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Abstract

We prove in generic situations that the lattice in a tame type induced by the completed cohomology
of a U (3)-arithmetic manifold is purely local, that is, only depends on the Galois representation
at places above p. This is a generalization to GL3 of the lattice conjecture of Breuil. In the
process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline
deformation rings with Hodge–Tate weights (2, 1, 0) as well as the Serre weight conjectures of
Herzig [‘The weight in a Serre-type conjecture for tame n-dimensional Galois representations’,
Duke Math. J. 149(1) (2009), 37–116] over an unramified field extending the results of Le
et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and
shadows’, Invent. Math. 212(1) (2018), 1–107]. We also prove results in modular representation
theory about lattices in Deligne–Lusztig representations for the group GL3(Fq).
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1. Introduction

One of the most important developments in the Langlands program in recent
years has been the p-adic local Langlands correspondence for GL2(Qp).
Unfortunately, extending this correspondence even to GL2(K ) has proven to be
exceedingly difficult and all evidence suggests that the desired correspondence
will be much more complicated. On the other hand, there has been some progress
on several avatars of the p-adic local Langlands correspondence, namely,
(generalized) Serre weight conjectures, geometric Breuil–Mézard conjecture,
and Breuil’s lattice conjecture. These conjectures inform our understanding of
what the sought after p-adic correspondence should look like. In this paper, we
prove versions of each of these three conjectures for GL3(K ) when K/Qp is
unramified.

1.1. Breuil’s lattice conjecture. Motivated by Emerton’s local–global
compatibility for completed cohomology, [CEG+16] constructs a candidate
for one direction of the p-adic local Langlands correspondence for GLn(K ).
Namely, they associate to any continuous n-dimensional Qp-representation ρ
of Gal(K/K ) an admissible Banach space representation V (ρ) of GLn(K )
by patching completed cohomology. However, the construction depends on a
choice of global setup, and one expects it to be a deep and difficult problem to
show that the correspondence ρ 7→ V (ρ) is purely local.

In [Bre14], Breuil formulates a conjecture on lattices in tame types cut
out by completed cohomology of Shimura curves which is closely related
to the local nature of V (ρ). This conjecture was proven subsequently in
the groundbreaking work of Emerton–Gee–Savitt [EGS15]. Our first main
theorem is a generalization of Breuil’s conjecture to three-dimensional Galois
representations and the completed cohomology of U (3)-arithmetic manifolds.

Specifically, let p be a prime, F/F+ a CM extension (i.e. F a totally imaginary
quadratic extension of a totally real field F+) unramified everywhere, and
r : G F → GL3(Qp) a Galois representation. Let λ be the Hecke eigensystem
corresponding to r , which appears in the cohomology of a U (3)-arithmetic
manifold. Choose a place v|p of F+ which splits in F , and let H̃ be the
integral p-adically completed cohomology with infinite level at v. One expects
completed cohomology to realize a global p-adic Langlands correspondence
generalizing the case of GL2/Q. That is, by letting ṽ denote a place of F
above v and by letting G F̃v be the absolute Galois group of F̃v, the GL3(F̃v)-
representation on the Hecke eigenspace H̃ [λ] corresponds to r |G F̃v

via a
hypothetical p-adic local Langlands correspondence (when the level outside v
is chosen minimally). In particular, the globally constructed object H̃ [λ] should
depend only on r |G F̃v

.
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Suppose that r is tamely potentially crystalline with Hodge–Tate weights (2,
1, 0) at each place above p. For simplicity, in Section 1, we suppose that r
is unramified away from p, although our results hold if r is minimally split
ramified. Assume that each place v|p in F+ splits in F and fix a place ṽ|v
for all v|p in F+. Let σ(τ) be the tame type corresponding to the Weil–
Deligne representations associated with r |G F̃v

for all v|p under the inertial
local Langlands correspondence. Throughout Section 1, the tame type σ(τ) is
assumed to be sufficiently generic. If r is modular, then by classical local–global
compatibility, H̃ [λ][1/p] contains σ(τ) with multiplicity one.

THEOREM 1.1.1 (Breuil’s conjecture, cf. Theorem 5.3.5). Assume that p is
unramified in F+ and that r satisfies Taylor–Wiles hypotheses and is semisimple
at places above p. Assume that the level of H̃ outside p is minimal with respect
to r . Then, the lattice

σ(τ)0 := σ(τ) ∩ H̃ [λ] ⊂ σ(τ)

depends only on the collection {r |G F̃v
}v|p.

Let H be the mod p reduction of H̃ so that H is the mod p cohomology
with infinite level at places above p of a U (3)-arithmetic manifold. We prove the
following ‘mod p multiplicity one’ result (cf. Theorem 5.3.4).

THEOREM 1.1.2 (Theorem 5.3.4). Keep the assumptions of Theorem 1.1.1. Let
σ(τ)σ be a lattice in σ(τ) such that its mod p reduction σ(τ)σ has an irreducible
upper alcove cosocle. Then HomK p(σ (τ )

σ , H [λ]) is one-dimensional.

These theorems should be compared to [EGS15, Theorems 8.2.1 and 10.2.1]
in dimension two. In the special case where p is split in F+ and r is irreducible
above p, both theorems were proven by the first author in [Le18].

The main ingredients used in [EGS15] are the Taylor–Wiles patching method,
the geometric Breuil–Mézard conjecture for potentially Barsotti–Tate Galois
deformation rings (building on the work of [Bre14]), and a classification of
lattices in tame types (extending [Bre14, BP13]). When we began this project,
only the first of these tools was available in the case of GL3. The analogue of
potentially Barsotti–Tate Galois deformation rings are potentially crystalline
deformation rings with Hodge–Tate weights (2, 1, 0). In [LLHLM18], we
develop a technique for computing these Galois deformation rings when
the descent data is tame and sufficiently generic. We discuss in Section 1.2
the geometric Breuil–Mézard conjecture for these rings. The representation-
theoretic results are discussed in Section 1.3.
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Several key differences which distinguish our situation from [EGS15] are
worth mentioning. Breuil’s conjecture for GL2 gave an explicit description of the
lattice σ(τ)0 in terms of the Dieudonné module of r |G F̃v

. We prove abstractly that
σ(τ)0 is ‘purely local’ (Theorems 5.2.3 and 5.3.5) but without giving any explicit
description of the lattice. The lattice σ(τ)0 is determined by the parameters of
the Galois deformation ring but in a complicated way.

Let σ(τ)σ be a lattice in σ(τ) whose reduction has irreducible cosocle σ .
To prove Theorem 1.1.2, we show that a certain (minimal) patched module
M∞(σ (τ )σ ) is free of rank one over the local Galois deformation ring (with
patching variables) R∞(τ ) (Theorem 5.1.1). In fact, this result is also a key step
in our proof of Theorem 1.1.1. In loc. cit., the analogue of this result is Theorem
10.1.1 where they show that the patched module of any lattice with irreducible
cosocle is free of rank one. In our situation, it is no longer true that all such
patched modules are cyclic. Rather, this is only true when the cosocle σ is upper
alcove in every embedding. As a consequence of this, one can deduce that the
isomorphism class as an R∞(τ )-module of M∞(σ (τ )σ ) is purely local for any
lattice σ(τ)σ ; however, it need not be free.

For the proof that M∞(σ (τ )σ ) is free of rank one when σ is upper alcove,
we induct on the complexity of the deformation ring. The simplest deformation
rings resemble those for GL2 and so we follow the strategy similar to [EGS15].
For the most complicated deformation rings, we build up M∞(σ (τ )σ ) from its
subquotients relying on the description of the submodule structure of reduction
σ(τ)σ discussed in Section 1.3 and crucially intersection theory results for
components of mod p fiber of the Galois deformation ring.

1.2. Serre weight and Breuil–Mézard conjectures. There is an analogous
global context for a mod p Galois representation r : G F → GL3(F) whose
corresponding Hecke eigensystem m appears in the mod p cohomology
with infinite level at v of a U (3)-arithmetic manifold. One expects H [m] to
correspond to r |G F̃v

via a hypothetical mod p local Langlands correspondence.
Furthermore, if we let Wv(r) be the set of Jordan–Hölder factors in the
GL3(OF̃v )-socle of H [m] and r |G F̃v

is tamely ramified, [Her09, GHS18] predict
that Wv(r) = W ?(r |IF̃v

), where IF̃v denotes the inertia subgroup of G F̃v and
W ?(r |IF̃v

) is a set which is explicitly defined in terms of r |IF̃v
(Strictly speaking,

the Hecke eigenspace H [m] is a smooth representation of G(F+v ), where G/F+v
is a reductive group having a reductive model Gv over OF+v together with an
isomorphism ι̃v : Gv(OF+v )

∼

→ GL3(OF̃v ).). We have the following version of the
weight part of Serre’s conjecture (cf. Theorem 5.3.3).
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THEOREM 1.2.1 (The weight part of Serre’s conjecture). Assume that p
is unramified in F+ and that r satisfies Taylor–Wiles hypotheses, has split
ramification, and is semisimple and sufficiently generic at places above p. Then
Wv(r) = W ?(r |IF̃v

).

In [LLHLM18], we prove this theorem with the additional assumption that p
is split in F+. The strategy is to show the numerical Breuil–Mézard conjecture
for the simplest deformation rings (where the shape has length of at least 2)
using [LLHLM18, Section 6.2]. The key new tool is a more conceptual and
robust combinatorial technique for computing the intersection between the
predicted weights W ?(r |IF̃v

) and the Jordan–Hölder factors of a type and which
is developed in Section 2. This allows us to inductively prove that all predicted
weights are modular.

Using a patching functor which is constructed globally, we show that the
generic fibers of tamely potentially crystalline deformation rings of Hodge–Tate
weight (2, 1, 0) are connected for ρ generic and deduce the full numerical Breuil–
Mézard conjecture for these Galois deformation rings. Using the numerical
formulation, we prove the following geometric version of the Breuil–Mézard
conjecture (cf. [EG14], Proposition 3.6.1).

THEOREM 1.2.2 (Proposition 3.6.1). Assume that r |G F̃v
is semisimple and

sufficiently generic. There is a unique assignment σ 7→ p(σ ) taking Serre
weights σ ∈ W ?(r |G F̃v

) to prime ideals in the unrestricted framed deformation
ring R2

r |G F̃v
such that the special fiber Spec (R

τ

r |G F̃v
) of the potentially crystalline

framed deformation ring Rτ
r |G F̃v

of Hodge–Tate weight (2, 1, 0) and tame type τ
is the reduced underlying subscheme of⋃

σ∈W ?(r |IF̃v
)∩JH(σ (τ ))

Spec (R2
r |G F̃v

/p(σ )).

Moreover, this is compatible with any patching functor.

1.3. Representation theory results. In order to deduce Breuil’s lattice
conjecture from the Breuil–Mézard conjecture, we need (and prove) new results
on integral structures in Deligne–Lusztig representations, which may be of
independent interest. The main theorem (Theorem 4.1.9) is a classification of
integral lattices with irreducible cosocle in tame types, by means of an extension
graph, which plays a key role in the proofs of Theorems 1.1.1 and 1.1.2.

We now briefly describe the extension graph. In Section 2.1, we introduce a
graph on the set of p-regular Serre weights (with fixed central character), with
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vertices corresponding to p-regular Serre weights and adjacency between
vertices described in a combinatorially explicit way. We then show in
Lemma 4.2.6 that two vertices are adjacent if and only if the corresponding
Serre weights have a nontrivial GL3(Fq)-extension between them, justifying the
terminology. This gives a natural notion of graph distance dgph between two
p-regular Serre weights. Theorem 4.1.9 states the following.

THEOREM 1.3.1 (Theorem 4.1.9). Assume that R is a sufficiently generic
Deligne–Lusztig representation of GL3(Fq). (In particular, the Jordan–Hölder
factors of R occur with multiplicity one.) If σ is a Jordan–Hölder factor of R, let
Rσ be the unique lattice up to homothety with cosocle σ . If σ, σ ′ ∈ JH(R) and
that dgph(σ, σ

′) = d, then:

(1) σ ′ is a direct summand of the dth layer of the cosocle filtration of R
σ
;

(2) if σ ′′ ∈ JH(R) is such that dgph(σ, σ
′′) = d + 1 and dgph(σ

′, σ ′′) = 1, then
R
σ

has a subquotient which is isomorphic to the unique nonsplit extension
of σ ′ by σ ′′; and

(3) if Rσ ′
⊆ Rσ is a saturated inclusion of lattices, then pd Rσ

⊆ Rσ ′ is also a
saturated inclusion of lattices.

The argument is involved, using a mixture of local and global techniques, but
we can distinguish two main steps in its proof. In the first step (Sections 4.2.3
and 4.2.4), we prove the first two items of Theorem 1.3.1 in the case when σ is a
lower alcove weight of defect zero (cf. Definition 2.3.8 and Theorem 4.2.16). The
proof uses methods from the modular representation theory of algebraic groups,
embedding R

σ
in a Weyl module with non-p-restricted highest weights. The key

local argument is a careful study of the restriction of algebraic representations
to rational points (Proposition 4.2.10), which lets us constrain the submodule
structure of (part of) the GL3(Fq)-restriction of an algebraic Weyl module in
terms of the extension graph. This method does not work for all weights σ ∈
JH(R), as the corresponding lattices will not always have simple socle and thus
cannot be embedded into a Weyl module.

In the second step (Section 4.3), we reduce the theorem for the remaining
lattices to the case treated in the first step. We relate the first two items and
the last item of Theorem 1.3.1. The last item, a statement in characteristic zero,
is amenable to an inductive analysis. First, we show that for a fixed weight
σ ∈ JH(R), item (3) of Theorem 1.3.1 actually implies the other two items
(cf. Proposition 4.3.16). This crucially uses Theorem 1.3.1(3) in the case d = 1
(cf. Proposition 4.3.7), which is proved using the computation of deformation
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rings in [LLHLM18], combinatorics of Section 3, and the Kisin–Taylor–Wiles
patching method. This argument follows the suggestion in [EGS15, Section B.2]
that tamely potentially crystalline deformation rings strongly reflect aspects of
local representation theory through global patching constructions.

Next, we show that the first two items of Theorem 1.3.1 applied to R and its
dual in the case of lower alcove defect zero weights imply Theorem 1.3.1(3)
in the case of lower alcove defect zero weights. From this starting point, an
inductive argument proves Theorem 1.3.1(3), thus concluding the proof of
Theorem 1.3.1.

1.4. Notation. If F is any field, we write G F
def
= Gal(F/F) for the absolute

Galois group, where F is a separable closure of F . If F is a number field and v
is a prime of F , we write G Fv for the decomposition group at v and IFv for the
inertia subgroup of G Fv . If F is a p-adic field, we write IF to denote the inertia
subgroup of G F .

We fix once and for all an algebraic closure Q of Q. All number fields are
considered as subfield of our fixed Q. Similarly, if ` ∈ Q is a prime, we fix
algebraic closures Q` as well as embeddings Q ↪→ Q`. All finite extensions of
Q` will thus be considered as subfields in Q`. Moreover, the residue field of Q`

is denoted by F`.
Let p > 3 be a prime. For f > 0, we let K be the unramified extension of

Qp of degree f . We write k for its residue field (of cardinality q = p f ) and
OK = W (k) for its ring of integers. For r > 1, we set er

def
= p f r

− 1 and fix a
compatible system of roots πr

def
= (−p)

1
er ∈ K . We write e for e1 and π for π1.

Define the extension L = K (π) and set∆0
def
= Gal(L/K ). The choice of the root

π lets us define a character

ω̃π : ∆0 → W (k)×

g 7→
g(π)
π

whose associated residual character is denoted by ωπ . In particular, for f = 1, ωπ
is the mod p cyclotomic character, which will be simply denoted by ω. If Fw/Qp

is a finite extension and WFw 6 G Fw denotes the Weil group, we normalize
Artin’s reciprocity map ArtFw : F×w → W ab

Fw in such a way that uniformizers
are sent to geometric Frobenius elements.

Let E ⊂ Qp be a finite extension of Qp, which will be our coefficient field. We
write O for its ring of integers, fix an uniformizer $ ∈ O, and let mE = ($).
We write F def

= O/mE for its residue field. We will always assume that E is
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sufficiently large. In particular, we will assume that any embedding σ : K ↪→ Qp

factors through E ⊂ Qp.
We fix an embedding σ0 : K ↪→ E . The embedding σ0 induces maps OK ↪→O

and k ↪→ F; we will abuse notation and denote all these by σ0. We let ϕ denote
the pth power Frobenius on k and set σi

def
= σ0 ◦ ϕ

−i . The choice of σ0 gives
ω f

def
= σ0 ◦ ω̃π : IK → O×, a fundamental character of niveau f . We fix once and

for all a sequence p def
= (pn)n∈N where pn ∈ Qp satisfies p p

n+1 = pn and p0 = −p.

We let K∞
def
=
⋃

n∈N K (pn) and G K∞
def
= Gal(Qp/K∞).

Let ρ : G K → GLn(E) be a p-adic, de Rham Galois representation. For σ :
K ↪→ E ⊂ Qp, we define HTσ (ρ) to be the multiset of σ -labeled Hodge–Tate
weights of ρ, that is, the set of integers i such that dimE

(
ρ⊗σ,K Cp(−i)

)G K
6= 0

(with the usual notation for Tate twists). In particular, the cyclotomic character
has Hodge–Tate weights 1 for all embedding σ ↪→ E . For µ = (µ j) j ∈ X ∗(T ),
we say that ρ has Hodge–Tate weighs µ if

HTσ j (ρ) = {µ1, j , µ2, j , . . . , µn, j }.

The inertial type of ρ is the isomorphism class of WD(ρ)|IK , where WD(ρ) is
the Weil–Deligne representation attached to ρ as in [CDT99], Appendix B.1 (in
particular, ρ 7→ WD(ρ) is covariant). An inertial type is a morphism τ : IK →

GLn(E) with open kernel and which extends to the Weil group WK of G K . We
say that ρ has type (µ, τ) if ρ has Hodge–Tate weights µ and inertial type given
by (the isomorphism class of) τ .

