Serre weights and Breuil's lattice conjecture in dimension three
Résumé
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$-arithmetic manifold is purely local, i.e., only depends on the Galois representation at places above $p$. This is a generalization to $\mathrm{GL}_3$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil-M\'ezard conjecture for (tamely) potentially crystalline deformation rings with Hodge-Tate weights $(0,1,2)$ as well as the Serre weight conjectures over an unramified field extending our previous results. We also prove results in modular representation theory about lattices in Deligne-Luzstig representations for the group $\mathrm{GL}_3(\mathbb{F}_q)$.
Domaines
Théorie des nombres [math.NT]
Fichier principal
serre-weights-and-breuils-lattice-conjecture-in-dimension-three.pdf (1.73 Mo)
Télécharger le fichier
master2.pdf (1.33 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Origine | Fichiers produits par l'(les) auteur(s) |
---|