I __ dl
then Y* (p 1>(n " (vo) = 0.

Write k = p" &' + k" with &', k" > 0 and k" < p"* — 1. Note that a4 — agy =
p”d/afn,_n)d, by (102). Firstly, by condition (a) we have

nd’ nd o nd’ o
P kG, < Kjo <P al_pyar gy — P (0 F €3 ,)
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and so ki, < af,_ i —p— ¢, Secondly, as f(p"* —1) —[|£"]| > 0, condition (b)
implies that

nd o

pnd ||E,” > pnd ||azfn’—n)d’” — P Cajy

so that
1] > [lay—pyall = € jo-

’ n'—n)d’
We then conclude that Y* (p 1 )( ) (vo) = 0 as explained above, hence
n'd’ 1 nd _ 1 (n'—n)d’
Xk(pl) (vg) = Y* (pl) vt (p1> (vo) = 0. 0
Proof of Proposition|3.6.1. If m = 0, then the end of the proof of Proposition [3.4.8

implies z,; = 0 if 7; < 0 for some 0 < j < f —1, from which the result easily follows.

Assume m > 0 from now on, so that Lemma [3.6.3] applies. Fix any M € Z. We
will show that the set {i € Z/ : x,; # 0,]|i]| = M} is finite. Choose n large enough
such that forall 0 <7 < f —1:

lagy |l + " cq; — f(p" — 1) > M; (104)

this is always possible because the left-hand side tends to infinity when n — oo (recall
that 7 ; > f, by genericity).
Now pick any i € Z/ such that ||i]| = M. Choose n’ > n large enough such that

a%, ,—1i n'd’
al,y > i, hence x,,; € F*Y »d ’(p 1) (vo). By (104)) and as ||i]| = M, we get for
all 0<j<f—1:

lagyg | = ll2ll > llaga |l = (lagg | +p" ez, = f("" = 1)).

There are two cases:

o Ifujo > agy +p (p+cg,,) for some jo, then z,; = 0 by Lemmam (applied
to E d:M aZ/d/ — Z)

o Otherwise, we must have i; < ag, ; + p (p+ cij) for all j, and such a set

(together with the restriction ||z]| = M) is automatically finite. Note that the
quantities ag, ; + p"* (p + 5 ;) depend only on our fixed M, as n does. O

3.7 An explicit basis of Homy(D(7), A)

We exhibit an A-basis of Hom(D4(7), A) and explicitly describe its image in the
vector space Homg™™ (D 4(7), F) via the embedding (7).
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Recall m and p are as in Theorem [3.1.3] with p as at the end of §3.1] in particular
7/t is multiplicity-free for the action of I. For any o € W(p) and our fixed choice of
v, € o0\ {0} we define:

Tox YT (P )", (105)

for kK > 0 and any n > 0. This is well-defined by Lemma [3.4.7]
Recall from Proposition that

nd lag ,l1+1
(p 1) v € Mt ], 80 2y € wmyl T,

hence by Proposition the sequence (z,x)k>0 defines an element z, of
Homg™ (D 4(7), F) of degree 0.

Theorem 3.7.1. The elements {z, : 0 € W(p)} are contained in the image of the
mjection

p : Homy(Dy(m), A) — Homp™ (D 4(7), F)
and form an A-basis of Hom4 (D s(7), A).

We first need a lemma. Note that 7/t is multiplicity-free for the action of I, so
there exist unique I-eigenvectors v: € (71)V = gro(7") such that (v,,v%) = 85, (for
o, o' € W(p)). We already know that D4(7) is free by Remark [2.6.2l The following
result only applies to our current m but is more precise.

Lemma 3.7.2. Suppose that w is as above. Then gr(Da(m)) is a free gr(A)-module
with basis (V)sew(z)- In particular, D 4(r) is a filtered free A-module of rank 27.