Let G def
= GL3/F, denote by T ⊆ G the torus of diagonal matrices, and write

W (respectively Wa , respectively W̃ ) for the Weyl group (respectively the affine
Weyl group, respectively the extended affine Weyl group) of G. We let X ∗(T )
denote the group of characters of T , which we identify with Z3 in the usual way.
Let R (respectively R∨) denote the set of roots (respectively coroots) of G and
ΛR ⊆ X ∗(T ) the root lattice. We then have

Wa = ΛR o W (G), W̃ = X ∗(T )o W (G). (1.1)

Let ε′1 and ε′2 be (1, 0, 0) and (0, 0,−1), respectively. Let Gder be SL3/F with
torus T der. Let ΛW = X ∗(T der) denote the weight lattice for Gder. Let X 0(T )
denote the kernel of the restriction map X ∗(T ) � ΛW . We write ε1 and ε2

for the images of ε′1 and ε′2 in ΛW , respectively. We define in a similar fashion
the various Weyl groups W der, W der

a , W̃ der for Gder. Note that we have canonical
isomorphisms W ∼= W der and Wa

∼= W der
a .

Let S be a finite set. For each ṽ ∈ S , let F̃v be an unramified extension of
Qp of degree fṽ, and let kṽ be the residue field of F̃v. Let J be the set of ring
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homomorphisms
∏

ṽ∈S kṽ→ F. If we fix an embedding σṽ,0 : kṽ ↪→ F and set σṽ,i
to be σṽ,0 ◦ ϕ−i , then J is naturally identified with the set of pairs (̃v, iṽ) with
ṽ ∈ S and iṽ ∈ Z/ fṽ. In applications, S will be a finite set of places dividing
p of a number field F . Sometimes, S will have cardinality one, in which case
we might drop the subscripts from fṽ and kṽ and denote the single unramified
extension F̃v of Qp by K .

Let G0 be the algebraic group
∏

ṽ∈S Reskṽ/Fp GL3 with T 0 the diagonal torus
and center Z 0. Let G be the base change G0×Fp F, and similarly define T and Z .
There is a natural isomorphism G ∼=

∏
i∈J GL3/F. One has similar isomorphisms

for T , Z , X ∗(T ), R, R∨, where R (respectively R∨) denotes the set of roots
(respectively coroots) of G. If µ ∈ X ∗(T ), then we correspondingly write µ =∑

i∈J µi =
∑

ṽ∈S µṽ. We use similar notation for similar decompositions. Again,
we identify X ∗(T ) with (Z3)J in the usual way and let ε′1,i and ε′2,i be (1, 0, 0)
and (0, 0,−1), respectively, in the i th coordinate and 0 otherwise. Let R+ ⊆ R
(respectively R∨,+ ⊆ R∨) be the subset of positive roots (respectively coroots)
of G with respect to the upper triangular Borel in each embedding. We define
dominant (co)characters with respect to these choices. Let X ∗

+
(T ) be the set of

dominant weights. We denote by X1(T ) ⊂ X ∗
+
(T ) the subset of weights λ ∈

X ∗
+
(T ) satisfying 0 6 〈λ, α∨〉 6 p − 1 for all simple roots α ∈ R+. We call

X1(T ) the set of p-restricted weights. Let η′i ∈ X ∗(T ) be (1, 0,−1) in the i th
coordinate and 0 otherwise, and let η′ be

∑
i∈J η

′

i ∈ X ∗(T ). Let ηi ∈ X ∗(T ) be
(2, 1, 0) in the i th coordinate and 0 otherwise, and let η be

∑
i∈J ηi ∈ X ∗(T ).

Then η is a lift of the half-sum of the positive roots of G.
Let W be the Weyl group of G with longest element w0. Let W a and W̃ be the

affine Weyl group and extended affine Weyl group, respectively, of G. LetΛR ⊂

X ∗(T ) denote the root lattice of G. As above, we have identifications W ∼= WJ ,
W a
∼= WJ

a , W̃ ∼= W̃J and isomorphisms analogous to (1.1).
The Weyl groups W , W̃ , W a act naturally on X ∗(T ). The image of λ ∈ X ∗(T )

via the injection X ∗(T ) ↪→ W̃ is denoted by tλ. Our convention is that the dot
action is always a p-dot action, that is, tλw · µ = tpλw(µ+ η)− η.

Recall that for (α, n) ∈ R+ × Z, we have the root hyperplane Hα,n
def
= {λ :

〈λ+η, α∨〉 = np}. An alcove (or sometimes p-alcove) is a connected component
of the complement X ∗(T ) ⊗Z R \

(⋃
(α,n) Hα,n

)
. We say that an alcove C is p-

restricted if 0 < 〈λ + η, α∨〉 < p for all simple roots α ∈ R+ and λ ∈ C . If
C0 ⊂ X ∗(T )⊗Z R denotes the dominant base alcove, we let

W̃
+ def
= {w̃ ∈ W̃ : w̃ · C0 is dominant}

and
W̃
+

1
def
= {w̃ ∈ W̃

+

: w̃ · C0 is p-restricted}.
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Let w̃h = (w̃h,i) ∈ W̃
+

1 be the element w0t−η. The discussion in this paragraph
also applies for G, from which we define the dominant base alcove C0, W̃+, and
W̃+

1 for G.
There is a Frobenius action on X ∗(T ), denoted by π and an induced action of

π on W defined by π(w)(π(λ))= π(w(λ)). If λ ∈ X ∗(T ), then π(λ)ṽ,iṽ = λṽ,iṽ−1

under the standard identification and similarly π(s)ṽ,iṽ = sṽ,iṽ−1 for an element s
of one of the Weyl groups above.

Let Gder
0 be

∏
ṽ∈S Reskṽ/Fp SL3 with torus T der

0 . Let Gder be the base change
Gder

0 ×Fp F, and similarly define T der. Let ΛW = X ∗(T der) denote the weight
lattice for Gder. Let X 0(T ) denote the kernel of the restriction map X ∗(T )� ΛW .
We write ε1,i and ε2,i for the images of ε′1,i and ε′2,i , respectively. We define in a

similar fashion the various Weyl groups W der, W der
a , W̃

der
, W̃

der,+
, W̃

der,+
1 for Gder

(and W̃ der,+, W̃ der,+
1 for G), with analogous product decompositions.

Let α, β, γ + denote the generators for the affine Weyl group Wa of GL3 given
by reflection over the walls of C0 with α, β ∈ W , and γ + is the affine reflection.
Note that α, β satisfy α(ε′2) = ε

′

2 and β(ε′1) = ε
′

1.
Let S3 denote the symmetric group on {1, 2, 3}. We fix an injection S3 ↪→

GL3(Z) sending s to the permutation matrix whose (k,m)-entry is δk,s(m) and
δk,s(m) ∈ {0, 1} is the Kronecker δ specialized at {k, s(m)}. We will abuse notation
and simply use s to denote the corresponding permutation matrix. We consider
the embedding X ∗(T ) ↪→ GL3(F((v))) defined by λ 7→ vλ where then v(a,b,c) is
the diagonal matrix with entries va, vb, vc, respectively. In this way, we get an
embedding W̃ ↪→ GL3(F((v))). Finally, for m > 0 and a collection (B j) j=0,...,m

of square matrices of the same size, we write
∏m

j=0 B j = B0 · B1 · · · · · Bm .
Let V be a representation of a finite group Γ over an E-vector space. We write

JH(V ) to denote the set of Jordan–Hölder factors of the mod $ -reduction of an
O-lattice in V . This set is independent of the choice of the lattice.

If R is a ring, we let Irr(Spec (R)) denote the set of minimal primes of R.

2. Extension graph

In this section, we give a description of the extension graph of generic
irreducible representations of the group G def

= G0(Fp) and describe the
constituents of the mod p reduction of generic Deligne–Lusztig representations
of G. This also gives a description of the set W ?(ρ) of predicted Serre weights
defined by Herzig [Her09]. In Section 3, we use these descriptions to prove
the Serre weight conjectures. The distance in the extension graph also plays an
important role in computing the cosocle filtration for the reductions of lattices
in tame types in Section 4.3.
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2.1. Definition and properties of the extension graph. The surjection
X ∗(T ) → ΛW identifies p-restricted alcoves of GL3 and SL3. Let C0 and C1

denote the p-restricted lower and upper alcoves, respectively, of the weight space
of GL3 so that A def

= {C0,C1}
J is naturally identified with the set of p-restricted

alcoves for G (or Gder when convenient). Our alcoves are fundamental domains
with respect to the dot action, so the base alcove will have a vertex at −η. For
notational convenience, we sometimes write 0 and 1 instead of C0 and C1 so
that A is identified with {0, 1}J . We recall some notions from Section 1.4. Let
X1(T ) denote the set of p-restricted weights of G and C0 ⊆ X (T ) ⊗ R denote
the lowest alcove (C0)i∈J . We consider W̃

der
= ΛW o W acting via the p-dot

action on ΛW ⊗ R. Let W̃
der,+
1 ⊂ W̃

der
denote the set of elements which take C0

to an element of A. There are six elements of W̃ der,+
1 , namely id, (12)t−(ε1−ε2),

(23)t−(ε2−ε1), (123)t−ε2, (132)t−ε1, and (13)t−(ε1+ε2).
Observe that the inclusion ΛW ↪→ W̃

der
(respectively X ∗(T ) ↪→ W̃ ) induces

an isomorphism ιder
: ΛW/ΛR

∼

→ W̃
der
/W der

a (respectively ι : X ∗(T )/ΛR(
∼=

X ∗(Z))
∼

→ W̃/W a). Let Pder
⊂ ΛW × W̃

der,+
1 be the subset of pairs (ω, w̃) with

ιder(−π−1(ω)+ΛR) = w̃W der
a . We similarly define P ⊂ X ∗(T )× W̃

+

1 . Note that
restriction gives a natural surjection P � Pder.

LEMMA 2.1.1. The map

β : Pder
→ ΛW ×A

(ω, w̃) 7→ (ω, π(w̃) · C0)

is a bijection.

Proof. The map β is a bijection because ιder is a bijection and W der
a acts simply

transitively on the set of alcoves for Gder.

Let µ be an element of C0/(p − π)X
0(T ). We will often have some lift of µ

in X ∗(T ) in mind, but what we write will not depend on the choice of this lift.
We define a map

Pder
→ X ∗(T )/(p − π)X 0(T ) (2.1)

(ω, w̃) 7→ w̃′ · (µ− η + ω′),

where (ω′, w̃′) ∈ P is a lift of (ω, w̃). The map (2.1) does not depend on the
choice of lift. Then we define

Tr′µ : ΛW ×A→ X ∗(T )/(p − π)X 0(T )

to be the composition of β−1 with (2.1).
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DEFINITION 2.1.2. We say that a weight λ ∈ X ∗(T ) is p-regular if 〈λ + η,
α∨〉 /∈ pZ for all positive coroots α∨ ∈ R∨,+.

Note that a p-regular element belongs to a unique alcove.

Define Λµ

W to be the set{
ω ∈ ΛW : ω + µ− η ∈ C0

}
(taking the image of µ− η in ΛW ). Let Trµ be the restriction of Tr′µ to Λµ

W ×A.
We establish some basic properties of Trµ.

PROPOSITION 2.1.3. (1) (Any lift of ) Trµ(ω, a) in X∗(T ) is p-regular and is
in alcove π−1(a).

(2) The map Trµ is injective.

Proof. For (1), suppose that (ω′, w̃′) ∈ P is a lift of β−1(ω, a). Thenµ−η+ω′ is
p-regular in alcove C0 by definition ofΛµ

W so that Trµ(ω, a) = w̃′ · (µ−η+ω′)
is p-regular in alcove π−1(a) = w̃ · C0.

For (2), suppose that Trµ(ω, a) = Trµ(ν, b). Let (ω′, w̃′) and (ν ′, x̃ ′) ∈ P
be lifts of β−1(ω, a) and β−1(ν, b), respectively. Then w̃′ ·(µ−η+ω′) ≡ x̃ ′ ·(µ−
η+ν ′) (mod (p−π)X 0(T )), from which we conclude from the definition ofPder

that ω′|Z ≡ ν ′|Z (mod 3X ∗(Z)). Combining this with the fact that a = b from
(1) and using ι, we see that w̃′ ≡ x̃ ′ (mod X 0(T )). This implies that ω = ν.

PROPOSITION 2.1.4. Let µ ∈ X ∗(T ) be a character. We have

Trµ
(
Λ
µ

W ×A
)

=

{
λ ∈ X1(T )/(p − π)X 0(T ) : λ is p-regular and

(λ− µ+ η)|Z ∈ (p − π)X ∗(Z)

}
(2.2)

Proof. The inclusion of the left-hand side of (2.2) in the right follows from
Proposition 2.1.3(1) and the formula for Trµ. We show now the reverse inclusion.
Let λ be an element in the right-hand side of (2.2). Then we let

• a ∈ A denote the unique alcove that contains π(λ);

• ω′ ∈ X ∗(T ) be such that (λ− µ+ η)|Z = (1− pπ−1)ω′|Z ;

• ω ∈ ΛW be the image of ω′;

• (ω′, w̃′) ∈ P be a lift of β−1(ω, a); and
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• ν be λ− w̃′ · (µ− η + ω′) ∈ ΛR .

Then (w′−1(ν)+ ω′, w̃′) ∈ P is a lift of β−1(w′−1(ν)+ ω, a) so that

Trµ(w
′−1(ν)+ ω, a) = λ

in X ∗(T )/(p − π)X 0(T ).

PROPOSITION 2.1.5. Let λ− η be a lift of Trµ(ε,C0) and β−1(ε,C0) = (ε, w̃).
Then

Trλ(ν, a) = Trµ(w
−1(ν)+ ε, a)

for (ν, a) ∈ Λλ
W ×A, where w ∈ W is the image of w̃.

Proof. Let (ν ′, x̃ ′) ∈ P be a lift of β−1(ν, a). Similarly, let (ε′, w̃′) ∈ P be a lift
of (ε, w̃). Then

Trλ(ν, a) = x̃ ′ · (λ− η + ν ′)
= x̃ ′ · (w̃′ · (µ− η + ε′)+ ν ′)

= x̃ ′w̃′ · (µ− η + ε′ + w−1(ν ′))

= Trµ(w
−1(ν)+ ε, a).

Recall that a Serre weight is an irreducible Fp-representation of G. Each
Serre weight is obtained by restriction to G from an irreducible algebraic
representation of G of highest weight λ ∈ X1(T ), and this process gives a
bijection between from X1(T )/(p − π)X 0(T ) to the set of Serre weights of
G (as described in [Her09, Theorem 3.10]; cf. also the beginning of Section 4.2).
If λ ∈ X1(T ), we write F(λ) for the Serre weight corresponding to λ. We say
that a Serre weight F is p-regular if F ∼= F(λ)where λ ∈ X1(T ) is p-regular (cf.
Definition 2.1.2). Given µ ∈ C0 and (ω, a) ∈ Λµ

W ×A, we get a corresponding
p-regular Serre weight F(Trµ(ω, a)). Propositions 2.1.3(2) and 2.1.4 show that
F(Trµ(−)) induces a bijection between the setΛµ

W ×A and the set of p-regular
Serre weights of G with the same central character as F(µ− η).

DEFINITION 2.1.6. We say that (ω, a) and (ν, b) in Λµ

W × A are adjacent if
there exists j ∈ J such that both ai = bi and ωi = νi for i ∈ J with i 6= j ,
a j 6= b j , and

ω j − ν j ∈ {0,±(ε1, j − ε2, j),±ε1, j ,±ε2, j }. (2.3)

If F and F ′ are p-regular Serre weights, we say that they are adjacent if we
can write F = F(Trµ(ω, a)) and F ′ = F(Trµ(ν, b)) for some p-regular µ ∈
C0/(p − π)X

0(T ) and some (ω, a) and (ν, b) which are adjacent in Λµ

W × A.
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By Proposition 2.1.5, this definition does not depend on the choice of the lowest
alcove weight µ ∈ C0. Indeed, if F = F(Trµ(ω, a)), F ′ = F(Trµ(ν, b)) are
adjacent p-regular Serre weights and λ ∈ C0 such that F(λ− η) and F(µ− η)
have the same central character, then F(Trλ(w(ω− ε), a)) = F(Trµ(ω, a)) and
F(Trλ(w(ν−ε), b)) = F(Trµ(ν, b)) for some w ∈ W and ε ∈ ΛW , and (w(ω−
ε), a), (w(ν − ε), b) are again adjacent since the set in (2.3) is W -invariant.

REMARK 2.1.7. Geometrically,Λµ

W is the intersection ofΛW with a translate of
a p-alcove, and two pairs (ω, a) and (ν, b) are adjacent if and only if ω and ν
are either equal or neighbors (that is, differ by a W -conjugate of a fundamental
weight) and either ω 6= ν and a and b have different labels in the unique
component where ω and ν differ or ω = ν and a and b differ in exactly one
component. Note that for any (ω, a) ∈ Λµ

W with all its neighbors in Λµ

W , there
are 7#J adjacent vertices.

Definition 2.1.6 endows Λµ

W × A with a graph structure with edges given
by adjacency. By the above description, this graph is connected and thus it is
endowed with a metric. By Proposition 2.1.4, any µ ∈ C0 thus endows the set
of p-regular Serre weights with the same central character as F(µ − η) with
a metric. By Proposition 2.1.5, the metric on a fixed set is independent of the
choice of µ.

DEFINITION 2.1.8. Given p-regular Serre weights F, F ′ with the same central
character, we denote their distance by dgph(F, F ′). In particular, F and F ′ are
adjacent if and only if dgph(F, F ′) = 1.

We conclude this section by showing the relation between p-regular Serre
weights and G-extensions. We start by recalling the following definition.

DEFINITION 2.1.9. Let λ ∈ X ∗(T ) be a weight. We say that λ lies n-deep in its
alcove if, for all α∨ ∈ R∨,+, there exist integers mα ∈ Z such that pmα + n <
〈λ + η, α∨〉 < p(mα + 1) − n. We have the analogous definition for weights in
X ∗(T ).

For instance, a dominant weight λ ∈ X ∗(T ) lies n-deep in alcove C0 if n <
〈λ+ η, α∨〉 < p− n for all i = 0, . . . , f − 1 and all positive coroots α∨ ∈ R∨,+.

A Serre weight F is said to be n-deep if we can write F ∼= F(µ) for some
µ ∈ X1(T ) which is n-deep. We call the graph on the p-regular Serre weights
defined by adjacency the extension graph. The terminology is justified by the
following theorem.
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THEOREM 2.1.10. Let F, F ′ be Serre weights which are both 6-deep. Then
Ext1

G(F, F ′) 6= 0 if and only if F and F ′ are adjacent.

