Serre weights and Breuil's lattice conjecture in dimension three - Archive ouverte HAL
Article Dans Une Revue Forum of Mathematics, Pi Année : 2020

Serre weights and Breuil's lattice conjecture in dimension three

Résumé

We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$-arithmetic manifold is purely local, i.e., only depends on the Galois representation at places above $p$. This is a generalization to $\mathrm{GL}_3$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil-M\'ezard conjecture for (tamely) potentially crystalline deformation rings with Hodge-Tate weights $(0,1,2)$ as well as the Serre weight conjectures over an unramified field extending our previous results. We also prove results in modular representation theory about lattices in Deligne-Luzstig representations for the group $\mathrm{GL}_3(\mathbb{F}_q)$.
Fichier principal
Vignette du fichier
serre-weights-and-breuils-lattice-conjecture-in-dimension-three.pdf (1.73 Mo) Télécharger le fichier
master2.pdf (1.33 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03840824 , version 1 (10-11-2022)

Licence

Identifiants

Citer

Daniel Le, Bao V. Le Hung, Brandon Levin, Stefano Morra. Serre weights and Breuil's lattice conjecture in dimension three. Forum of Mathematics, Pi, 2020, 8, pp.e5. ⟨10.1017/fmp.2020.1⟩. ⟨hal-03840824⟩
41 Consultations
25 Téléchargements

Altmetric

Partager

More