Proof. Recall from [BHH21, §3.1] that gr(D()) is obtained from gr(m") by localiz-
ing at [, y;. By localizing the surjection in [BHH" 21, Thm. 3.3.2.1] at []; ; and using
[BHH"21, Lemma 3.3.1.3(i)] we obtain a surjection @,cw ) gr(A) — gr(Da(mr)) of
gr(A)-modules, sending the standard basis element indexed by o on the left to v%. But
rkee(a)(gr(Da(7))) = tka(Da(m)) = 2/ by [BHHT21, Lemma 3.1.4.1] and [BHH21],
Cor. 3.3.2.4], hence the surjection ®,cw z) gr(A) — gr(Da(m)) is an isomorphism. By
[LvO96, Thm. 1.4.2.4(5)] we can lift it to an isomorphism @,cwzA — Da(m) of
filtered A-modules. L

Proof of Theorem[3.7.1. Fix any o € W (p) and consider the continuous F-linear map
ho(= x4) : Da(m) — T of degree 0 corresponding to the sequence (4x)r>0. We endow
D 4(m) with its natural good filtration (coming from the my,-adic filtration on 7, cf.

[BHH™21, §3.1.2]). To descend h, to Homy(Da(7), A) we now check the second
criterion in Lemma Thus fix any x € Da(w) and M € Z. By continuity there
exists e € Z such that h,(F.D4(m)) = 0. As (7¥)g is dense in D4(w) we can find
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(€ 7! and z* € 7V such that x — Yio* € F.,;Da(m). Then h,((z — Y)Y =0
for all i € Z/ such that ||i]| = M, so we may assume that z = Yiz* € (7).

o —q ’I’Ld .
As in we define z,; = \'Ynd *(p 1) (vy) for i € Z/, where n >; 0. (In
particular, Ty (x,..x) = T for k> 0 and lew- = Toij for any j > 0.) Explicitly,

heoY % = (x,4,—) onn’
for all k£ > 0, from which it follows from the properties of (z,,); that

heoY *=(v,;,—) onm’ (106)

for all ¢ € Z/. This implies that
ho(Yiz) = ho (Y 2") = 2™ (25— i40))

which can be non-zero for only finitely many ¢ by Proposition Thus h, indeed
descends to an element H, of Homy(D(m), A).

For the final claim, first note that
gr (HOH]A(DA(TF), A)) = Homg, () (gr (Da(m >

by [LvO96, Lemma I.6.9] and Lemma[3.7.2] By [Lv096| Cor. 1.4.2.5(2)] it then suffices
to show that the gr(H,) (o € W(p)) form a basis of Homg,(a)(gr(Da(m)),gr(A)). By
Lemma the gr(A)-module gr(D4 (7)) has basis v} (o0 € W(p)), so it will be
enough to establish (gr(H,), v}) = 05,y * for all o, o’ € W(p).

) Yo

By the explicit formula from the proof of Lemma we know that

Hy(x) = ([I0+ 1) X ho(Zi) 21 ¥ € D).
J i
Consider the equality po H, = h,. Note that H, is a filtered map of degree f, since

hs is of degree 0, Z* € F_j; /A, and [[;(1 +1}) € FyA. Similarly, p is a filtered map
of degree —f. Therefore

gr(p) o gr(Hy) = gr(he). (107)

Recall that gr(A4) = Flyi,. .. ,yjf_ll]. Let & : gr(A) — I be the map sending
Yjezs Ayl to A it is F-linear and of degree ||il|. By definition, gr(u) : gr; A — F
sends gr(IT; (14 T5) X jijs—y MiZ") to A_y. As gr(Y;) = gr(Z;), it follows that

gr(p) =1 (108)
On the other hand, relation ([106)) implies that
gr(hy) oyt = (gr(z,;),—) on gr(r") (109)
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for all i € Z/. (They are graded maps of degree ||i||; we filter 7 as in §3.5])

Using equations ((107)—(109) we compute that
Ei10gr(H,) =

_1oy togr(H,) =gr(u) ogr(H,)oy™*
= (gr(zsy), —) ongr(m’).

As g, o gr(H,) is a map of degree ||i||, if (;—1 o gr(H,))(vi) # 0, then ||i|| = 0.
By the definition of x,; and by Corollary we know that z,; = 0 if ||i|| = 0 and
i # 0. Therefore,

gr(Ha) = <g1"(-f13a,g), _>g_l = <gr(va)a _>g_l on gr(,ﬂv%
as desired. O

3.8 The Ox-action on Homy(Dy(7), A)

We make explicit the Oj-action on the elements x, of Homy(D4(7), A) defined
in §3.7

We first consider more generally the actions of A and O} on Hom§™" (D 4(r),F)
defined so that the map p, in becomes A and Ox-linear (cf. Lemma [3.3.6]).