Proof. This is Lemma 4.2.6, whose proof only uses modular representation
theory and does not rely on any results from other sections.

REMARK 2.1.11. We partition the set of vertices (ω, a) into two sets, according
to the class Σi ai mod 2 (by interpreting ai ∈ {0, 1}). This makes the extension
graph into a bipartite graph.

2.2. Types and Serre weights. Now suppose that S contains exactly one
element ṽ, and let K be F̃v. An inertial type is a representation τ : IK → GL3(E)
with open kernel which extends to the Weil group of K . An inertial type is tame
if it factors through the tame inertial quotient. All our tame inertial types are
defined over O and we use τ : IK → GL3(F) to denote the reduction to the
residue field.

Tame inertial types have a combinatorial description which we will now recall
(cf. [Her09, (6.15)] or [GHS18, Definition 8.2.2]). Let (w,µ) ∈ W × X ∗(T ). As
in [Her09, (4.1)] or the paragraph preceding [GHS18, Definition 10.1.12], for
any (ν, σ ) ∈ X ∗(T )o W , define

(ν,σ )(w,µ) = (σwπ(σ)−1, σ (µ)+ pν − σwπ(σ)−1π(ν)) (2.4)

and we write (w,µ) ∼ (w′, µ′) if there exists (ν, σ ) such that (ν,σ )(w,µ) = (w′,
µ′). The following describes all isomorphism classes of tame inertial types for
K .

DEFINITION 2.2.1. Define an inertial type τ(w,µ) : IK → GL3(O) as follows:
If w = (s0, . . . , s f−1), then set sτ = s0s f−1s f−2 · · · s1 ∈ W and α ∈ X ∗(T ) such
that α0 = µ0 and α j = s−1

1 s−1
2 . . . s−1

j (µ j) for 1 6 j 6 f − 1. Let r denote the
order of sτ , and set f ′ = f r . Then,

τ(w,µ)
def
=

⊕
16i63

ω

∑
06k6r−1 a(0)

sk
τ (i)

p f k

f ′ (2.5)

where a(0) :=
∑ f−1

j=0 α j p j
∈ Z3. Note that (w,µ) ∼ ((sτ , 1, . . . , 1),α) and τ(w,

µ) ∼= τ((sτ , 1, . . . , 1),α) by construction.

DEFINITION 2.2.2. Let τ be a tame inertial type.

(1) We say that τ is regular if the characters appearing in the right-hand side
of (2.5) are pairwise distinct.
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(2) We say that τ is n-generic if there is an isomorphism τ ∼= τ(s, λ + η) for
some s ∈ W and λ ∈ X ∗

+
(T ) which is n-deep in alcove C0.

(3) We say that ρ : G K → GL3(F) is n-generic if ρss
|IK
∼= τ for a tame inertial

type τ which is n-generic.

(4) A lowest alcove presentation of τ is a pair (s, µ) ∈ W × X ∗(T ) where
µ ∈ C0 such that τ ∼= τ(s, µ+η) (which by definition exists exactly when
τ is 0-generic).

REMARK 2.2.3. The notion of genericity given in [LLHLM18, Definition 2.1]
is slightly different than Definition 2.2.2(2). In particular, an inertial type which
is n-generic in the sense of Definition 2.2.2(2) is a fortiori n-generic in the
sense of [LLHLM18]. Furthermore, our notion of genericity differs from that
of [GHS18, Definition 10.1.12] by a shift by η.

REMARK 2.2.4. If τ is 1-generic, then τ is regular.

Now let S have arbitrary (finite) cardinality rather than one. For s ∈ W and
µ ∈ X ∗(T ), we can define sṽ and µṽ in the evident way. Then we set τS(s, µ) to
be the collection (τṽ(sṽ, µṽ))ṽ∈S .

The notions of regular and n-generic are extended in the evident way to a
collection τS(s, µ) of tame inertial types. Similarly, there is an evident notion of
n-generic for a collection ρS of Galois representations ρ ṽ : G F̃v → GL3(F) for
ṽ ∈ S .

We now introduce the Deligne–Lusztig representations which are relevant for
this paper. See also [GHS18, Section 9.2] and [LLHL19, Section 2.2], though
we note that our context is slightly more general than [LLHL19, Section 2.2]
since S may have size greater than one. Let (s, µ) ∈ W × X ∗(T ) be a good
pair [LLHL19, Section 2.2]. Following [GHS18, Propositions 9.2.1 and 9.2.2],
we can attach to (s, µ) a genuine Deligne–Lusztig representation Rs(µ) of G def

=

G0(Fp) defined over E (taking E to be sufficiently large). Note that Rs(µ) is
denoted as R(s, µ) in [GHS18].

DEFINITION 2.2.5. Let (s, µ) ∈ W×X ∗(T ) be a good pair and let n > 0. We say
that Rs(µ) is n-generic if there exists an isomorphism Rs(µ) ∼= Rs′(µ

′) where
µ′ − η is n-deep in alcove C0 (note that the evident generalization of [LLHL19,
Lemma 2.2.3] implies that (s ′, µ′) is good). By [GHS18, Proposition 9.2.1] and
the evident generalization of [LLHL19, Proposition 2.2.4], when n > 0, then
τS(s, µ) is n-generic (cf. Definition 2.2.2(2)) if and only if Rs(µ) is n-generic.
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By inflation, we consider Rs(µ) as a smooth
∏

ṽ∈S GL3(OF̃v )-representation.
We recall some basic results on Rs(µ). Let σ(τṽ) be a smooth GL3(OF̃v )-
representation associated with τṽ as in [CEG+16, Theorem 3.7], and let σ(τS)
be the

∏
ṽ∈S GL3(OF̃v )-representation

⊗
ṽ∈S σ(τṽ).

PROPOSITION 2.2.6. Let µ− η ∈ X ∗(T ) be 1-deep in alcove C0. Then:

(1) [DL76, Theorem 6.8] Rs(µ) is irreducible.

(2) [LLHL19, Corollary 2.3.5] σ(τS) can be taken to be Rs(µ).

We conclude this section with some background on Serre weights associated
with semisimple Galois representations. Let τS be a collection of tame
representations τ ṽ : IF̃v → GL3(F) which extend to G F̃v . By [GHS18,
Proposition 9.2.1], one attaches to τ ṽ an E-valued representation V (τ ṽ) of
GL3(kṽ). Let V (τS) be the G-representation

⊗
ṽ∈S V (τ ṽ). When τS is τS(s, µ)

for a good pair (s, µ), V (τS) is isomorphic to Rs(µ) [GHS18, Proposition
9.2.3]. We write ρS |IFS

for the restriction to inertia of the collection ρS .

Let w̃h
def
= w0t−η ∈ W̃ . Recall the self-bijection R on p-regular Serre weights

defined in [GHS18, Section 9.2]:

R(F(λ)) def
= F(w̃h · λ).

DEFINITION 2.2.7 [GHS18, Definition 9.2.5]. Let ρS be a collection of 2-
generic semisimple Galois representations ρ ṽ : G F̃v → GL3(F). The set of
predicted weights for ρS is defined to be

W ?(ρS)
def
=

{
R(F) : F ∈ JH(V (ρS |IFS

))
}
.

If τS is a collection of tame inertial types τṽ : IF̃v → GL3(O), we furthermore
define

W ?(ρS, τS)
def
= W ?(ρS) ∩ JH(σ (τS)).

REMARK 2.2.8. The condition that ρS |IFS
is 2-generic is to ensure that

the elements of JH(V (ρS |IFS
)) are all 0-deep so that R is defined (cf.

Lemma 4.2.13).

Recall from [GHS18, Definition 7.1.3] that there is a subset Wobv(ρ) ⊆ W ?(ρ)

of obvious Serre weights of ρ. The set Wobv(ρS) is defined in the evident way.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


D. Le et al. 18

2.3. Combinatorics of types and Serre weights. Recall the notation ρS
from the previous section. We will always assume that ρ ṽ is 2-generic and
semisimple for all ṽ ∈ S in what follows. The following proposition describes
Wobv(ρS) in terms of the extension graph.

PROPOSITION 2.3.1. Assume that ρS is a collection of semisimple Galois
representations. Suppose that ρS |IFS

∼= τS(s, λ), where λ − η is 3-deep in C0.
Then Wobv(ρS) is the set{

F
(
Trλ(s(ω), π(w̃) · C0)

)
: w̃ = wt−π−1ω ∈ W̃

+,der
1

}
.

Proof. This follows from [LLHL19, Corollary 2.2.13 and (2.6)].

DEFINITION 2.3.2. Define

Σ0
def
=

(ε1 + ε2, 0), (ε1 − ε2, 0), (ε2 − ε1, 0)
(0, 1), (ε1, 1), (ε2, 1)
(0, 0), (ε1, 0), (ε2, 0)

 .
Define Σ def

= ΣJ
0 ⊂ ΛW ×A.

The set of predicted weights W ?(ρS) and the Jordan–Hölder factors of a
Deligne–Lusztig representation Rs(µ) will be described in terms of the ‘triangle’
Σ0 inside ΛW × {C0,C1} (see Figure 1).

DEFINITION 2.3.3. Define the following subsets of Σ0:

Σobv
0

def
=

{
(ε1 + ε2, 0), (ε1 − ε2, 0), (ε2 − ε1, 0)

(0, 1), (ε1, 1), (ε2, 1)

}
,

Σ inn
0

def
= Σ0 \Σ

obv
0 .

We say that (ω, a) ∈ Σ is obvious (respectively inner) in component i if (ωi ,

ai) ∈ Σ
obv
0 (respectively (ωi , ai) ∈ Σ

inn
0 ).

We define an involution r of Λµ

W × A by r(ω, a) = (ω, a′) with ai 6= a′i for
all i ∈ J .

PROPOSITION 2.3.4. Let µ ∈ X ∗(T ). Suppose that V (ρS |IFS
) = Rs(µ + ν)

where ν ∈ ΛR and µ + ν − η is 3-deep in alcove C0. Then W ?(ρS) is
F(Trµ(tνsr(Σ))).
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Figure 1. The set Σ0.

Proof. By Proposition 2.3.1, Wobv(ρS) is given by{
F
(
Trµ+ν(s(ω), π(w̃) · C0)

)
: w̃ = wt−π−1ω ∈ W̃

+,der
1

}
.

Since ν ∈ ΛR , we have Trµ+ν(s(ω), π(w̃) ·C0) = Trµ(s(ω)+ ν, π(w̃) ·C0). By
the generalization of Jantzen’s formula in [Her09, Appendix, Theorem 3.4], the
reduction of Rs(µ+ν) is given in terms of reductions of Weyl modules. The fact
that µ+ν−η is 3-deep implies that these Weyl modules decompose in a generic
pattern. Hence, W ?(ρS) is given by [GHS18, Proposition 10.1.8], which is

F({Trµ(tνs(ω), a) | w̃ = wt−π−1ω ∈ W̃
+,der
1 , π(w̃) · C0 ↑ a}).

This set is precisely F(Trµ(tνsr(Σ))).

PROPOSITION 2.3.5. If ν ∈ X ∗(T ) such that ν+η ∈ ΛR and µ+ν−η is 3-deep
in alcove C0, then JH(Rs(µ+ ν)) = F(Trµ(tνs(Σ))).

Proof. Since t1 ◦R ◦Trµ = Trµ ◦ r , F(Trµ(ω, a)) ∈ JH(Rs(λ− 1)) if and only
if F(Trµ(r(ω, a))) ∈ R(JH(Rs(λ))) = W ?(ρS) where V (ρ|IFS

) = Rs(λ). The
result then follows from Proposition 2.3.4.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


D. Le et al. 20

DEFINITION 2.3.6. For any w̃ ∈ W̃ , we set Rw̃(µ)
def
= Rw(µ + w̃(0)), where

w ∈ W is the projection of w̃.

There is an action of W̃ onΛW ×A where it acts through W̃
der

on just the first
factor (via the usual action, not the dot action). By Propositions 2.3.4 and 2.3.5,
we have the following.

PROPOSITION 2.3.7. Let w̃ ∈ W atη and assume that µ+w̃−1(0)−η is 3-deep in
C0. Then the set JH(Rw̃−1(µ)) is F(Trµ(w̃−1(Σ))). If w̃ ∈ W a and V (ρS |IFS

) =

Rw̃(µ), then the set W ?(ρS) is F(Trµ(w̃(r(Σ)))).

For the rest of this section, fix a character µ such that µ − η is 3-deep in C0
and an element s ∈ W .

For (sω, a) ∈ Λµ

W ×A, we let σ (s,µ)(ω,a) = F(Trµ(sω, a)). When the pair (s, µ)
is clear from the context, we will simply write σ(ω,a) instead of σ (s,µ)(ω,a) to
lighten notation. Let w̃ ∈ W atη such that sw̃−1(Σ) ⊂Λ

µ

W×A andµ+sw̃−1(0)−
η is 3-deep. Then the map

w̃−1(Σ)→ JH(Rsw̃−1(µ)) (2.6)

w̃−1(ω, a)→ σ
(s,µ)
(w̃−1(ω),a)

is a bijection by Proposition 2.3.7. Similarly, if V (ρS |IFS
) = Rs(µ), then the

map

r(Σ)→ W ?(ρS) (2.7)

r(ω, a)→ σ
(s,µ)
r(ω,a)

is a bijection.

DEFINITION 2.3.8. We say that σ ∈ JH(Rsw̃−1(µ)) is an outer (respectively
inner) weight for R def

= Rsw̃−1(µ) in component i ∈ J if σ = σ(w̃−1(ω),a) with
(ωi , ai) ∈ Σ

obv
0 (respectively (ωi , ai) ∈ Σ

inn
0 ). We define the defect of σ with

respect to R as

DefR(σ )
def
= #

{
i ∈ J such that σ is an inner weight of R in component i

}
.

(2.8)
Similarly, if V (ρS |IFS

) = Rs(µ), we say that σ ∈ W ?(ρS) is an obvious
(respectively shadow) weight for ρS in component i ∈ J if σ = σr(ω,a) with
(ωi , ai) ∈ Σ

obv
0 (respectively (ωi , ai) ∈ Σ

inn
0 ). We define the defect of σ with
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Table 1. The graph Σ0.

σ(ε1+ε2,0)

σ(ε1,1) σ(ε2,1)

σ(ε1−ε2,0) σ(ε1,0) σ(0,0) σ(ε2,0) σ(ε2−ε1,0)

σ(0,1)

respect to ρS as

DefρS (σ )
def
= #

{
i ∈ J such that σ is a shadow weight of ρS in component i

}
.

(2.9)

We give the set Σ0 the structure of a graph in Table 1. We write ΣJ
0 for

the corresponding product graph. The above bijections respect the notion of
adjacency for JH(Rsw̃−1(µ)), W ?(ρS), and ΣJ

0 .
We now describe the intersections of JH(Rsw̃−1(µ)) and W ?(ρS) for ρS |G FS

∼=

τS(s, µ) in terms of the action of W̃ on ΛW using Proposition 2.3.7. We first
introduce a subset of W̃ , the admissible set, which appears in Corollary 2.3.11
and again in Section 3.

Recall from Section 1.4 that W̃ denotes the extended affine Weyl group of
G def
= GL3/F. The choice of the dominant base alcove endows W̃ with a Bruhat

order which is denoted by 6. We also have the natural generalization of the
Bruhat order 6 on W̃ associated with the choice of the dominant base alcove.

DEFINITION 2.3.9. Let λ ∈ X ∗(T ). We define

Adm(λ) = {w̃ ∈ W̃ | w̃ 6 ts(λ) for some s ∈ W }.

Similarly, for a weight µ = (µ j) j ∈ X ∗(T ), define

Adm(µ) =
∏

j

Adm(µ j) ⊂ W̃ .

REMARK 2.3.10. For combinatorics of weights as in this section, we use the
dominant base alcove and the corresponding affine reflection γ + = t(1,0,−1)(13)
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as a generator for W der
a . When working on the Galois side, as in Section 3, the

antidominant base alcove appears naturally, and the analogous set Adm∨(η) for
the antidominant base alcove plays an important role (see Definition 3.1.1 and
the discussion before). The affine generator for the antidominant choice of base
alcove is γ = (13)t(1,0,−1). Note that in [LLHLM18], everything is in terms of
antidominant and so what we call Adm(η) there, we denote by Adm∨(η) here.

For w̃ ∈ W̃ , define Σw̃
def
= Σ0 ∩ w̃

(
r(Σ0)

)
. Similarly, for w̃ ∈ W̃ , let

Σw̃
def
= Σ ∩ w̃

(
r(Σ)

)
. One can directly compute these sets using Figure 1. For

example, using Figure 2, one can check that Σw̃ is empty if and only if w̃ is not
in Adm(η)X 0(T ) (in essence, [LLHL19, Proposition 4.4.2] is a generalization
of this fact). Otherwise, see Table 2 for a description of Σw̃.

COROLLARY 2.3.11. Let w̃ ∈ W atη. Assume that both µ − η and µ +

sw̃−1(0) − η are 3-deep in C0. The set R(JH(Rs(µ))) ∩ JH(Rsw̃−1(µ)) is the
set of weights σ (s,µ)r(ω,a) where (ω, a) ∈ Σw̃−1 . Similarly, the set JH(Rs(µ− 1)) ∩
R(JH(Rsw̃(µ− 1))) is the set of weights σ (s,µ)(ω,a) where (ω, a) ∈ Σw̃.

Proof. By Proposition 2.3.7, one can reduce the case where s = id. In that
case, (2.6) and (2.7) imply that the set of Serre weights in the intersection
R(JH(Rs(µ))) ∩ JH(Rsw̃−1(µ)) is Trµ(w̃

−1(Σ) ∩ r(Σ)). We conclude by
noting that w̃−1(Σ) ∩ r(Σ) = r(Σw̃−1). The statement for JH(Rs(µ− 1)) ∩
R(JH(Rsw̃(µ− 1))) is proved similarly.

LEMMA 2.3.12. If (ω, a) ∈ ΛW × A \ r(Σ), there exists w̃ ∈ W atη such that
(ω, a) ∈ w̃−1(Σ) and w̃ 6∈ Adm(η).

Proof. We can work one component at a time and, thus, reduce to the case where
#J = 1. This can then be checked directly using Figure 2.

COROLLARY 2.3.13. Let λ ∈ X1(T ) be 5-deep and µ − η ∈ C0 be 3-
deep. If F(λ) /∈ R(JH(Rs(µ))), then there exists a 3-generic Deligne–Lusztig
representation Rs′(µ

′) such that F(λ) ∈ JH(Rs′(µ′)) but

R(JH(Rs(µ))) ∩ JH(Rs′(µ′)) = ∅.

Proof. If the central characters do not match, that is, (λ − µ + η)|Z /∈ (p −
π)X ∗(Z), then any Deligne–Lusztig representation which contains F(λ) works.
Otherwise, by Proposition 2.1.4, there exists (sω, a) ∈ Λµ

W × A such that
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Table 2. Intersections.

Not all elements of Adm(η)t−1 appear in the table. There is an order-three symmetry
of Adm(η)t−1 induced by the outer automorphism of W̃ der, and we include at least one
representative for each orbit.

σ
(s,µ)
(ω,a)
∼= F(λ). Moreover, since F(λ) /∈ R(JH(Rs(µ))), we have (ω, a) /∈ r(Σ).

By Lemma 2.3.12, there exists w̃ ∈ W atη \ Adm(η) such that (ω, a) ∈ w̃−1(Σ).
We take s ′ = sw−1 and µ′ = µ+ sw̃−1(0) so that Rs′(µ

′) = Rsw̃−1(µ). Since (ω,
a) ∈ w̃−1(Σ), ω− w̃−1(0) is in W (Σ), where Σ denotes the image of Σ in ΛW .
A direct computation shows that since λ is 5-deep, µ+ sw̃−1(0)− η is 3-deep in
C0. By Proposition 2.3.7, we have that F(λ) ∈ JH(Rs′(µ′)). By Corollary 2.3.11
and the remark before it, we have that R(JH(Rs(µ))) ∩ JH(Rs′(µ′)) = ∅.

3. Serre weight conjectures

In Sections 3.1–3.3, we improve results of [LLHLM18] on Kisin modules
and étale ϕ-modules with descent data. Most of these results are generalized

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


D. Le et al. 24

Figure 2. The standard apartment of SL3. Labeled alcoves are alcoves in Adm(η).

to GLn in [LLHL19]. In Section 3.2, we prove a key structure result relating
the Frobenius of a Kisin module with tame descent data to the Frobenius of
the corresponding étale φ-module (Proposition 3.2.1). This plays an important
role in computing the Galois representation associated with semisimple Kisin
modules (Proposition 3.3.8) and later establishing an explicit geometric Breuil–
Mézard conjecture (see Section 3.6). The remainder of Section 3.3 is devoted to
bounding reductions of potentially crystalline representations of type (η, τ ) for
the purpose of weight elimination (Theorem 3.3.12).
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In Section 3.4, we connect the results of Sections 3.1–3.3 with the
combinatorics of Serre weights from Section 2.3. In particular, Proposition
3.4.2 describes the intersection of the set of predicted weights of a semisimple ρ
with the set of Jordan–Hölder constituents of a Deligne–Lusztig representation,
as a function of its shape. In Section 3.5, we prove the Serre weight conjectures
for semisimple ρ by matching the number of predicted Serre weights to the
number of irreducible components of the Galois deformation rings which were
computed in [LLHLM18, Theorem 3.5.3]. In Section 3.6, we prove a geometric
Breuil–Mézard conjecture which assigns to each (predicted) Serre weight a
prime ideal of the universal framed deformation ring (Proposition 3.6.1). In
Section 3.6.1, we make this assignment explicit for certain tamely potentially
crystalline deformation rings. The explicit ideals play an important role in the
proof of Breuil’s lattice conjecture in Section 5.

Throughout this section, we assume that S = {̃v} unless otherwise stated and
write K def

= F̃v. We drop the subscript ṽ from notation in this situation. The set
J is identified with the set of embeddings K ↪→ E and also with Z/ f Z using
our chosen embedding σ0 (cf. Section 1.4). For i ∈ J , we will use the word
component i and embedding i interchangeably.

3.1. Background. In this subsection, we recall some basic facts on Kisin
modules with tame descent data. We start with the following involution
on W̃ , which naturally appears when passing from Kisin modules to G K∞-
representations. We let W̃

∨

(respectively W̃∨) be the partially ordered group
which is identified with W̃ (respectively W̃ ) as a group, and whose Bruhat order
is defined by the antidominant base alcove (and still denoted as 6).

DEFINITION 3.1.1. Define a bijection w̃ 7→ w̃∗ between W̃
∨

and W̃ as follows:

(1) For w = (w j) ∈ W , define w∗ = (w∗j ) ∈ W by w∗j = w
−1
f−1− j .

(2) For ν = (ν j) ∈ X ∗(T ), define ν∗ = (ν∗j ) ∈ X ∗(T ) by ν∗j = ν f−1− j .

(3) For w̃ = wtν ∈ W̃
∨

, define w̃∗ ∈ W̃ by w̃∗ = tν∗w∗.

Note that w̃ 7→ w̃∗ is an antihomomorphism of groups. For j ∈ J , we write w̃∗j
for the j th component of w̃∗.

Let τ be a tame inertial type which we always assume to be 1-generic. Fix a
lowest alcove presentation (s, µ) for τ (Definition 2.2.1).

If s = (s0, . . . , s f−1) and µ = (µ j)06 j6 f−1 ∈ X ∗(T ), we take

sτ
def
= s0s f−1s f−2 · · · s1 ∈ W
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and α(s,µ) ∈ X ∗(T ) such that α(s,µ), j = s−1
1 s−1

2 . . . s−1
j (µ j+η j) for 1 6 j 6 f −1

and α(s,µ),0 = µ0 + η0. Let r ∈ {1, 2, 3} be the order of sτ , and write K ′ for the
unramified extension of Qp of degree f ′ def

= f r .

REMARK 3.1.2. In [LLHLM18], the notion of lowest alcove presentation does
not appear. Everything is written for presentations of the form τ((sτ , 1, . . . , 1),
α(s,µ)) (see, for example, the beginning of [LLHLM18, Sections 2.1, 6.1]). In
the notation of loc. cit., α(s,µ), j = (a1, j , a2, j , a3, j). The element

sor
def
= (s−1

1 s−1
2 . . . s−1

f−1, s−1
1 s−1

2 . . . s−1
f−2, . . . , s−1

1 , 1) ∈ W

has the property that s∗or(α(s,µ)) = µ + η, and, hence, (0,s∗or)(((sτ , 1, . . . , 1),
α(s,µ))) = (s, µ + η). The element sor is called the orientation of α(s,µ)
[LLHLM18, Definition 2.6 and equation (2.2)].

If r = 1, we say that τ is a principal series type. Otherwise, we write τ ′ for the
base change of τ to K ′/K (which is just τ considered as a principal series type
for G K ′). We record the relevant data for τ ′. Define α′(s,µ) ∈ X ∗(T )Hom(k′,F) ∼=

X ∗(T )r (using a choice of embedding σ ′0 : k
′ ↪→ F extending σ0) by

α′(s,µ), j+k f
def
= s−k

τ (α(s,µ), j) for 0 6 j 6 f − 1, 0 6 k 6 r − 1.

If τK ′(w
′, µ′) is the analogous construction of tame types over K ′ for (w′,

µ′) ∈ (W × X ∗(T ))r as in Definition 2.2.1, then τ ′ ∼= τK ′(1,α′(s,µ)) by direct
comparison using equation (2.5). The orientation s ′or ∈ W r of α′(s,µ) in the sense
of [LLHLM18, Definition 2.6] is given by

s ′or, j+k f
def
= sk+1

τ sor, j for 0 6 j 6 f − 1, 0 6 k 6 r − 1 (3.1)

(compare with [LLHLM18, Proposition 6.1]).

Let L ′ = K ′(πr ) = K ′((−p)
1

pr f −1 ) and ∆′ def
= Gal(L ′/K ′) ⊆ ∆ def

= Gal(L ′/K ).
Note that τ defines a O-valued representation of ∆′. For any complete local
Noetherian O-algebra R with residue field F′ finite over F, let SL ′,R

def
=

(W (k ′) ⊗Zp R)[[u ′]]. We endow SL ′,R with an action of ∆ as follows: for any g
in ∆′, g(u ′) = g(πr )

πr
u ′ and g acts trivially on the coefficients; if σ ∈ Gal(L ′/Qp)

is the lift of Frobenius on W (k ′) which fixes πr , then σ f generates Gal(K ′/K )
acting in natural way on W (k ′) and trivially on both u ′ and R. Set v = (u ′)pr f

−1,
and note that

(SL ′,R)
∆=1
= (W (k)⊗Zp R)[[v]].

As usual, ϕ : SL ′,R → SL ′,R acts as σ on W (k ′), trivially on R, and sends u ′ to
(u ′)p.
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If τ is a principal series types, let Y [0,h],τ (R) be the category of Kisin modules
over L ′ with tame descent of type τ and height in [0, h] as defined in [CL18,
Section 3]. More generally, we have the following.

DEFINITION 3.1.3. An element (M, φM, {ĝ}) ∈ Y [0,h],τ (R) is a Kisin module
(M, φM) over SL ′,R [LLHLM18, Definition 2.3] with height less than h
together with a semilinear action of ∆ which commutes with φM such that for
each 0 6 j 6 f ′ − 1

M( j) mod u ′ ∼= τ∨ ⊗O R

as ∆′-representations. In particular, the semilinear action induces an
isomorphism ιM : (σ

f )∗(M) ∼=M (see [LLHLM18, Section 6.1]) as elements
of Y [0,h],τ

′

(R).

REMARK 3.1.4. As explained in [LLHLM18, Section 6.1], the data of an
extension of the action of ∆′ to an action of ∆ is equivalent to the choice of an
isomorphism ιM : (σ

f )∗(M) ∼= M satisfying an appropriate cocycle condition.
We will use both points of view interchangeably.

REMARK 3.1.5. The appearance of τ∨ in the definition is due to the fact that
we are using the contravariant functors to Galois representations to be consistent
with [LLHLM18] as opposed to the covariants versions which appear in [CL18,
EGH13]. In [LLHLM18], we did not use the notation τ∨. Instead, we included
it in our description of descent data by having a minus sign in the equation before
Definition 2.1 of loc. cit. The notion of Kisin module with tame descent data of
type τ here is consistent with what appears in loc. cit.

DEFINITION 3.1.6. An eigenbasis of M ∈ Y [0,h],τ (R) is an eigenbasis β ′ =
(β ′

( j ′)
) j ′ for M considered as a Kisin module with descent data of type τ ′ in the

sense of [LLHLM18, Definition 2.8], which is compatible with the isomorphism
ιM: by letting β ′( j ′)

= ( f ′1
( j ′)
, f ′2

( j ′)
, f ′3

( j ′)
) then

M( j ′) (
(σ f )∗(M)

)( j ′+ f )∼oo
ιM //M( j ′+ f )

{ f ′1
( j ′)
, f ′2

( j ′)
, f ′3

( j ′)
}
� // { f ′1

( j ′+ f )
, f ′2

( j ′+ f )
, f ′3

( j ′+ f )
}

for all 0 6 j ′ 6 f ′ − 1, where the isomorphism on the left-hand side is
obtained from [LLHLM18, Lemma 6.2]. For short, the compatibility above will
be written as ιM(β ′

( j ′)
) = β ′

( j ′+ f ). (See also [LLHL19, Definition 3.2.8].)
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3.2. Étale ϕ-modules with descent data. The main result of this subsection
is Proposition 3.2.1, describing the Frobenius action on étale ϕ-modules with
tame descent data.

Let OE,K ′ (respectively OE,L ′) be the p-adic completion of (W (k ′)[[v]])[1/v]
(respectively of (W (k ′)[[u ′]])[1/u ′]). Recall from [LLHLM18, Section 2.3]
that for a complete local Noetherian O-algebra R, we have the category
Φ- Modét

K ′(R) (respectively Φ- Modét
dd,L ′(R)) of étale (ϕ,OE,K ′⊗̂Zp R)-modules

(respectively étale (ϕ,OE,L ′⊗̂Zp R)-modules with descent data from L ′ to K ′).
There is an analogous definition ofΦ- Modét

K (R) andΦ- Modét
dd,L(R). Given (M,

ιM) ∈ Y [0,h],τ (R), the element M⊗OE,L ′ is naturally an object Φ- Modét
dd,L ′(R).

We define an étale ϕ-module M ∈ Φ- Modét
K (R) by

M def
= (M⊗OE,L ′)

∆=1

with the induced Frobenius. This defines a functor from Y [0,h],τ (R) to
Φ- Modét

K (R). Finally, recall the functor ε0 : Φ- Modét
K (R)→ Φ f - Modét

W (k)(R)
from [LLHLM18, Section 2.3]. It is obtained by considering the f -fold
composite of the partial Frobenii which act on M(0).

Let R be a local, Artinian O-algebra with finite residue field F. We have the
usual functor V∗K from Φ- Modét

K (R) to representations of G K∞ over R. Recall
from [LLHLM18, Section 6.1] the functor

T ∗dd′ : Y
[0,h],τ (R)→ RepR(G K∞)

which is defined as (M, ιM) 7→ V∗K (M). From now onward, we write T ∗dd for
the functor which was written as T ∗dd′ in [LLHLM18, Section 6.1].

We can now state the main result of this section, which is a sharpening of
[LLHLM18, Proposition 2.26].

PROPOSITION 3.2.1. Let τ be a 1-generic type with lowest alcove presentation
(s, µ). Let M ∈ Y [0,h],τ (R) and β be an eigenbasis of M. Let sor = (sor, j) j be the
orientation for τ and write A( j)

=Matβ
(
φ
( j)
M,sor, j+1(3)

)
for j ∈ {0, . . . , f −1}. Let

M = (M⊗OE,L ′)
∆=1
∈ Φ- Modét

K (R).
Then there is a basis f = (f( j)) j for M such that

Matf(φ
( j)
M) = A( j)s∗j v

µ∗j+η
∗

j .

Proof. The proof is a direct computation using [LLHLM18, Propositions 2.26
and 6.1].
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Let α′(s,µ) and (s ′or, j ′) be as in the discussion after Remark 3.1.2. Let β ′( j ′)
=

( f ′1
( j ′)
, f ′2

( j ′)
, f ′3

( j ′)
) be an eigenbasis for M and write A( j ′) def

=Matβ ′
(
φ
( j ′)
M′,s′or, j ′+1(3)

)
for 0 6 j ′ < f ′ − 1.

For any 0 6 j ′ 6 f ′ − 1, set

a′ ( j ′)
(s,µ) =

f ′−1∑
i=0

α′(s,µ),− j ′+i pi
∈ Z3,

where − j ′ + i is taken modulo f ′ (compare with [LLHLM18, Section 2.1]).
Then

f′
( j ′) def
= {(u ′)a

′ ( j ′)
(s,µ),1 f ′1

( j ′)
, (u ′)a

′ ( j ′)
(s,µ),2 f ′2

( j ′)
, (u ′)a

′ ( j ′)
(s,µ),3 f ′3

( j ′)
}

is a basis for M′( j ′) def
= (M( j ′)

[1/u ′])∆′=1 for 0 6 j ′ < f ′ − 1.
For any 0 6 j ′ 6 f ′−1, a direct computation (using [LLHLM18, Proposition

2.13]) shows that the matrix for φ( j ′)
M′ : M′( j ′)

→ M′( j ′+1) with respect to the
bases above is

s ′or, j ′+1 A( j ′)(s ′or, j ′+1)
−1(u ′)pa′ ( j ′)

(s,µ)−a′ ( j ′+1)
(s,µ) .

Since pa′ ( j ′)
(s,µ) − a′ ( j ′+1)

(s,µ) = (p
f ′
− 1)α′(s,µ), f ′−1− j ′ , this is same as

s ′or, j ′+1 A( j ′)(s ′or, j ′+1)
−1v

α′
(s,µ), f ′−1− j ′ . (3.2)

Define β̃ by β̃( j ′)
= f′

( j ′)s ′or, j ′ (reordering the basis vectors). Let j ′ = j + i f for
0 6 j 6 f − 1. Then the matrix for φ( j ′)

M′ with respect to β̃ is given by

A( j ′)(s ′or, j ′+1)
−1s ′or, j ′v

(s′or, j ′ )
−1(α′

(s,µ), f ′−1− j ′ ) = A( j)s∗j v
µ∗j+η

∗

j (3.3)

using equation (3.1), Remark 3.1.2, and the fact that A( j ′) only depends on j ′

mod f (cf. [LLHLM18, Proposition 6.9]).
Finally, recall that the eigenbasis β ′ is required to be compatible with ιM :

(σ f )∗(M) ∼= M as in Definition 3.1.6, which gives ι( j ′)
M (β ′( j ′)) = β ′( j ′+ f )s−1

τ .
Hence, β̃ descends to a collection of ordered bases (f( j))06 j6 f−1 of the M( j)

=

((M[1/u ′])∆=1)( j) such that the matrix for the partial Frobenius map M( j)
→

M( j+1) is given by equation (3.3).

PROPOSITION 3.2.2. Let M ∈ Y [0,h],τ (R) and let M = (M ⊗ OE,L ′)
∆=1
∈

Φ- Modét
K (R) be the associated étale ϕ-module over K .
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If f is a basis of M and B( j) def
= Matf(φ

( j)
M) are the matrices of the partial

Frobenii, then the étale ϕ f -module ε0(M) is described by

Matf(0)(φ
f
M(0)) =

f−1∏
j=0

ϕ j(B( f− j−1)).

LEMMA 3.2.3. Let ρ : G K → GL3(F) be semisimple and 0-generic. Let M ∈

Φ f - Modét
W (k)(F) such that V∗K (M) ∼= ρ|G K∞

. Assume that there exists s0 ∈ W ,
λ = (λ j) ∈ X ∗1(T ), and a basis for M such that the φ f -action on M is given

by Ds−1
0 vµ where D ∈ T (F) and µ def

=
∑ f−1

j=0 p jλ j ∈ X ∗(T ). Then by letting
s = (s0, 1, . . . , 1) ∈ W ,

V (ρ|IK ) = Rs(λ).