Lemma 3.8.1. Suppose that h : Da(m) — F is continuous of degree d, i.e. sending

F_41D4(7m) to 0. Let h correspond to the sequence (xy)g>o as in Propositionm

kf+d+l
s0 Y1 =z and xy, € 7T[m[1f+ .

(i) Ifa € A, then ah = h o a corresponds to the sequence (yy)r=0, where
ye =Y az, (110)
for € > 0.

(i) Ifa € OF, then a(h) = Nyw, (@)~ (hodiag(a™",1)) corresponds to the sequence
(2k)k>0, where

= N @) (%) i = N @ S (e ()

for € > 0.
Remark 3.8.2. To explain the notation in equations (110]), (111)) we note that for

r € mlm3] (e > 0) we can extend the action of F[Ny] on  to an action of the
ring F[No] + F_.A such that F_. A kills x (because F_.F[Ny] = F[No] N F_.A kills
x, by assumption). For (110) we note that Y %a € A = F[Ny]s + F_4_14, so
Y&Ea € F[Ng] + F_yp_g 1A for £, 0 and 2 € W[mgﬂlﬂ]. Similarly for (111 we
note that a(y%) € F[No|| + F_yy—a—1A for £ >, 0 (and (a 1) normalizes I ).
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Proof. For (i) we first note that h(F_4_1A-7") C h(F_q_1Da(m)) = 0, so hod'|v
only depends on a’ modulo F_;_1A. Writing Y~ Eq e Y+ F 4 1A as above with
b € F[No] and ¢ >, 0, we compute for k& > 0,

hoao Z7E|7rv =ho Kﬁﬁ o b|7rv = <[Eg, b(—)) = <bl‘g, —> = <X£7ECLZL‘4, —> (112)
as functions 7V — F, as desired (keeping in mind Remark [3.8.2)).

For (ii), first note that a(h) o Y % = Ny g, (@)~ (h oa (Y75 o diag(a?, 1)) By
(112) (applied with k = 0), hoa " (Y 8)|,v = (Y£- a Y (Y E)z,, —) for £ >, 0 and
the result follows. O

We now determine the Ox-action on the elements x, € Homy(Da(w), A) (o €
W (p)), as defined in §3.7 By Lemma [3.3.6iii) we can compute this action on the
image of , in Hom{™ (D 4(7),F) (i.e. before descending).

For a € O and 0 <i < f — 1 we put

where we follow the convention in of just writing an index 7 instead of an index
o; (in particular f,0 = foo, in (22))). Note that ¢(f,:) = fi; ;. We also let x, :

Fx — F* denote the eigencharacter of diag(—, 1) on o'

Proposition 3.8.3. For a € Oy we have
L
a(es) = Nugs, (a)‘lxa(a)< T o )
1=0

in Hom$™ (D (7)), F), where d' = df .

Proof. First note that we may apply any element of F[No] + F_j ;1A to (105]) (with

F_jr_1A killing both sides) by applying our convention in Remark to both
kf+1 P nd’ ”aZd’ fl+1
Top € mmy "] and ( 1) Vo € T[my; |-

a’, /(1— d
Let us now consider Ny, (@)x,(@)™" (H{_Ol fal S a(z,). Combining both

parts of Lemma and the previous paragraph, we obtain that its k-th component
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is given by the following formulas (where ¢ >, 0 and n >, 0):

(H d, /(-p )>agj)(“1)x@e

(Hfa“i' s )> agf:)( DAyt (r Y,

(Hfaf' o )Azcﬁf‘”(ﬁl)”d’(%)va
(Hfai’ TNt ),

nd’ _1

Recalling that a(Y;) = a?'Y; ifoi and aly = ad,p -—— the formula simplifies to

(Hfai, S )>/\H<Hpa > nd/ (Hf[” )( )nd’vg
N ( 1:[ ff,z /0 ) ( 1:[0 apiazd,,i> Agx@—@(p l)nd’va'

d, /(

Now H f ») only matters modulo F_;; 1 A. But as f,; € 1+ F_,_)A

nd (T
we have f o/ 0=2%) €l+F (p71)A= so for n sufficiently large we can omit this

factor. In summary, the k-th component of Ny, (@)x, (@)~ (H f il (1 )>a(atg)
a®  — nd’
is given by (5@ “ws ey ™5(7 )" o, = (I @ )