Proof. Let k be the order of s0 and write µ = (µ1, µ2, µ3) ∈ X ∗(T ). Then

φ f k(ei) =

(
k−1∏
m=0

Ds−m
0 (i)

)
v

∑k−1
m=0 p f (k−1−m)µs−m

0 (i)ei

=

(
k−1∏
m=0

Dsm+1
0 (i)

)
v

∑k−1
m=0 p f mµ

sm+1
0 (i)ei .

Hence, ρ|IK is isomorphic to
⊕3

i=1 ω

∑k−1
m=0 p f mµ

sm+1
0 (i)

k f . The lemma now follows
from (2.5).

3.3. Semisimple Kisin modules. The statement of [LLHLM18, Theorem
2.21] gives a classification of Kisin modules with descent datum which can arise
as reductions of potentially crystalline representations with Hodge–Tate weights
(2, 1, 0) f . In this subsection, we identify Kisin modules which correspond to
semisimple Galois representations in an explicit way (Theorem 3.3.12).

For F′/F finite, let I(F′) ⊂ GL3(F′[[v]]) be the Iwahori subgroup of elements
which are upper triangular modulo v. Recall from Section 3.1 the partially
ordered group W̃

∨

(respectively W̃∨) which is identified with W̃ (respectively
W̃ ) as a group but whose Bruhat order is defined by the antidominant base alcove
(and still denoted as6). For any character µ ∈ X ∗(T ), we define Adm∨(µ) as in
Definition 2.3.9 but for antidominant base alcove.

Let h be a positive integer. As before, let τ be a 1-generic tame type with fixed
lowest alcove presentation (s, µ). Recall from [LLHLM18, Definition 2.17] the
notion of shape.
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DEFINITION 3.3.1. Let τ be a principal series type, and let w̃ = (w̃0, w̃1, . . . ,

w̃ f−1) ∈ W̃
∨

. A Kisin module M ∈ Y [0,h],τ (F′) has shape w̃ if for any eigenbasis
β, the matrices

(
A( j)

)
j =

(
Matβ

(
φ
( j)
M,sor, j+1(3)

))
j have the property that A( j)

∈

I(F′)w̃ j I(F′).
For a nonprincipal series type, we define the shape of a Kisin module M ∈

Y [0,h],τ (F′) in terms of its base change BC(M); see [LLHL19, Definition 3.2.11]
or [LLHLM18, Definition 6.10] for details.

For any λ ∈ X ∗(T ) effective (that is, λ j = (ai, j)i with ai, j > 0 for all i, j)
and h � 0, let Y λ,τ

⊂ Y [0,h],τ denote the closed substack defined in [CL18,
Section 5] (cf. also [LLHLM18, Section 2.2]). Then for any finite extension
F′/F, Y λ,τ (F′) ⊂ Y [0,h],τ (F′) is the subgroupoid consisting of Kisin modules with
shape in Adm∨(λ).

DEFINITION 3.3.2. Let τ be a 3-generic type with lowest alcove presentation
(s, µ) and let ρ : G K → GL3(F). Assume that there exists Mρ ∈ Y η,τ (F) such
that T ∗dd(Mρ) ∼= ρ|G K∞

. We define w̃(ρ, τ ) ∈ Adm∨(η) to be the shape of Mρ .
This is well defined because there exists at most one Kisin module Mρ with

height in [0, 2] such that T ∗dd(Mρ) ∼= ρ|G K∞
(see [LLHLM18, Theorem 3.2] for

a principal series type and Section 6.2 and the discussion before Lemma 6.13 in
loc. cit. for the general case).

REMARK 3.3.3. More generally, if #S > 1, for w̃ = (w̃ṽ)ṽ∈S , we define w̃∗ as
the collection (w̃∗ṽ)ṽ∈S , where each w̃∗ṽ ∈ W̃ ṽ is as in Definition 3.1.1. Similarly,
if τS is a collection of 3-generic tame inertial type and ρS is a collection of
Galois representations, we let w̃(ρS, τS)

def
= (w̃(ρ ṽ, τṽ))ṽ∈S .

We now introduce the notion of semisimple Kisin module of shape w̃.

DEFINITION 3.3.4. Let M ∈ Y [0,h],τ (F′), where F′/F is a finite extension. We
say that M is semisimple of shape w̃ = (w̃ j) if there exists an eigenbasis β of M
such that

A( j)
∈ T (F′[[v]])w̃ j

for 0 6 j 6 f ′ − 1.

PROPOSITION 3.3.5. If M is semisimple of shape w̃, then T ∗dd(M) is semisimple.

Proof. If M is semisimple, we can choose a basis such that A( j)
∈ T (F′[[v]])w̃ j

where F′/F is a finite extension. Using this basis, we see by Propositions 3.2.1
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and 3.2.2 that the matrix for the étale ϕ f -module ε0(M[1/u ′]∆=1) lies in
T (F′((v)))s for some s ∈ W . If s has order d , then T ∗dd(M) restricted to the
unramified extension of K∞ of degree d is a direct sum of characters (as p - d)
and so T ∗dd(M) is semisimple.

PROPOSITION 3.3.6. If M is semisimple of shape w̃ = (w̃ j), then there exists
an eigenbasis β such that

A( j)
= w̃ j for 0 6 j 6 f − 2, A( f−1)

∈ T (F′)w̃ f−1.

Proof. See [LLHL19, Proposition 3.2.16].

DEFINITION 3.3.7. For any w̃ = (w j tλ j ) ∈ W̃
∨

, define M(w̃) ∈ Φ- Modét
K (F)

to be the free étale ϕ-module over OE,K ⊗F of rank three such that the matrix of

φ
( j)
M :M(w̃)( j)

→M(w̃)( j+1)

is given by w jv
λ j (with respect to the standard basis).

PROPOSITION 3.3.8. Let (s, µ) be a lowest alcove presentation of τ . If M ∈
Y [0,h],τ (F′) is semisimple of shape w̃ ∈ W̃

∨

, then

T ∗dd(M)|IK
∼= V∗K (M(w̃s∗tµ∗+η∗))|IK

∼= τ(w, ν + η)

where w̃s∗tµ∗ = w∗tν∗ . (Note that since both T ∗dd(M) and V∗K (M(w̃s∗tµ∗+η∗))
are tame, they canonically extend to G K .)

Proof. This is the special case when n = 3 of [LLHL19, Corollary 3.2.17]. For
the sake of completeness, we include an argument here.

The first isomorphism follows from Proposition 3.3.6 combined with
Proposition 3.2.1.

Let w, ν satisfy w̃s∗tµ∗ = w∗tν∗ . One easily checks that the φ f -action
on ε0(M(w∗tν∗+η∗)) ∈ Φ f - Modét

W (k)(F) is given by
∏ f−1

j=0 w
−1
j v

p j (ν j+η j ) using
Proposition 3.2.2.

Let s ∈ W . The φ f -action of ε0(M((stν+ηwπ(s)−1)∗)) ∈ Φ f - Modét
W (k)(F) is

given by

f−1∏
j=0

s j−1w
−1
j s−1

j v
p j s j (ν j+η j ) = s f−1

(
f−1∏
j=0

w−1
j v

p j (ν j+η j )

)
s−1

f−1.

We conclude that ε0(M(w∗tν∗+η∗)) ∼= ε0(M((stν+ηwπ(s)−1)∗)). Therefore,
V∗K (M(w∗tν∗+η∗)) ∼= V∗K (M((stν+ηwπ(s)−1)∗)).

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


Serre weights and Breuil’s lattice conjecture in dimension three 33

As (w, ν + η) ∼ (swπ(s)−1, s(ν + η)), by [LLHL19, Proposition 2.2.4] and
[Her09, Lemma 4.2], we reduce to the case where wi = 1 for i 6= f − 1. The
second isomorphism then follows from Lemma 3.2.3.

PROPOSITION 3.3.9. Let ρ, ρ ′ be semisimple representations of G K . Assume
that there exists M semisimple of shape w̃ such that T ∗dd(M) ∼= ρ|G K∞

. Then
ρ ′|IK

∼= ρ|IK if and only if there exists a semisimple M
′

of shape w̃ such that
T ∗dd(M

′

) ∼= ρ|G K∞
.

Proof. This follows from counting unramified twists using Proposition 3.3.6.

The remainder of the subsection is devoted to results used for weight
elimination.

LEMMA 3.3.10. If ρ : G K → GL3(F) admits a potentially crystalline lift of type
(λ, τ ), then so does ρss (after possibly replacing E with a ramified extension).

Proof. Fix a characteristic 0 lift ρ of ρ which is potentially crystalline of type
(λ, τ ). Then by enlarging the coefficient ring of ρ, we can always find a lattice
whose reduction is semisimple by [Enn, Lemma 5(2)].

The following two theorems are key inputs in weight elimination by giving
an upper bound on the semisimple representations which are reductions of
potentially crystalline representations of type (λ, τ ).

THEOREM 3.3.11. Let ρ : G K → GL3(F). Assume that ρ has a potentially
crystalline lift of type (λ, τ ) where λ ∈ X ∗(T ) is effective. Assume that either
(1) τ is a regular principal series type or (2) λ = η and τ is 3-generic. Then,
for a sufficiently large h, there is a Kisin module M ∈ Y [0,h],τ (F) of shape w̃ =
(w̃0, w̃1, . . . , w̃ f−1) ∈ Adm∨(λ) such that T ∗dd(M) ∼= ρ|G K∞

. In particular, M ∈
Y λ,τ (F).

Proof. See [LLHL19, Theorem 3.2.20].

THEOREM 3.3.12. Let ρ be a semisimple representation of G K and assume τ is
a 1-generic tame type. Assume that either (1) ρ is a direct sum of characters or
(2) λ = η and τ is 3-generic.

If there exists a Kisin module M ∈ Y λ,τ (F) such that T ∗dd(M) ∼= ρ|G K∞
, then

there exists a finite extension F′/F and a semisimple Kisin module M
′

∈ Y λ,τ (F′)
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such that (after extending scalars) T ∗dd(M
′

) ∼= ρ|G K∞
. Furthermore, we can take

F′ = F in case (2).

REMARK 3.3.13. Theorems 3.3.11 and 3.3.12 together say that for a fixed 3-
generic type τ the set of semisimple ρ|IK which arise as reductions of potentially
crystalline representations of type (η, τ ) are in bijection with a subset of
Adm∨((2, 1, 0)) f . In fact, it turns out that this admissibility condition exactly
captures those semisimple ρ which are reductions of crystalline representations
of type (η, τ ). Checking this is equivalent to checking that the potentially
crystalline deformation ring of type (η, τ ) of the semisimple ρ corresponding to
w̃ ∈ Adm∨((2, 1, 0)) f is nonzero. When w̃ is such that `(w̃i) > 1 for all i , this
nontriviality follows from [LLHLM18, Table 7]. When K = Qp, [LLHLM18,
Section 8] shows the nontriviality for all admissible w̃. For general unramified
K and admissible w̃, the nontriviality of the deformation ring will follow from
Theorem 3.5.3.

Proof of Theorem 3.3.12. We first treat the case where ρ is a direct sum of
characters. Let Mdd = M[1/u ′] be an étale ϕ-module with descent datum
for L ′/K (that is, a semilinear action of ∆). Since there is an equivalence
of categories between étale ϕ-modules over L ′ with descent datum to K and
G K∞-representations (cf. [LLHLM18, page 24] for principal series case and
Section 6.1 in general), if ρ is a direct sum of characters, then Mdd =M1 ⊕

M2 ⊕M3, where each Mi is stable under φMdd and the descent datum.
Let Y λ,τ

Mdd
be the Kisin variety parametrizing lattices in Mdd which lie in Y λ,τ .

[LLHLM18, Definition 3.1] defines Y λ,τ

Mdd
in the principal series case. In general,

Y λ,τ

Mdd
is the closed subscheme of fixed points of Y λ,τ ′

Mdd
under the natural action of

σ f . The torus T = G3
m acts on Mdd by scaling individually in each factor. As a

consequence, we get an algebraic action of T on the projective variety Y λ,τ

Mdd
.

Any such action has a fixed point over some finite extension F′/F. Let M
′

⊂

Y λ,τ

Mdd
(F′) be a T -fixed point. Let χi : T → Gm denote the projection onto each

coordinate and set M
′

i
def
= (M

′

)
χi

. Then

M
′

=M
′

1 ⊕M
′

2 ⊕M
′

3. (3.4)

Since the T -action commutes with φMdd and ∆, each M
′

i is stable under both;
hence, M

′

i is a rank-one Kisin module with descent datum. Any choice of
eigenbasis which respects this decomposition shows that M

′

is semisimple.
Because M

′

is in Y λ,τ (F′), it is semisimple with an admissible shape w̃ ∈
Adm∨(λ).
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Now suppose that τ is 3-generic, but ρ is not necessarily a direct sum
of characters. In this case, the Kisin module M of type (η, τ ) is unique by
[LLHLM18, Theorem 3.2]. We make a base change to the unramified extension
K̆/K of degree 6. Let τ̆ be the base change of τ to K̆ , and let ˘M = BC(M) be
the base change of the Kisin module M. Since ˘M is the unique Kisin module of
type (η, τ̆ ), by the above argument, it must be semisimple.

Recall the notion of gauge basis [LLHLM18, Definition 2.22]. Fix a gauge
basis β of M and let β̆ be the induced gauge basis on ˘M. The eigenbasis β̆2

for ˘M which puts the partial Frobenii in the form as in Proposition 3.3.6 is also
a gauge basis. By [LLHLM18, Theorem 4.16], β̆ and β̆2 differ by embedding-
wise scaling by torus elements. We conclude that the matrices for the partial
Frobenii with respect to β̆ and hence β are monomial. Since the only monomial
matrices I(F)w̃I(F) are T (F[[v]])w̃, we see that M is semisimple.

3.4. Shapes and Serre weights. We continue to assume S = {̃v}. We
compute V (ρ|IK ) in terms of shape for a semisimple ρ. This will effectively
allow us to determine W ?(ρ)∩JH(σ (τ )) for a 3-generic tame type τ (Proposition
3.4.2) via the combinatorics of Section 2 (especially Corollary 2.3.11).

PROPOSITION 3.4.1. Let (s, µ) be a lowest alcove presentation of τ . Let M ∈
Y [0,h],τ (F′) be semisimple of shape w̃ = (w̃ j) ∈ W̃

∨

. Then

V (T ∗dd(M)|IK ) = Rsw̃∗(µ+ η).

Proof. By Proposition 3.3.8, T ∗dd(M)|IK
∼= τ(w, ν + η) where w̃s∗tµ∗ = w∗tν∗ .

By [GHS18, Proposition 9.2.3],

V (T ∗dd(M)|IK ) = Rw(ν + η).

Finally, an easy calculation shows that Rsw̃∗(µ + η) = Rw(ν + η) using
Definition 2.3.6.

PROPOSITION 3.4.2. Let τ be a 3-generic type with lowest alcove presentation
(s, µ) and let M ∈ Y [0,h],τ (F′) be semisimple of shape w̃ = (w̃ j) ∈ W̃

∨

. Let ρ :
G K → GL3(F) be semisimple and 3-generic and assume that ρ|G K∞

∼= T ∗dd(M).
Then

W ?(ρ, τ )
def
= W ?(ρ) ∩ JH(σ (τ )) = {σ (s,µ+η)(ω,a) : (ω, a) ∈ Σw̃∗} ⊂ JH(Rs(µ+ η)).

Proof. This follows from Corollary 2.3.11 and Proposition 3.4.1.
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REMARK 3.4.3. There is an explicit list of elements of Adm∨(2, 1, 0) given in
[LLHLM18, Table 1]. The effect of the involution w̃ 7→ w̃∗ is, in addition, to
reverse the order of components, to reverse the order of the word, and to turn
γ = (13)v(1,0,−1) into γ +. In particular, (·)∗ defines a bijection between Adm∨(2,
1, 0) and Adm(2, 1, 0).

3.4.1. Type elimination results. We assume throughout that ρ : G K → GL3(F)
is 6-generic.

PROPOSITION 3.4.4. Let τ be a 1-generic tame inertial type. If ρ is 6-generic
and arises as the reduction of a potentially crystalline representation of type
(η, τ ), then

W ?(ρss, τ ) 6= ∅.

Proof. First, assume that τ is 3-generic. By Theorem 3.3.11 combined with
Lemma 3.3.10, there exists M ∈ Y η,τ (F) such that T ∗dd(M) ∼= ρ

ss
|G K∞

. In fact, by
Theorem 3.3.12, we can take M to be semisimple of shape w̃ = (w̃ j) ∈ Adm∨(η).
By Proposition 3.4.2 and Table 2, we conclude that

W ?(ρss, τ ) 6= ∅.

If τ is not 3-generic, then Proposition 3.4.5 shows that ρ does not arise as the
reduction of potentially crystalline representation of type (η, τ ) for any such
τ .

PROPOSITION 3.4.5. Let n > 4 and assume that ρ : G K → GL3(F) is n-generic.
Assume that ρ arises as the reduction of a potentially crystalline representation
of type (η, τ ) where τ is a 1-generic tame inertial type. Then τ is (n−3)-generic.

Proof. By Lemma 3.3.10, we can assume that ρ is semisimple. The result
follows now from [LLHL19, Proposition 3.3.2].

3.5. Serre weight conjectures. We are now ready to prove an abstract
version of the Serre weight conjecture as well as a numerical Breuil–Mézard
statement. In this section, we allow S to have arbitrary (finite) cardinality.

3.5.1. Setup and summary of results. Recall from Section 1.4 that S is a finite
set and F̃v is a finite extension of Qp for each ṽ ∈ S , and kṽ is the residue field of
F̃v. For Definition 3.5.1, we will not require that F̃v be an unramified extension
of Qp. In applications, F will be a fixed global field, S will be a set of places in
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F , and F̃v will be the completion at ṽ of F . Let ρS be a collection (ρ ṽ)ṽ∈S where
ρ ṽ : G F̃v → GL3(F) is a continuous Galois representation. Let R�ṽ = R�ρ ṽ denote
the unrestricted universal framed deformation ring of ρ ṽ. Fix a natural number h
and let

R∞ =
(⊗̂
ṽ∈S

R�ṽ
)
[[x1, x2, . . . , xh]] and X∞ = SpfR∞.

If τṽ is an inertial type for G F̃v , then let Rτṽ
ṽ = Rτṽ

ρ ṽ
be the universal framed

deformation ring of ρ ṽ of inertial type τṽ and (parallel) Hodge–Tate weights (2,
1, 0). If τS = (τṽ)ṽ∈S , then let

R∞(τS) =
⊗̂
ṽ∈S

Rτṽ
ṽ ⊗

⊗̃̂
v∈S

R�ṽ
R∞ and X∞(τS) = SpfR∞ (τS).

Let d + 1 be the dimension of X∞(τS) (the dimension is independent of τS by
[Kis08, Theorem 3.3.4]). We denote by R

�
ṽ , R∞, and so on, the reduction of

these objects modulo $ .
Let K ṽ be the group GL3(OF̃v ) and K be the product

∏
ṽ∈S K ṽ. Results toward

the inertial local Langlands correspondence (cf. Proposition 2.2.6(2)) associate
a Qp-valued K ṽ-representation σ(τṽ) to a 1-generic tame inertial type τṽ (and
σ(τṽ) can be realized over O).

DEFINITION 3.5.1. Let RepK (O) denote the category of continuous K -
representations over finitely generated O-modules and Mod(X∞) the category
of coherent sheaves over X∞.

A weak minimal patching functor for ρS = (ρ ṽ)ṽ∈S is defined to be a nonzero
covariant exact functor M∞ : RepK (O) → Mod(X∞) satisfying the following
axioms:

(1) For each ṽ ∈ S , let τṽ be an inertial type for G F̃v . Let σ(τS) be the
K -representation

⊗
ṽ∈Sσ(τṽ). If σ(τS)◦ is an O-lattice in σ(τS), then

M∞(σ (τS)◦) is p-torsion-free and is maximally Cohen–Macaulay over
R∞(τS).

(2) If M∞(R1(µ)) is nonzero, then ρ ṽ has a semistable lift of type τṽ(1, µṽ)
for all ṽ ∈ S .

(3) If σ is an irreducible
∏

ṽ∈S GL3(kṽ)-representation over F, the module
M∞(σ ) is either 0 or maximal Cohen–Macaulay over its support, which
is equidimensional of dimension d .

(4) The locally free sheaf M∞(σ (τS)◦)[1/p] (being maximal Cohen–
Macaulay over the regular ring R∞(τS)[ 1

p ]) has rank at most one on
each connected component.
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Assume that a weak minimal patching functor M∞ for ρS exists. Following
[GHS18, Definition 3.2.6], let W BM(ρS) be the set of irreducible G-
representations (recall that G def

=
∏

ṽ∈SGL3(kṽ)) σ over F such that M∞(σ )
is nonzero (note that a priori this set depends on the choice of M∞). For a
finitely generated R∞-module M with scheme-theoretic support Spec A of
dimension at most d , define e(M) to be d! times the coefficient of the degree d-
term of the Hilbert polynomial of M (considered as an A-module). In particular,
e(M) is the Hilbert–Samuel multiplicity of M as an A module when dim A = d
and is 0 otherwise.

We now assume that for all ṽ ∈ S , F̃v is an unramified extension of Qp. Recall
Definition 2.2.7 of W ?(ρS).

THEOREM 3.5.2. Suppose that ρS is semisimple and 10-generic and that M∞ is
a weak patching functor for ρS . Then for all Serre weights σ , e(M∞(σ )) = 1 if
σ ∈ W ?(ρS) and e(M∞(σ )) = 0 otherwise. In particular, W BM(ρS) = W ?(ρS).

THEOREM 3.5.3. Let K/Qp be a finite unramified extension of degree f .
Let ρ : G K → GL3(F) be a continuous, 10-generic, and semisimple Galois
representation, and let τ be a tame inertial type. If τ is not 1-generic, Rτ

ρ is 0. If τ

is 1-generic, then the number of irreducible components of R
τ

ρ

def
= Rτ

ρ/$ is equal
to the number of elements in W ?(ρ, τ ). The ring Rτ

ρ is a normal domain and
is Cohen–Macaulay. Moreover, R

τ

ρ is reduced and its components are formally
smooth of the same dimension.

The proofs of Theorems 3.5.2 and 3.5.3 appear in Section 3.5.3.

3.5.2. Types, weights, and the Breuil–Mézard philosophy. In this subsection,
we describe the basic inductive argument toward the proofs of Theorems 3.5.2
and 3.5.3.

Recall that we have a length function ` : W̃∨
→ Z.

LEMMA 3.5.4. Let K/Qp be a finite unramified extension of degree f . Let
ρ : G K → GL3(F) be a semisimple Galois representation. Let τ be 5-generic
with lowest alcove presentation (s, µ). Assume that V (ρ|IK ) = Rsw̃∗(µ + η)

where w̃ = w̃(ρ, τ ) = (w̃0, . . . , w̃ f−1) ∈ Adm∨(η) with `(w̃ j) > 1 for every j .
Then R

τ

ρ 6= 0 and the number of irreducible components of R
τ

ρ is equal to the
number of elements in W ?(ρ, τ ). The ring Rτ

ρ is a normal domain and is Cohen–
Macaulay. Moreover, R

τ

ρ is reduced and its components are formally smooth of
the same dimension.
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Proof. By Proposition 3.4.1, our hypotheses imply that there exists a Kisin
module Mρ ∈ Y η,τ (F) such that T ∗dd(Mρ) ∼= ρ|G K∞

and that w̃ = w̃(ρ, τ ). In
[LLHLM18, Sections 5.3, 6], we gave an explicit presentation for Rτ

ρ whenever
the length of w̃ j is at least 2 and the type τ is 5-generic. For each shape, there
were at most two cases depending on Mρ . By Propositions 3.3.9 and 3.3.12,
whenever ρ is semisimple, Mρ is semisimple in the sense of Definition 3.3.1,
and so Mρ lies in the special locus for the given shape.

We claim that
#Irr

(
Spec (R

τ

ρ)
)
=

∏
j

24−`(w̃ j )

and that R
τ

ρ is reduced and Cohen–Macaulay. Indeed, from Table 7 in loc. cit.,
we see that R

τ

ρ is the completion of a tensor product over F of rings of the form
F[X ], F[X, Y ]/XY at the maximal ideal generated by the variables X, Y . Since
such a tensor product is Cohen–Macaulay, so is its completion by [Sta19, Tag
07NX]. Since such a tensor product is reduced and excellent (being a finite type
F-algebra), its completion is reduced by [Sta19, Tag 07NZ]. Finally, we also
note that since each irreducible components of such a tensor product is smooth,
the completion of the irreducible components stay irreducible and are formally
smooth.

This implies the remaining properties (see the proof of [LLHLM18, Corollary
8.9]. Note that the reducedness of R

τ

ρ implies that Rτ
ρ is a normal domain).

Finally, we compare this with the size of W ?(ρ, τ ), which is
∏

j∈J #Σ(w̃∗j )
by

Proposition 3.4.2 using Table 2.

COROLLARY 3.5.5. Suppose that for each ṽ ∈ S , ρ ṽ : G F̃v → GL3(F) is
a semisimple Galois representation and τṽ is a 5-generic tame inertial type
satisfying the hypotheses of Lemma 3.5.4. Let τS be (τṽ)ṽ∈S . Then e(R∞(τS))
is equal to #W ?(ρS, τS).

Proof. This follows immediately from Lemma 3.5.4 and [EG14, Lemma 2.2.14]
and properties of tensor products of representations.

PROPOSITION 3.5.6 (Weight elimination). Suppose that for each ṽ, ρ ṽ : G F̃v →

GL3(F) is a 10-generic Galois representation. Then

W BM(ρS) ⊂ W ?(ρss
S).

Proof. Suppose that σ is a Serre weight such that σ ∈ W BM(ρS) \ W ?(ρss
S).

Note that W BM(ρS) satisfies the (evident generalization of) [Enn, Axiom (WE)]
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by 3.5.1(2). By [Enn, Theorem 8] and [LLHL19, Remark 2.2.8], ρS is 10-
generic implies that σ is 3-generic. Then σ ∈ JH(σ (τS)) for some collection
τS

def
= (τṽ)ṽ∈S of 1-generic tame types (for example, taking a tame principal series

type containing σ ). Since ρS is 10-generic, we see by Proposition 3.4.5 and
Definition 3.5.1(1) that M∞(σ (τS)) 6= 0 implies that τS is 7-generic. By Lemma
4.2.13 (whose proof only uses modular representation theory and is independent
of the results in Section 3), σ is 5-deep.

By Corollary 2.3.13, τS above can be taken so that W ?(ρss
S, τS) = ∅ and

σ ∈ JH(σ (τS)). By Proposition 3.4.4, ρss
ṽ is not the reduction of a potentially

crystalline representation of type (ηṽ, τṽ) for some ṽ ∈ S . By Proposition 3.3.10,
ρ ṽ is also not the reduction of a potentially crystalline representation of type (ηṽ,
τṽ) for some ṽ ∈ S . Then X∞(τS) = ∅ and M∞(σ (τS)◦) = 0 for any O-lattice
σ(τS)

◦ in σ(τS). By exactness of M∞, M∞(σ ) = 0 which is a contradiction.

REMARK 3.5.7. Instead of appealing to [Enn], one can show that provided that
ρS is generic enough, every element of W BM(ρS) appears as a Jordan–Hölder
factor of the reduction of some 1-generic tame type as follows. Even though
not all Serre weights come from the reduction σ(τS) for a collection τS of 1-
generic tame types, they do occur in the reduction of Vλ ⊗ σ(τS) where λ is
sufficiently large (independent of p). The results of Section 3.3 hold also for
potentially crystalline representations of type (λṽ + ηṽ, τṽ)ṽ∈S (possibly with a
stronger genericity hypothesis), and then the same argument as in the proof of
Proposition 3.5.6 gives the result.

Given a collection τS of tame inertial types and a O-lattice σ(τS)◦ in σ(τS),
we write σ(τS)◦ to denote the reduction of σ(τS)◦ modulo $ .

LEMMA 3.5.8. Suppose that for each ṽ ∈ S , ρ ṽ : G F̃v → GL3(F) is a semisimple
Galois representation and τṽ is a 5-generic tame inertial type satisfying the
hypotheses of Lemma 3.5.4. Let τS = (τṽ)ṽ∈S . Let σ(τS)◦ be an O-lattice in
σ(τS). Then either M∞(σ (τS)◦) = 0 or e(M∞(σ (τS)◦)) is equal to e(R∞(τS)),
and the alternative does not depend on the lattice.

Proof. The generic fiber of X∞(τS) is irreducible since its special fiber is
reduced (see Lemma 3.5.4). Then since M∞(σ (τS)◦) is maximal Cohen–
Macaulay over X∞(τS), either M∞(σ (τS)◦) has full support on X∞(τS) or
M∞(σ (τS)◦) is 0. The lemma now follows from the proof of [LLHLM18,
Proposition 7.14].
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LEMMA 3.5.9. Suppose that ρ ṽ : G F̃v → GL3(F) is semisimple and 7-generic
for all ṽ ∈ S . If σ ∈ W ?(ρS) has defect δ, then there are tame inertial types τṽ
and τ ′ṽ satisfying the hypotheses of Corollary 3.5.5 such that if τS = (τṽ)ṽ∈S and
τ ′S = (τ

′

ṽ)ṽ∈S , we have

(1) σ ∈ W ?(ρS, τS) ⊂ W ?(ρS, τ
′

S);

(2) #W ?(ρS, τS) = 2δ and #W ?(ρS, τ
′

S) = 2δ+1;

(3) all Serre weights in W ?(ρS, τS) and W ?(ρS, τ
′

S) have defect at most δ and
if δ > 0, σ is the unique Serre weight in W ?(ρS, τ

′

S) with defect δ;

(4) if δ = 0, for any σ ′ ∈ W ?(ρS) of defect 0 which is adjacent to σ , one can
choose the τ ′S above so that W ?(ρS, τ

′

S) = {σ, σ
′
}.

Proof. This is essentially a consequence of results in Section 2.3. Suppose that
V (ρS |IFS

) = Rs(µ) with µ− η 7-deep in alcove C0, and label W ?(ρS) by r(Σ)
as in Proposition 2.3.4. Let w̃ = (w̃ṽ)ṽ∈S = (w̃i)i∈J ∈ Adm(η) and τS be the
tame inertial type with lowest alcove presentation (sw−1, µ + sw̃−1(0) − η),
where w ∈ W is the image of w̃. Then µ+ sw̃−1(0)− η is 5-deep in alcove C0
so that τS is 5-generic. Corollary 2.3.11 says that

W ?(ρS, τS) =

{
σ
(s,µ)
r(ω,a) : r(ω, a) ∈

∏
i∈J

r(Σw̃−1
i
)

}
,

where Σw̃−1
i
= Σ0 ∩ w̃i

−1
(
r(Σ0)

)
. If `(w̃i) > 1 for all i , then τS satisfies

the hypotheses of Corollary 3.5.5 (noting that `(w̃) = `(w̃∗) by the proof of
[LLHL19, Lemma 2.1.3], where the lengths are as elements of W̃

∨

and W̃ ,
respectively).

Let (ω, a)= ((ωi , ai))i be such that σ = σ (s,µ)r(ω,a). We will construct the required
types by appropriately choosing (w̃i)i .

If (ωi , ai) ∈ Σ
obv
0 , we can find an element w̃i ∈ Adm((2, 1, 0)) such that

`(w̃i) = 4 and Σw̃−1
i
= {(ωi , ai)}. If (ωi , ai) ∈ Σ

inn
0 , we can find an element

w̃i t−1 ∈ {αβα, βγβ, αγα} such that Σw̃−1
i

contains exactly {(ωi , ai), r(ωi , ai)}.
This choice of (w̃i)i∈J gives a type τS = (τṽ)ṽ∈S such that σ ∈ W ?(ρS, τS),
#W ?(ρS, τS) = 2δ, and all weights in W ?(ρS, τS) have defect at most δ.

To construct τ ′S satisfying (2) and (3), we proceed similarly. We first deal with
the case δ > 0. In this case, we can find a j0 ∈ J such that `(w̃ j0) = 3, and
consider any w̃′j0 6 w̃ j0 of length 2. Then

Σw̃−1
j0
⊂ Σw̃′−1

j0
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and has size 4 (see Table 2). Furthermore, Σw̃′−1
j0
\Σw̃−1

j0
⊂ Σobv

0 . Let w̃′ be such
that w̃′i = w̃i if i 6= j0 and w̃′j0 is the element chosen above. Then the type τ ′S
such that σ(τ ′S) = Rs(w̃′)−1(µ) satisfies items (2) and (3).

Finally, assume that δ = 0. Let σ ′ ∈ W ?(ρS) be a defect 0 weight adjacent to σ ,
and write σ ′ = σ (s,µ)r(ω′,a′). Then there is a unique j0 ∈ J such that (ω′j0, a′j0) 6= (ω j0,

a j0). There are six possible pairs {(ω j , a j), (ω
′

j , a′j)} ∈ Σ
obv
0 which are adjacent

in Table 1, each of which is Σw̃−1
j

for some length 3 nonshadow element w̃′j (see
[LLHLM18, Table 1]). We let τ ′S be the inertial type corresponding to w̃′ such
that w̃′i = w̃i for i 6= j0 and w̃′j0 chosen as in the previous sentence. This gives
the type satisfying items (2), (3), and (4).

REMARK 3.5.10. From Table 2, we see that the type τS constructed in Lemma
3.5.9 is uniquely characterized by requiring that σ ∈ W ?(ρS, τS) and #W ?(ρS,

τS) = 2δ. We call it the minimal type of σ with respect to ρ.

In what follows, our ρS = (ρ ṽ)ṽ∈S will be assumed to be 10-generic so that
Proposition 3.5.6 applies. We observe that if τS is a 3-generic tame type, then
σ(τS)

◦ is multiplicity free for any choice of lattice σ(τS)◦. Then

e(M∞(σ (τS)◦)) =
∑

σ∈JH(σ (τS ))

e(M∞(σ ))

by Definition 3.5.1, and, in fact,

e(M∞(σ (τS)◦)) =
∑

σ∈W ?(ρss
S ,τS )

e(M∞(σ )).

Finally, observe that if ρS is 10-generic and W ?(ρS, τS) is nonempty, then τS is
7-generic by Proposition 3.4.5.

LEMMA 3.5.11. Suppose that ρ ṽ : G F̃v → GL3(F) is semisimple and 10-generic
for all ṽ ∈ S . If there exists σ ∈ W BM(ρS)with defect 0, then for all σ ′ ∈ W ?(ρS),
e(M∞(σ ′)) = 1. In particular, W BM(ρS) = W ?(ρS).

Proof. We first prove the lemma assuming σ ′ has defect 0 by induction on d def
=

dgph(σ, σ
′). By Lemma 3.5.9, one can choose a 1-generic tame type τS such that

W ?(ρS, τS) = {σ }. Note that τS is then 7-generic under our assumptions. Then
e(M∞(σ )) = 1 by Corollary 3.5.5 and Lemma 3.5.8. This establishes the case
d = 0.

Suppose that σ ′ ∈ W ?(ρS) has defect 0 and that d > 0. Then there is a
σ ′′ ∈ W ?(ρS) adjacent to σ ′, with defect 0, and such that dgph(σ, σ

′′) = d − 1.
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We choose a type τ ′S as in Lemma 3.5.9(4) for the adjacent weights σ ′

and σ ′′ and an O-lattice σ(τ ′S)
◦ in σ(τ ′S). Then by inductive hypothesis,

M∞(σ ′′), and hence M∞(σ (τ ′S)
◦), is nonzero. By Corollary 3.5.5 and Lemma

3.5.8, e(M∞(σ (τ ′S)
◦) = 2. We deduce from the inductive hypothesis that

e(M∞(σ ′)) = 1.
We now prove the general case of the lemma by induction on the defect.

Suppose that σ ′ ∈ W ?(ρS) has defect δ > 0. We choose τS as in Lemma 3.5.9
(and an O-lattice σ(τS)0 in σ(τS)) taking σ to be σ ′. By Lemma 3.5.9(2) and
(3), W ?(ρS, τS) contains a weight of lower defect. The inductive hypothesis
implies that M∞(σ (τS)◦) is nonzero. By Lemma 3.5.8 and Corollary 3.5.5,
e(M∞(σ (τS)◦)) = 2δ. By Lemma 3.5.9(3) and induction, e(M∞(σ (τS)◦)) −
e(M∞(σ ′)) is the number of weights in W ?(ρS, τS) \ {σ

′
}, which is 2δ − 1. We

conclude that e(M∞(σ ′)) = 1.