Finally notice that 3 p'ag,; = (1 + pd 4 o pn Yplag, = nyplag,
(mod g — 1), as f | d’. Since n (sufficiently large) was arbitrary above, we deduce
that zpiag% =0 (mod g — 1), and the result follows. ]

3.9 Combinatorics of modular Serre weights

We collect explicit formulas on Serre weights in W (p) which will be used in §3.10]

We assume f > 2. We remark that if f = 1 and p is irreducible, some formulas
need to be modified, e.g. Lemma [3.9.1(i). But the main result (Theorem is
known in this case, so it is harmless to exclude it.

Recall from that we identify W (p) with the set of subsets of {0,1,..., f —1}
as in [Brelll §2] and let J, be the subset associated to o € W(p). Precisely, if
o= (s0,...,8/-1)®mn, wehave s; e {p—2—r;,p—3—r;}forje J,if j >0o0rpis
reducible, sy € {p —2 —19,p — 1 —ro} if 0 € J, and p is irreducible.
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Let Jss) be the subset of {0,1,..., f — 1} corresponding to 6(c). We have the
following explicit description (see [Brelll §5]):

JE Jso),J < f—1(resp. f—1€ Jso) < j+ 1€ J, (resp. 0 ¢ J,) if 6 = iy
JE€EJso) &= j+1eJ, if 6 = 0req-

Write 0(c) = (sp,...,85_1) @ 7', Recall that ¢ € ZJ;O is defined by: 7, = s
if j € J" (o) and ¢f; = p—1if j ¢ J"*(0). The following lemma explicitly
determines s;_; and ¢f; ; in terms of s;.

Lemma 3.9.1.

(i) Assume p is irreducible. If i =0, then

L s [ sy | [
o p—2—riq | f-1eJ™™(0) | p—2—Ts

ro—1 p—3—rq | f—1¢ J(0) p—1

p—2—To ri-1 f-1¢J™ ()| p-1

p—1—r Tffl‘f—l f—lEJmaX(O) Tffl‘*—l

while if 1 <i < f —1, then

| S [ si 4, i=1] sy, i>1 ] | 5,4
T ro— 1 Tio1 i—1¢ J"™ )| p—1
ri+1 o rioa+1 |i—1€J™™(0) | si_,
p—2—ri || p—1—rg |p—2—1q |i—1€J™™(0) | s;_,
p—3—ri||p—2—rg |p—3—1iq |i—1¢& J"(0)|p—1

(ii) Assume p is reducible (split). Then for any 0 <i < f —1

os sy | x|
T Tie1 i—1¢ Jm(0) p—1
ri+1 ri_1+ 1 1—1¢€ JmaX(O') i1+ 1
p—2—ri||p=2—riq |i—1€J™™(0) | p—2—1;4
p—3—ri||p—3—ri.1 |i—1¢ J™(0) p—1

Proof. This is an easy exercise using the relation between .J, and Js,). Note also
that ¢ ¢ Jo‘ if and only if Si+1 < {TH»lap —2— 7”1'+1}. ]

Starting from o, we have defined ¢ € ZL, and a? € ZL, for n > 1 in . The

following result determines af in terms of the s; (recall d’ = df). For 0 <i < f — 1,

recall that h; = r; + 1 and define
W by phiy + -+ pT Ty (113)

(thus A0} = p).
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Lemma 3.9.2.