LEMMA 3.5.12. Suppose that ρ ṽ : G F̃v → GL3(F) is semisimple and 10-generic
for all ṽ ∈ S . If σ ∈ W BM(ρS) has defect δ > 0, then there exists σ ′ ∈ W BM(ρS)

with defect less than δ.

Proof. Choose τS and τ ′S as in Lemma 3.5.9 and fix lattices σ(τS)◦ and σ(τ ′S)
◦.

Then M∞(σ (τS)◦) and M∞(σ (τ ′S)
◦) are nonzero. Hence, by Lemmas 3.5.8

and 3.5.9(2) and Corollary 3.5.5, e(M∞(σ (τ ′S)
◦)) − e(M∞(σ (τ ′S)

◦)) = 2δ. By
Proposition 3.5.9(1), e(M∞(σ (τ ′S)

◦))−e(M∞(σ (τS)◦)) is the sum of e(M∞(σ ′))
as σ ′ runs over the Serre weights in W ?(ρS, τ

′

S) \ W ?(ρS, τS). By Lemma
3.5.9(3), the Serre weights in W ?(ρS, τ

′

S) \ W ?(ρS, τS) have defect less than
δ. We conclude that there must be a Serre weight σ ′ ∈ W BM(ρS) of defect less
than δ.

3.5.3. Proofs

Proof of Theorem 3.5.2. Since M∞ is nonzero, there is a Serre weight σ ∈
W BM(ρS) ⊂ W ?(ρS) by Proposition 3.5.6. By induction on the defect using
Lemma 3.5.12, we can assume, without loss of generality, that the defect of σ is
0. The theorem now follows from Lemma 3.5.11.

REMARK 3.5.13. Our axioms for M∞ imply that if σ ∈ JH(σ (τS)), then the
support of M∞(σ ) is a (possibly empty) union of irreducible components of
Spec R∞(τS). As Spec R∞(τS) is the preimage of

Spec
⊗̂
ṽ∈S

Rτṽ
ṽ ⊂ Spec

⊗̂
ṽ∈S

R2
ṽ
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inside Spec R∞, we have shown that if σ ∈ W BM(ρS), then the scheme-theoretic
support of M∞(σ ) is irreducible with generic point given by the preimage in R∞
of a prime ideal in

⊗̂
ṽ∈S R2

ṽ .

We now give two examples of weak minimal patching functors using the setup
from [LLHLM18, Section 7.1]. Recall the definitions from loc. cit. of F/F+,
Σ+p , G/F+ , and ιw (see also Section 5.3). Suppose that r : G F → GL3(F) is

• automorphic (of some weight) in the sense of [LLHLM18, Definition 7.1];

• satisfies the Taylor–Wiles hypotheses in the sense of [LLHLM18, Definition
7.3]; and

• if r is ramified at a finite place w /∈ Σp of F , then w|F+ splits in F (we say
that r has split ramification outside of p).

Then [LLHLM18, Proposition 7.15] constructs a weak minimal patching
functor for r in the sense of [LLHLM18, Definition 7.11], which we will denote
by M̃∞. Let h be the corresponding integer.

For each v ∈ Σ+p , choose a place ṽ of F lying above v. Let Sp be the set

{̃v : v ∈ Σ+p }. Let ρSp
be (ρ ṽ)ṽ∈Sp where we define ρ ṽ

def
= r |G F̃v

: G F̃v → GL3(F).
Define R∞, R∞(τSp), and so on, as before with respect to h above. Let K be∏

Sp
K ṽ as before. From the proof of [LLHL19, Proposition 4.2.6] we have the

following.

PROPOSITION 3.5.14. Let M∞ : RepK (O) → Mod(X∞) be the functor M̃∞ ◦∏
ṽ∈Sp

ι̃v. Then M∞ is a weak minimal patching functor for ρSp
.

Proof. Definition 3.5.1(2) follows from the proof of [LLHL19, Proposition
4.2.6]. The remaining properties follow easily from definitions and [LLHLM18,
Proposition 7.15].

Now suppose that p > 3 and K/Qp is a finite extension. Let ρ : G K →

GL3(F) be a continuous Galois representation with a potentially diagonalizable
lift of type (η, τ ) such that Rτ

ρ is formally smooth. For example, if ρ is 6-generic
and semisimple, we can take τ so that if w̃(ρ, τ ) = (w̃ j) j , then `(w̃ j) = 4 for
all j . We now construct a weak minimal patching functor for ρ (here #S = 1 in
the notation of Definition 3.5.1).

[EG14, Corollary A.7] constructs a CM extension F/F+, a choice of
places Sp above Σ+p as before, and an automorphic Galois representation
r : G F → GL3(F) satisfying the above itemized properties such that there is
an isomorphism K ∼= F̃v and r |G F̃v

∼= ρ for all ṽ ∈ Sp. Fix a place ṽ ∈ Sp
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and let R∞ be R�ρ ⊗̂
⊗̂

v′∈Σ+p ,v′ 6=v
Rτ
ρ ṽ′
[[x1, . . . , xh]]. Note that R∞ is as defined

in Section 3.5.1 (by increasing h, and the assumption of formal smoothness
of Rτ

ρ) and we identify R∞ with R�r |G F̃v
⊗̂
⊗̂

v′∈Σ+p ,v′ 6=v
Rτ

r |G F̃
v′

[[x1, . . . , xh]]. Let

X∞ = SpfR∞ as usual. We abusively let K be the group GL3(OK ) (the meaning
of each K will be clear from the context). Fix a lattice σ(τ)◦ in the K -module
σ(τ).

Let M̃∞ be the weak minimal patching functor for r constructed above. The
following proposition follows from the construction of r and Proposition 3.5.14.

PROPOSITION 3.5.15. Assume the above setup. Let M∞ : RepK (O) →
Mod(X∞) be the functor

M̃∞ ◦
∏
v∈Σ+p

ι̃v ◦

−⊗ ⊗̂
v∈Σ+p ,v′ 6=v

σ(τ)◦

 .
Then M∞ is a patching functor for ρ.

COROLLARY 3.5.16. Suppose that ρS is a collection of continuous Galois
representations satisfying the properties of ρ in Proposition 3.5.15. Then there
exists a patching functor for ρS .

Proof. We can take the completed tensor product of the patching functors
constructed in Proposition 3.5.15 for each ρ ṽ.

Proof of Theorem 3.5.3. Suppose that τ is not 1-generic. We claim that Rτ
ρ =

0. It suffices to show that after restriction to G K ′ for any unramified extension
K ′/K , ρ does not have a potentially crystalline lift of type τ and Hodge–Tate
weights (2, 1, 0). Moreover, after such a restriction, τ is still not 1-generic and ρ
is 10-generic. We can then assume, without loss of generality, that τ is a principal
series. By [LLHL19, Remark 2.2.8], τ is not 2-generic and ρ is 10-generic in
the sense of [Enn, Definition 2.2]. Then ρ does not have a potentially crystalline
lift of type τ and Hodge–Tate weights (2, 1, 0) by [Enn, Proposition 7].

If τ is 1-generic and Rτ
ρ 6= 0, then Proposition 3.4.5 implies that τ is 7-generic.

Proposition 3.4.2 implies that W ?(ρ, τ ) 6= ∅. Suppose that τ is 1-generic and
W ?(ρ, τ ) 6= ∅. By Proposition 3.5.15, a patching functor M∞ for ρ exists. For
any OE -lattice σ(τ)◦ ⊂ σ(τ), M∞(σ (τ )◦) 6= 0 by Theorem 3.5.2. This implies
that Rτ

ρ is nonzero.
We now show that if τ is 1-generic and Rτ

ρ 6= 0, then

e(R
τ

ρ) = e(M∞(σ (τ )◦)). (3.5)
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As Rτ
ρ 6= 0, we deduce from Proposition 3.4.5 that τ is 7-generic. The proof of

(3.5) is now obtained by a direct generalization of the arguments of [LLHLM18,
Section 8]; so we only explain the key details. There is a ring R̃τ

ρ of the same
dimension as R

τ

ρ[[X1, . . . X3 f ]] which is a power series ring over the completed

tensor product over F of rings R̃ in [LLHLM18, Section 8] and R
expl,∇
M,w̃ for some

M and w̃ from [LLHLM18, Table 7], and which admits a surjection to R
τ

ρ[[X1,

. . . , X3 f ]]. Then we have

e(R̃τ
ρ) = e(M∞(σ (τ )◦))

for any O-lattice σ(τ)◦ ⊂ σ(τ) by computing both sides using [LLHLM18,
Table 7, Propositions 8.5 and 8.12] and Theorem 3.5.2 (using that ρ is 10-
generic). The proof of [LLHLM18, Proposition 7.14] implies

e(M∞(σ (τ )◦)) 6 e(R
τ

ρ).

Then we must have that e(R̃τ
ρ) = e(R

τ

ρ[[X1, . . . , X3 f ]]) = e(R
τ

ρ) by the above
surjection. Furthermore, R̃τ

ρ is reduced and Cohen–Macaulay by the same
argument as in the proof of Lemma 3.5.4. Then R

τ

ρ[[X1, . . . , X3 f ]] is isomorphic
to R̃τ

ρ by [LLHLM18, Lemma 8.8] and the desired properties of R
τ

ρ hold because
they do for R̃τ

ρ . The desired ring-theoretic properties of Rτ
ρ follow from the proof

of [LLHLM18, Corollary 8.9].

REMARK 3.5.17. Since the number of irreducible components of R
τ

ρ is equal
to #W ?(ρ, τ ), R

τ

ρ is reduced, and M∞(σ (τ )◦) has full support over R∞(τ ), the
proof of Theorem 3.5.3 shows that the irreducible support of M∞(σ ) must be
different for each σ ∈ W ?(ρ, τ ).

3.6. The geometric Breuil–Mézard conjecture. We now show that weak
minimal patching functors can be used to assign components in deformation
rings to Serre weights.

PROPOSITION 3.6.1. (1) Let ρ be as in Theorem 3.5.3. There is a unique
assignment σ 7→ p(σ ) for σ ∈ W ?(ρ) such that p(σ ) ⊂ R2

ρ is a prime
ideal and

Spec (R
τ

ρ) =
⋃

σ∈W ?(ρ,τ )

Spec (R2
ρ /p(σ )) (3.6)

for any tame type τ where the right-hand side is given the reduced scheme
structure. Moreover, the image of p(σ ) in R

τ

ρ is a minimal prime ideal and
(3.6) is the decomposition of R

τ

ρ into irreducible components.
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(2) If M∞ is a weak minimal patching functor for ρS = (ρ ṽ)ṽ∈S , then the
scheme-theoretic support of M∞(

⊗
ṽ∈S σṽ) is Spec (R∞/

∑
ṽ∈S p(σṽ)R∞).

Proof. We first prove uniqueness. Suppose there is such an assignment. This
closely follows the procedure of induction on the defect with respect to W ?(ρ)

in the proof of Theorem 3.5.2. If the defect of σ ∈ W ?(ρ) is 0, then by letting τ
be the minimal type of σ with respect to ρ, we have #W ?(ρ, τ ) = 1 by Lemma
3.5.9. Then we must have p(σ ) = AnnR2

ρ
R
τ

ρ . If the defect of σ is δ > 0, then
choose τ to be the minimal type of σ with respect to ρ as in Lemma 3.5.9. Then
by induction and Lemma 3.5.9(3), there is a unique component of Spec (R

τ

ρ)

whose defining ideal is not p(σ ′) for some σ ′ ∈ W ?(ρ, τ ) of lower defect. Then
p(σ ) must be this defining ideal.

We now show existence of an assignment. By Proposition 3.5.15, there is a
weak minimal patching functor M∞ for ρ, which we fix. By Remark 3.5.13,
the generic point of the scheme-theoretic support of M∞(σ ) is of the form
p′(σ )R∞ for some prime ideal p′(σ ) ⊂ R2

ρ . We claim that σ 7→ p′(σ ) is an
assignment satisfying (3.6). Indeed, since the generic fiber of Rτ

ρ is connected by
3.5.3, Spec R∞(τ ) is the scheme-theoretic support of M∞(σ (τ )◦). On the other
hand, M∞(σ (τ )◦) is filtered by M∞(σ ) for σ ∈ W ?(ρ, τ ) so that the support of
M∞(σ (τ )◦) is ⋃

σ∈W ?(ρ,τ )

Spec (R∞/p′(σ )R∞). (3.7)

Equation (3.7) is a decomposition of R∞(τ ) into irreducible components by
Remark 3.5.17. Finally, we observe that this statement descends to R

τ

ρ .
We now show part (2). Suppose that M∞ is a weak minimal patching functor

for ρS . Let σ =
⊗

ṽ∈Σ σṽ ∈ W ?(ρS). Again by the proof of Theorem 3.5.2,
the scheme-theoretic support of M∞(σ ) is Spec R∞/(

∑
ṽ∈S p(σ )ṽR∞) for some

prime ideals p(σ )ṽ ⊂ R2
ρ ṽ

. We will show that p(σ )ṽ = p(σṽ), where p is the
assignment in part (1). We induct on δ = DefρS (σ ). If δ = 0, then one can
choose τS as in Lemma 3.5.9 so that R∞(τS) = R∞/p(σ ). We conclude that
p(σ )ṽ = p(σṽ) for all ṽ ∈ S in this case. Suppose that δ > 0. Again choose
τS as in Lemma 3.5.9. Then by the inductive hypothesis, for any weight σ ′ =⊗

ṽ∈S σ
′

ṽ ∈ W ?(ρS, τS) with σ ′ 6∼= σ , the scheme-theoretic support of M∞(σ ′) is
R∞/(

∑
ṽ∈S p(σ ′ṽ)R∞). Since the generic fiber of Spec (

⊗̂
ṽ∈S Rτṽ

ρ ṽ
) is connected

by 3.5.3, by item (1), the scheme-theoretic support of M∞(σ (τS)◦) is⋃
σ ′∈W ?(ρS ,τS )

Spec
(

R∞/
(∑
ṽ∈S

p(σ ′ṽ)R∞

))
. (3.8)
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From this, we see that since e(M∞(σ )) = 1, the scheme-theoretic support of
M∞(σ ) is forced to be Spec R∞/(

∑
ṽ∈S p(σṽ)R∞).

We have the following refinement of Proposition 3.6.1(2).

LEMMA 3.6.2. Assume that ρ is 10-generic. Let τS = (τṽ)ṽ∈S be a collection of
tame inertial types and let V be a subquotient of σ(τS)◦ for some O-lattice
σ(τS)

◦ in σ(τS). Define the closed subscheme X∞(V ) ↪→ Spec R∞ to be
the reduced subscheme underlying

⋃
σ∈JH(V ) Supp(M∞(σ )). Then the scheme-

theoretic support of M∞(V ) is X∞(V ). In particular, if M∞(V ) is a cyclic R∞-
module, then M∞(V ) ∼= R∞/I (V ), where

I (V ) def
=

⋂
σ∈JH(V )

AnnR∞(M∞(σ )).

Proof. Since ρ is 10-generic, there is nothing to prove unless τS is 7-generic. The
proof now follows exactly as in the second paragraph of the proof of [EGS15,
Proposition 8.1.1]. We recall the argument. The support of M∞(V ) is (the
topological space) X∞(V ) since M∞(V ) is filtered by M∞(σ ) for σ ∈ JH(V ).
It suffices to show that the scheme-theoretic support of M∞(V ) is reduced. The
scheme-theoretic support of M∞(V ) is generically reduced (since the same is
true for M∞(σ (τS)◦)). Now since each M∞(σ ) is maximal Cohen–Macaulay
over R∞(τS) (by Definition 3.5.1(3) and the fact that dim R∞(τS) = d) and
the maximal Cohen–Macaulay property is preserved under extension (by the
characterization of depth in terms of Ext groups), M∞(V ) is maximal Cohen–
Macaulay over R∞(τS). This guarantees that the scheme-theoretic support of
M∞(V ) has no embedded associated primes and, hence, is reduced.

3.6.1. Matching components. Recall that Proposition 3.6.1 gives a canonical
parametrization of the irreducible components of the special fiber of the
potentially crystalline deformation ring Rτ

ρ in terms of W ?(ρ, τ ). Given a lowest
alcove presentation (s, µ − η) of τ = τ(s, µ), we will define in item (4)
below explicit rings R

expl,∇
M,w̃ , building on [LLHLM18, Sections 5.3.1, 8]. The

rings R
expl,∇
M,w̃ will be formally smooth modifications of R

τ

ρ . Thus, Proposition

3.6.1 gives a bijection between minimal primes of R
expl,∇
M,w̃ and W ?(ρ, τ ). On the

other hand, by Corollary 2.3.11, the data (s, µ) gives a description of W ?(ρ,

τ ) as σ (s,µ)(ω,a) , for (ω, a) ∈ Σw̃. In this subsection, we will make the bijection

between minimal primes of R
expl,∇
M,w̃ and Σw̃ explicit. This will be needed in

Section 5, where we need to check relations between ideals corresponding to
various subquotients of σ(τ)0 for certain lattices σ(τ)0.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


Serre weights and Breuil’s lattice conjecture in dimension three 49

We begin by recalling the relationship between R
expl,∇
M,w̃ and R

τ

ρ . For the rest of
this section, we assume that ρ is 10-generic. Recall that we have chosen a lowest
alcove presentation (s, µ − η) of τ = τ(s, µ). We assume that Rτ

ρ 6= 0, and,
thus, τ is 7-generic and there exists a unique M ∈ Y η,τ (F) such that T ∗dd(M) ∼=

ρ|G K∞
. Let w̃ = w̃(ρ, τ ) be the shape of M and let M def

= (M[1/u ′])∆=1. We
also recall the notion of gauge basis [LLHLM18, Definitions 4.15, 6.11], and
we fix a gauge basis β for M. We also fix a framing (that is, a basis) for ρ.
Recall from [LLHLM18, Definition 2.11 and Section 6] (see also the discussion
after [LLHL19, Definition 3.2.8], which is more aligned with the notation of
this paper) the notation A(i) def

= Matβ(φ
(i)
M,sor,i+1(3)), for an eigenbasis β of a Kisin

module M with descent data of type τ and sor ∈ W the orientation of τ = τ(s, µ).
We say that A(i) is the matrix of the i th partial Frobenius φ(i)M,sor,i+1(3) with respect
to the eigenbasis β.