(i) Assume p is irreducible. If i =0 then

So 70 ro—1|p—2—1ryg | p—1—1g
a9 0 h h
1—pd’ 1+ 1+q 1 1 1+q

while if 1 <1< f—1 then

S T r; +1 p—2—1; p—3—r;
T o I S N R N [ hpf—1 .
S s e B s =S 1

(ii) Assume p is reducible (split). Then for any 0 <i < f —1:

S T ri +1 p—2—1; p—3—r;
T i he! ™ ol ! _
s || -1 | A 1 — Al — A 1

Proof. (i) Note that we always have 2|d (as d t f but d|(2f)) and so (2f)|d’. Thus

it suffices to prove the formulas for 1(1_2;; 573 we choose to work with 2f because d|(2f)

by [Brell, Lem. 5.2]. Using Lemma 3.9.1) we can inductively determine ¢, for

1 <n < 2f, and then compute a3, ; using the formula a3,;, = )iy PHCSr i

where ¢f, ; is understood to be ¢ ; (00 5y 17 = [

We do this in the case i = 0 and sg = rg, and leave the other cases to the reader.
In this case, we obtain using Lemma that

Cflf,f—lzp_Q_Tf—la SRR C(}—1,1:p—2—7"17 c‘}p:p—l—ro,

C?+17f_1 - /r'f_]_ + 1, ey Cgf—l,l — T]_ —'I_ 1, Cg.ﬂo = TO,
and so
afrg = rot+pri+1)+-+p o+ 1)
+pf(p—1—ro) +p M (p—2—r)+ - +p¥ (p—2—rp1)
= (h=1)+p/ —h)
_ h
= (- p)(-1+ ),
proving the result.

(ii) In this case it suffices to prove the formulas for la_f;f. The computation is

similar to (i) and is easier, and we leave it to the reader. O]
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3.10 The main theorem on D 4()

We prove Theorem [3.1.3]

Recall p is as at the end of For 0 € W(p) and our fixed v, € o1\ {0}, define
as in ({105]):

Top = A;‘X@_E(?’ ) )nd(vg)
for k > 0, n >, 0 and A\, as in Lemma (recall that A\, depends only on the orbit

of 0), so that the sequence z, = (24x)r>0 defines an element of Hom§™® (D4 (), F) of
degree 0.

We know by Theorem that x, € Homa(Da(7), A) (via ) and that the z,
for o € W(p) form an A-basis of Hom4(D4(7), A). By Lemma [3.3.6(ii) and the
action of ¢ on Homy(Da(w), A) can be computed on sequences as follows: for any
k>0,

(el = (=1 YEE(? ) (), (114)
where /¢ is chosen arbitrarily so that p¢ > k.

Let {x% : 0 € W(p)} denote the A-basis of D4(7) that is dual to {z, : 0 € W(p)}.

Fix o € W(p) and write d(c) = (s, -..,s7_ ;) ®n'. By Lemmas [3.4.1 and (3.4.5]
there exists a constant p, € F* such that

v =ne- 1 Y TI Y7'(7))w) (115)

jeJmax(o) j¢Jmax(o)
and moreover
d-1
H /"L5i(0') = A;:l’ (116)
i=0

where A, is as in .
Lemma 3.10.1. We have

pan) =0 I V7 I Y/ ',

jeJmax(U) j%Jmax(o-)

Proof. By Lemma the natural pairing ( , ) : Homy(Da(w), A) x Da(w) — A
satisfies

(p(z), p(y) = p((z,9)), (a(),aly)) =a((z,y)) V a € O,

which characterizes the (¢, Of)-module structure of D4 (7). Thus, we are reduced to
check the relation

5oy = (""" I Y7 I Yjpflw(%)?
jejmax(a-) j¢Jmax(U)
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namely

T5(o) e = (_1)]”71“0 H ij ’ H Y;‘p_l(gp(xa))k (117)
jeJmax(o) JgJmax (o)

for any k£ > 0.

Write Y4 = [Tjejmox (o) ij [Tj¢ jmax(o) Y “lasin , so that

@ = +p3(a) = apg + 6"} (118)
by (96). By definition and using (115), we have
L) nd
N o *(p 1) (V3(0))
n aé(g)—k: ndéndc(r nd+1
= Aé(o)x nd = . ,Ufoxp a(r 1 (UU)

n a? —k nd+1
= Moo Y (p1> (vo),

where we have applied (118]). On the other hand, using (114]) we have (for ¢ large
enough)

Yo = (1) YLYEE(P ) (ay)
o o \_ nd 1
= (—1)ftydyetk oy P (v Y
nd-+1

= ()T (2 ) o),
As A\; = As(0), relation ((117)) is verified. O

Theorem 3.10.2. Assume p is absolutely semi-simple. Then Conjecture is
true.

Proof. We write D4 ,,(p) = Aeyg® Aey with (eg, €1) as in Lemma (for d = 2 and
noting e; instead of 1 ® e;) when p is absolutely irreducible and where

wqle) = Ao <§02;0/0)) heo

pqle1) = e
) = ( fa0 >1ﬁq€0 (119)
( ) @(fa,O)

= e1.

a
a

when 7 is reducible split. Let 7 < {0,1}/ and denote by i = (4;); an element of I, by
and since ¢/ (e;,) € Da,,,,(p) (see ) we have D% (p) = @,e; AE;, where

f-1

Ei dof ® @f_l_j(eij).

J=0

85



We will define an explicit A-linear isomorphism from D% (p"(1)) to D4(7) and check
that it is actually a morphism of (¢, Of)-modules. Twisting p and 7 by the same
unramified character and using Lemma and Lemma|3.1.1, we can assume

F=1 itrs
det(p)(p) = 1, i.e. det(p) = waizo PUHY Then

D37 (1) = DS (p @ det(p)"'w) = D (p@w; =0 "),

and using Lemma [2.9.7 and Lemma [3.1.1] again, it is equivalent to define a morphism
of (¢, O )-modules
D3 (p) — DA(’H' ® w; e prl)

Below we write x% instead of z for convenience, where J = J,.

(i) Assume first p is absolutely irreducible. For J C {0,1,..., f — 1}, with corre-
sponding Serre weight o € W (p), define

0 B, — oYX, (120)

where a; € F* are suitable constants, iy = 1; (i.e. iy; = 1if j € J and iz; = 0 if
j ¢ J), and

e by; =0 if either i = 0 and sg € {rg,70 — 1}, ori >0 and s; € {ri,p — 3 — r;};
o byo= b £ 1ifsg=p—1—ry;
. by CER L1 >0and s; =7+ 1

U b(]’ZdZEf—hM 1fsz:p—2—rl

Below we check that for well-chosen «;, ¥ commutes with ¢, i.e. 19(@(ELJ)) =
(Y L), Writing J' = J5(s), Lemma (3.10.1] implies

play) = (=) Y eras, (121)

where j1; = ji,,, and ¢y is defined as in with respect to the pair (o, d(c)). Also,
using Lemma [2.2.1] it is easy to check that

E;, ifiz=0,
(P(ELJ) - { (Y?,%Ol )hE; ifijo =1 (122)
Thus, we are reduced to check:
o ifi;0 =0 then f
= (—1V 1y,
{ oo} + 5_2 Cer (123)
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e ifi;0 =1 then

gy Uy = <_1)fO[J/
{pf5(b.f)+1—p+cy:bj/+(h,0,...,—ph). (124)

First assume 0 ¢ J, i.e. sg € {rg, 79— 1}; note that this implies s; € {ry,p—2—r;}
by the property of W (p). We need to check

pbyi+1—p+cpi1=byi (125)

for any 0 < i < f — 1. It is a direct check using Lemma [3.9.1, We do it for i = 0,1
and leave the other cases as an exercise. Recall that ¢y ;—y = s, if i —1 € J™(0,)
and ¢y ;—1 = p — 1 otherwise.

o Ifi=0and sy = rg, then b;o = 0 by definition and ¢y 1 = s} | =p—2—7r;
by Lemma |3.9.1, so we obtain

PO+ (1=p)+(p—2—rs 1) = =AY
which is equal to by 5.

e If i = 0 and sy = 79 — 1, then by = 0 by definition and cy 1 = p —1 by
Lemma [3.9.1] so we obtain

p-0+(1-p+(p-1)=0
which is equal to by ;1 (as sf =p—3—r;1).

e If i =1 and s; = 7y, then b;; = 0 by definition and ¢y o = p — 1 by Lemma

3.9.1], so we obtain
p-0+(1-p)+(p—-1)=0

which is equal to by (as s =19 — 1).

e Ifi=1and sy =p—2—r, then b;; = —hM by definition and cyo =Sy =
p—1—1rp, so we obtain

p(=h") 4+ (1=p)+ (p—1—ro) = =A% +1

which is equal to by .

Assume 0 € J, ie. sp € {p —2 —ro,p — 1 — 1ro}; note that this implies s; €
{ri+1,p—3—r1}. We check (124]) for i = 0 and leave the other cases as an exercise.
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e If sp=p—2—rp, then b;y = —hl% by definition and ¢y f—1 =p—1 by Lemma

[3.9.1] so we obtain
p(=h") + (1 =p)+(p—1) = —ph
which equals to by s 1 — ph (as by ;1 =0, since s} | = ry_;).

o Ifso=p—1—7¢,thenb;g = —h[%4+1 by definition and cpf1 =8 =1 +1,
so we obtain

p(=h + 1) + (L= p) + (rpa + 1) = (rp1 +1) + 1= ph
which is equal to by 1 —ph (as by j_1 = Bl 4 1).
Now we show that the constants «; can be compatibly chosen so that ¥ is -

equivariant. Using (123]) and (124)) it suffices to check, for any J whose orbit has
length d, that

_1)d(f-1) = ) _ = _1\%i().0
(=1) I wsie = TJ(=1)" @@,
Jj=0 Jj=0

As the left-hand side is equal to (—1)_3 = (—1)% by Remark and ([116) (and
det(p)(p) = 1), it suffices to show that

Hogjgd_1peauﬂ}:§. (126)

By the proof of [Brelll, Lemma 5.2], letting J' = JU{f + j,7 € J} (where J is
the complement of .J), then d is also the smallest positive integer such that J' =
J' — d as subsets of Z/2fZ, and in particular d divides 2f. Since |J'| = f and
J'N{0,1,...,f—1} = J, it is easy to see that

Ho<j<2f-1,0ed()}=f

from which we deduce (|126)).
We now check that o is O%-equivariant. By Lemma we know that

f—1 )
—1—is ph(1—p)qg" )i /(1—¢?
a(B) = [[ ¢y P g,
1=0

and by Lemma [3.8.3] we have

1 e
*) = a =15 iy a /i/(l—p ) "
a(ajJ) Nk/IFp (a)XU(&) ]-azizo pri ( I | fa’di R >xJ’

=0
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where d’ = df. Thus it suffices to show that

CL(Zb*J_l>Nk/IFp<a>XU( )~ Ll 07’”(1_[ fa(’iL/ S )>

H S1ig 0 [ (1=q?) p—p! g0/ (1=0%) yrby—1
P q q p q —q J—
- f i+1 f Y ’

which is implied by the following claims (where we use that 2f | d'):

(a‘) Xa(i) = (IZL 0 ple,i“‘Z{:_Ol piri’

hpl—t ) .
. e el I S ETEY

- - [qlJ(f_l) —q- qlJ(O)] ifi=0.
—q

To verify the first claim, note from [Brelll §2] that
%(Z{ Olp (Tz+sz)+(q—1)1J(f—1)>

It then suffices to show that

(ZP i —ri)+ (@ —1)1;(f ) Zpbh (mod ¢ — 1).

First assume f — 1 ¢ J (so that 1;(f — 1) = 0), equivalently sy € {ro,p — 2 — ro}.
Then (so, ..., ss_1) consists of subsequences of the form p—2—1r;,p—3—7rj41,...,p—
3—rj_1,rp+1forsome0<j<j <f—1(andr fori¢{j,...,5}). Since b;; =0
if s; = r;, we are reduced to prove that for 0 < j < j' < f —1,

1 . , .
5((p —2-2)+ Y plp-3-2r)+p )= > pby (modqg—1). (127)
Jj<i<j’ J<i<y’
It is direct to check that the left-hand side of (127)) is equal to
Plo—1-=m)+ > pp—2-m)=pp-h)+ > pp-1-h)

j<i<y’ j<i<y’
On the other hand, by the definition of b;; the right-hand side of (127)) is equal to

YWY+ (1) = 7 iy =y
= pPp—h)+Zjciciy P (p—1-hi),

hence ([127)) is verified in this case (we actually have an equality). Now assume
f—1€J (sothat 1,(f — 1) =1), equivalently sg € {ro — 1,p— 1 —1¢}.
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o If sy =19 — 1, then (so,...,ss_1) contains a subsequence of the form p — 2 —
rj,p—3—"Tj41,...,70— 1 for some 0 < j < f —1 (note that the case j = f —1
is allowable), and one computes

%(Pj(p —2=21) + Yjcicsa PP — 3= 2r) + (1) + ¢ - 1)

Pp—1=r))+ Y cics P (p—2—1)+ (1)
p(A) (mod g~ 1)

o If sp = p— 1 — 1o, then (sp,...,sr_1) contains a subsequence of the form
p—2—1y,p—3—"js1,-,p—1—=ro,p—3—11,...,p—=3 —ry_1,7y + 1 for
some 0 < 7' < 7 < f—1, and one checks the following congruence relation mod
qg—1:

1 i i’ 7

S(p=2-2r)+ > Pp-3-2r)+(—1-2r0)+p" +(¢—1)) = 3 piby;

2 J<i<y’i#0 J<isy’

where >>; ;. means >, _;<¢_1 + > o<i<; and similarly for 37, ;.

Together with (127)), the claim (a) is verified in this case.

Let’s check the claim (b). Using Lemma and the definition of b; one checks
that if 7 = 0 we have

So o |To—1|p—2—1r9|p—1—r9
ao
d’ 0 . h hq

while if 1 <7 < f — 1 we have

S; | i+l | p=2—r;|p=3—m
aO’ . —
i oy __hpf—® hpf 1
1—p? t1-bsi || O 1+q 1+g 0

Then (b) can easily be checked case by case.

(ii) Assume p is reducible (split). For J C {0,1,..., f — 1}, with corresponding
Serre weight o € W (p), define
U EiJ — OéL]Yb—JiliL'?},

where oy € F* are suitable constants, i; < 15c (i.e. iy; = 1if j ¢ J and iz; = 0 if
j€J),and

e by = 0if 55 =13

J bJ’Z:_h[Z] 1fsl:p—2—r2,
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e by =hl +1ifs;=r;+1andi >0 (resp. byo = 1if i = 0);

e by, =0if s;, =p—3—r; and i > 0 (resp. beg:—h[O] if i =0).

Write J' = Js(). Then (121)) remains true, and it is easy to check that

@(EiJ) =

>\0< Y:O )hEZJ, lf 'l.(]70 — 0,
ME;

iy if/iJ70:1.

Thus, to check that ¥ is p-equivariant it is equivalent to check

e if 770 =0 then

oy py = (—=1)" Xoay
pd(by) +1—p+cy =by+ (h,0,...,—ph)

o if 7:(]70 =1 then

oy -y = (—1)f_1)\1aJ/
po(bs) +1=p+cp=by.

(128)

(129)

(130)

We leave it as an exercise to check the second equation of ((129)), resp. (130]), using
Lemma [3.9.1] Thus, to show that the constants a; can be compatibly chosen so that

9 is p-equivariant, it suffices to check, for any J whose orbit has length d,

IJI BiE;
4 =1 HM&J f)\o f7

where we have used det(p)(p) = 1 and the fact that
. d . —
Ho<j<d-1,0ed()) = 15, Ho<j<d-1,0¢8()}=1J|

We conclude by Remark and (|116]).
We now check that 9 is OF-equivariant. Using (119) we know that

a(EiJ): H SDf—l—z‘(fcfll’%l—so)/(l—q))EZ,J

Z'I’L'J,,L'ZO

and by Lemma [3.8.3] we have

a(z’y) = Nir,(@)xo (@)~ 1l 0pn< 11 fajl /(-p )>CE?},
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where d’ = df. Thus it suffices to show that

o) Vo @) e (T2 )

_ H (fhpilz 1/1 q)f hpf 1/1 q))Yb] 1

0<i<f—1
17,;=0

which is implied by the following claims (where we use that f | d'):

(&) XU( ) - az’ =0 plb‘]’iJrZ{;J pim,

(b) .
' 1,0-1)-1,(6)] if1<i<f—1,

a% .
d i

fq[lJ(f —1) —¢1,(0)] ifi=0.

Both claims are checked as in the irreducible case (we omit the details).
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