We have the following canonical diagram (cf. [LLHLM18, Diagram (5.9)]:

Spf(R
τ,β,2

M,ρ )
f.s.

//

f.s.

��

p

Spf(R
expl,∇
M,w̃ )

f.s.
��

� � //

p

D
τ,β

M

f.s.

��

Spf(R
τ

ρ) = Spf(R
τ,2

M,ρ)
f.s.

//
� _

��

p

[
Spf(R

expl,∇
M,w̃ )/Ĝ

3 f
m

]
� _

ıτ

��

� � // Y
η,τ

MkK

ı ′τxx

Φ- Modét,2
M

f.s.
// Φ- Modét

M

(3.9)

where f.s. stands for a formally smooth morphism. We explain the diagram as
follows:

(1) R
τ,β,2

M,ρ , R
τ,2

M,ρ , are defined in [LLHLM18, Sections 4.3, 5.2, 6.2]. They
parametrize various deformation problems of ρ and M with extra data such
as framings on Galois representations and gauge bases on M. We note that
in loc. cit., we used the symbol µ for what we call η in this paper.

(2) Φ- Modét
M (respectively Φ- Modét,2

M ) denotes the groupoid of étale ϕ-
modules deforming M (respectively deformations with a basis on the
associated G K∞-representation).

(3) Y
η,τ

M is the groupoid whose values on a local Artinian F-algebra A is given
by the groupoid of pairs (MA, A) where MA ∈ Y η,τ (A) and A :MA ⊗A

F ∼

→ M is an isomorphism in Y η,τ (F). The groupoid D
τ,β

M parametrizes
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the same data plus the data of a gauge basis lifting β. By [LLHLM18,

Theorem 6.12], there is an action of Ĝ3 f
m on D

τ,β

M by scaling the gauge

basis, and one has
[

D
τ,β

M /Ĝ3 f
m

]
∼= Y

η,τ

M . By [LLHLM18, Theorem 4.17

and Section 6.2], D
τ,β

M is representable by R
τ,β

M =
⊗̂

i(R
expl
w̃i
)p-flat, red/$ .

Over R
τ,β

M , we have a universal pair (Muniv, βuniv) and, hence, the universal
matrices of partial Frobenii A(i),univ. By construction, (Rexpl

w̃i
)p-flat, red/$

is a quotient of the power series ring over F generated by (suitable
modifications of) the coefficients of the entries of A(i),univ subject to
certain ‘finite height’ equations. The map ı ′τ is the map sending Muniv to
(Muniv

[
1
u′ ])

∆=1.

(4) The ring R
expl,∇
M,w̃ =

⊗̂
i R

expl,∇
M,w̃i

. We recall the description of each component
ring from [LLHLM18] (see also Table 3). We let (a, b, c) ∈ F3

p be the mod
p reduction of s−1

f−1−i(µ f−1−i) ∈ X ∗(T ) ∼= Z3.

(1) When `(w̃i) > 1: R
expl,∇
M,w̃i

is the quotient of the power series ring
over F generated by (suitable modifications of) the coefficients of the
entries of A(i),univ by an explicit list of relations given by [LLHLM18,
Section 5.3 and Table 7]. In this case, we even have the rings Rexpl,∇

M,w̃i

and diagram (3.9) can be lifted to a diagram over O with the same
properties; cf. [LLHLM18, Diagram (5.9)].
Note that, strictly speaking, [LLHLM18, Table 7] only has entries
for w̃i belonging to a certain set of representatives under the action
of the outer automorphisms of W̃a .

(2) When `(w̃i) = 1: By symmetry, we may assume w̃i = αt1. The
matrix A(i),univ has the form

A(i),univ
=

 c11 c12 + vc∗12 c13

vc∗21 c22 + vd22 c23

vc31 vc32 c33 + vc∗33

 .
Set c̃32

def
=

c32c∗21−d22c31

c∗21
. We define R

expl,∇
M,w̃i

to be the quotient of the power
series ring

F[[c11, c12, c13, c22, c23, c31, c̃32, c33, d22, c∗12

− [c∗12], c∗21 − [c
∗

21], c∗33 − [c
∗

33]]]

by the following relations:

c11c23 = 0, c∗33c11c̃32 = c13c31c̃32,
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Table 3. Universal matrix, presentation, and component labeling for the ring R
expl,∇
M,w̃ f−1−i

.

Data relevant to Theorem 3.6.4. The first column records the components of the shape
w̃ = w̃(ρ, τ ). The second column records the form of the matrix of partial Frobenius
A( f−1−i) and the presentation of the ring R

expl,∇
M,w̃ f−1−i

in terms of the entries of A( f−1−i).
The fourth column records the prime ideal c(ωi ,ai ) in the statement of Theorem 3.6.4.
The last column records the element z̃∗ ∈ W a that occurs in Proposition 3.6.9, which
controls the minimal type τ ′ of the weight given by the third column with respect to ρ.
Thus, τ ′ = τ(sz∗, µ+ s̃z∗(0)). Note that w̃(ρ, τ ′) = w̃(ρ, τ )̃z−1. Finally, the structure
constants that feature in the presentation of R

expl,∇
M,w̃ f−1−i

are given by (a, b, c) ∈ F3
p with

(a, b, c) ≡ s−1
i (µi ) mod p.
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Table 3. (continued)

Further data relevant to Theorem 3.6.4. The description of the columns is the same as
that in Table 3.

c11d22c∗33 =
b − c
a − b

c∗21c13c̃32, c13c23c̃32 = 0,

c23c31c̃32 = 0, c∗21c33 = c31c23,

c12c∗33 =
a − c
a − b

c13c̃32, c22c∗33 =
(−1− a + c)
(−1− a + b)

c23c̃32,

and

(a − b)c13c31d22 + (c − b)c13c̃32c∗21 + (−1− a + c)c23c31c∗12 = 0.

These equations come from [LLHLM18, Proposition 8.11] and its
proof, by restoring the units c∗12, c∗21, and c∗33 (which were set to be 1 in
loc. cit.); the first six equations above are deduced from the equations
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appearing in the statement of loc. cit. (where d22 above is denoted
by c′22 in loc. cit.), the seventh and eighth equations above appear
in the proof of loc. cit., and the last equation above is implicit in
loc. cit. (where we solved c33 using the p-saturation of the 2 by 2
minor condition). In particular, R

expl,∇
M,w̃i

is a formal power series ring
over the ring R̃ appearing in [LLHLM18, Proposition 8.11].

(3) When `(w̃i) = 0, the matrix A(i),univ has the form

A(i),univ
=

c11 + vc∗11 c12 c13

vc21 c22 + vc∗22 c23

vc31 vc32 c33 + vc∗33

 .
We define R

expl,∇
M,w̃i

to be the quotient of F[[ci j , c∗kk − [c
∗

kk], 1 6 i, j,
k 6 3]] by the relations

ci i c j j = 0 for i 6= j, c11c23 = 0 c31c22 = 0,
c33c12 = 0, c12c23 = c22c13, c11c32 = c12c31,

c21c33 = c31c23,

and

(−1− a + c)c∗22c33 + (−1− a + b)c22c∗33

− (−1− a + c)c23c32 = 0,
(a − b)c∗33c11 + (−1− b + c)c33c∗11 − (a − b)c13c31 = 0,
(b − c)c∗11c22 + (a − c)c11c∗22 − (b − c)c12c21 = 0,
c11c∗22c∗33 + c22c∗11c∗33 + c33c∗11c∗22 − c∗11c23c32 − c∗22c13c31 − c∗33c12c21

+ c13c32c21 = 0.

These equations come from [LLHLM18, Corollary 8.4] by restoring
the units c∗kk (which were set to be 1 in loc. cit.) and we added the
equation c12c33 = 0, which was missing in loc. cit. and which is
obtained by the 2 by 2 minor condition on A(i),univ. In particular,
R

expl,∇
M,w̃i

is a formal power series ring over the ring R̃ appearing in
[LLHLM18, Corollary 8.4].

Note that each object with a superscript 2 receives a ĜL3-action, corresponding
to changing the framing on the Galois representation.

We now justify the diagram:
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• We claim that there is a canonical isomorphism
[
Spf(R

τ,β,2

M,ρ )/ĜL3

]
∼=

Spf(R
expl,∇
M,w̃ ). When `(w̃i) > 1 for all i , this is [LLHLM18, Theorem 5.12,

Theorem 6.14 and Table 7]. When `(w̃i) 6 1 for some i , this follows from the
same arguments as [LLHLM18, Section 8] together with Theorem 3.5.2, as
explained in the proof of Theorem 3.5.3. This justifies the existence and the
properties of the first row of Diagram (3.9). It is clear from the construction

that the Ĝ3 f
m -action on D

τ,β

M preserves Spf(R
expl,∇
M,w̃ ). Let (Mw̃,τ , βw̃,τ ) be the

restriction of (Muniv, βuniv) to Spf(R
expl,∇
M,w̃ ). Thus, the map ıτ sends Mw̃,τ to

Mw̃,τ
def
= (Mw̃,τ [

1
u′ ])

∆=1.

• The second row is obtained from the first row by quotienting by the Ĝ3 f
m -action

coming from scaling the gauge basis and, hence, inherits all properties from
the first row. The top squares are Cartesian.

• The second column is obtained from the first column by quotienting by the
ĜL3-action coming from changing the framing of the Galois representation;
hence, the bottom square is Cartesian.

The following proposition finishes our justification of the diagram.

PROPOSITION 3.6.3. Assume that τ is 3-generic and that M ∈ Y
η,τ
(F) is

semisimple of shape w̃ = (w̃ j). Let β be a gauge basis for M. Then the map

ı ′τ : Y
η,τ

M → Φ- Modét
M

is a monomorphism.

Proof. We need to prove that the map on the groupoids of F[ε]/(ε2)-points

Y
η,τ

M (F[ε]/(ε2))→ Φ- Modét
M(F[ε]/(ε

2))

induced by ı ′τ is fully faithful. But this follows from [LLHL19, Proposition
3.2.18], noting that the right-hand side is equivalent to RepF[ε]/ε2(G K∞)ρ in
loc. cit.

Diagram (3.9) gives a bijection between the set of minimal primes
Irr
(
Spec (R

τ

ρ)
)

and Irr(Spec (R
expl,∇
M,w̃ )) =

∏
i Irr(Spec

(
R

expl,∇
M,w̃i

)
)
. By Proposition

3.6.1, this set is in bijection with the set p(σ ) for σ ∈ W ?(ρ, τ ). On the other
hand, by Proposition 3.4.2, we have a bijection∏

i

Σw̃∗i

∼

→ W ?(ρ, τ )
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(ω, a) 7→ σ
(s,µ)
(ω,a) .

The following theorem is the main result of this subsection, which computes the
above bijections in terms of the explicit rings.

THEOREM 3.6.4. Assume ρ is 10-generic. Via the above bijections, we have

f−1∏
i=0

Σw̃∗i

∼

−→

∏
i

Irr
(
Spec (R

expl,∇
M,w̃i

)
) ∼

−→ Irr
(
Spec (R

τ

ρ)
)

(
(ωi , ai)

)
i 7−→

(
(c(ω f−1−i ,a f−1−i )R

expl,∇
M,w̃i

)
i 7−→ p(σ (s,µ)(ω,a)),

where c(ωi ,ai ) is the minimal prime of R
expl,∇
M,w̃ f−1−i

given by Table 3.

REMARK 3.6.5. Note that Table 3 only gives the ideals c(ωi ,ai ) ⊆ R
expl,∇
M,w̃ f−1−i

for a set of representatives for w̃ f−1−i ∈ Adm∨((2, 1, 0)) for the action of the
outer automorphisms of W̃∨. This is sufficient because this action corresponds
to changing the lowest alcove presentation of τ .

We now describe the strategy of proof. The main idea is that by the proof
of Proposition 3.6.1, the prime p(σ ) can be characterized by the relation (3.6)
for a specific type τ ′ (inducting on defect of σ ). Namely, one can use the
minimal type τ ′ of σ with respect to ρ. For this type, each component of
w̃′ = w̃(ρ, τ ′) has length> 3. Furthermore, the minimal type τ ′ has the property
that SpfR

τ ′

ρ ⊂ SpfR
τ

ρ inside SpfR
2

ρ . Thus, it suffices to determine the subset

of Irr
(
Spec (R

expl,∇
M,w̃i

)
)

which occurs in R
τ ′

ρ . This is achieved by ‘matching’ the

universal étale ϕ-module over a union of irreducible components of R
expl,∇
M,w̃ with

the universal étale ϕ-module living over R
τ ′

ρ (or rather R
expl,∇

M
′
,w̃′

).
The precise formulation of this matching mechanism is given by the following.

LEMMA 3.6.6. Let τ = τ(s, µ) and τ ′ = τ(s ′, µ′). Assume that Rτ
ρ, Rτ ′

ρ 6= 0, and
the running hypothesis that ρ is 10-generic. Consider diagram (3.9) for Rτ

ρ , Rτ ′

ρ ,
constructed using the above presentations. We decorate the objects that occur in
the diagram for τ ′ with the same symbol as those in the diagram for τ but with
a superscript ′ added (so we have, for example, w̃′, Mw̃′,τ ′ , and so on). Assume
that there are ideals I (respectively I ′) of R

expl,∇
M,w̃ (respectively R

expl,∇

M
′
,w̃′

) such that

• I , I ′ are intersections of minimal primes.

• There is an isomorphism R
expl,∇
M,w̃ /I ∼= R

expl,∇

M
′
,w̃′
/I ′.
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• There exists an isomorphism of étale ϕ-modules between the base change of
Mw̃,τ to R

expl,∇
M,w̃ /I and the base change of Mw̃′,τ ′ to R

expl,∇

M
′
,w̃′
/I ′ compatible with

the above ring homomorphism.

Let J (respectively J ′) denote the intersection of minimal primes in R
τ

ρ

(respectively R
τ ′

ρ ) which correspond to I (respectively I ′). Then, J and J ′

induce the same ideals in R
2

ρ .

Proof. Our hypotheses imply that there is an isomorphism

Spf(R
expl,∇
M,w̃ /I )

&&

∼ // Spf(R
expl,∇

M
′
,w̃′
/I ′)

xx

Φ- Modét
M

(3.10)

Pulling this back along the map Φ- Modét,2
M → Φ- Modét

M gives a commutative
diagram

Spf(R
τ,β,2

M,ρ )/I2)

f.s

��

∼ // Spf(R
τ ′,β

′
,2

M
′
,ρ
/I ′2)

f.s
��

Spf(R
τ

ρ/J )
� _

��

� o

��

Spf(R
τ ′

ρ /J ′)
_�

��

Oo

��

Spf(R
2

ρ ) � t

''

Spf(R
2

ρ )
J j

ww

Φ- Modét,2
M

(3.11)

where we use [LLHLM18, Proposition 3.12] to see that the natural map
Spf(R

2

ρ ) → Φ- Modét,2
M is a monomorphism (as ρ 10-generic implies ad(ρ)

is cyclotomic free). But this implies that Spf(R
τ

ρ/J ) and Spf(R
τ ′

ρ /J ′) define
the same subfunctor of Φ- Modét,2

M and, hence, also the same subfunctor of
Spf(R

2

ρ ).

In practice, we will apply the lemma by matching matrices of partial Frobenii.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


Serre weights and Breuil’s lattice conjecture in dimension three 57

COROLLARY 3.6.7. Keep the notations and setting of Lemma 3.6.6. Assume that
there exists z̃ = (̃zi)i ∈ W∨

a with corresponding z̃∗ = (̃z∗i )i ∈ W a and z is the
image of z̃ in W∨ such that s ′ = sz∗ and µ′ = µ + s̃z∗(0). Write (Ii)i for the
collection of ideals in R

expl,∇
M,w̃i

giving rise to I , write A(i) for the matrix of the
i th partial Frobenius of Mw̃,τ with respect to βw̃,τ , and let (I ′i )i and A′(i) be the
analogous objects for τ ′. Assume the following:

• The isomorphism R
expl,∇
M,w̃ /I ∼= R

expl,∇

M
′
,w̃′
/I ′ is induced by a collection of

isomorphisms R
expl,∇
M,w̃i

/Ii
∼= R

expl,∇

M
′
,w̃′i
/I ′i .

• For each i ,

A( f−1−i) mod I f−1−i = A′( f−1−i) z̃ f−1−i mod I ′f−1−i

via the above isomorphisms.

Then the same conclusion as Lemma 3.6.6 holds.

Proof. This follows from Lemma 3.6.6, Proposition 3.2.1, and the fact that
z̃s∗tµ∗ = s ′∗tµ′∗ .

REMARK 3.6.8. Note that the second condition in Corollary 3.6.7 implies in
particular that (

A
(i))

i =
(

A
′ (i)

z̃i
)

i , (3.12)

where A
(i)
, A
′ (i)

denote the reductions modulo the maximal ideal. We now
explain how, in the situations where we apply Corollary 3.6.7, we can always
arrange this.

If we have ρ semisimple and τ , τ ′, z̃ as in Proposition 3.6.9, then

w̃ = w̃′ z̃. (3.13)

Furthermore, for any choices of gauge bases β, β ′, for Mw̃,τ and Mw̃′,τ ′ ,
respectively, one has A

(i)
∈ T (F)w̃i and A

′ (i)
∈ T (F)w̃′i by Proposition 3.3.6.

Let M′

w̃,τ denote the element of Y η,τ (F) with eigenbasis βM′ such that the partial

Frobenii is given by (A
′ (i)

z̃i)i . (Note that M′

w̃,τ ∈ Y η,τ (F) because it has shape
w̃ ∈ Adm∨(η).) Since z̃s∗tµ∗ = s ′∗tµ′∗ , (M′

w̃,τ )
∆=1 ∼= (Mw̃′,τ ′)

∆=1 by Proposition
3.2.1. Thus, T ∗dd(M

′

w̃,τ )
∼= ρ. By the triviality of Kisin variety (see [LLHLM18,

Theorem 3.2]), M′

w̃,τ
∼=Mw̃,τ and βM′ defines a gauge basis of Mw̃,τ . Thus, by

replacing βM by βM′ (this can be done by scaling by an element of T (F) by
[LLHL19, Proposition 3.2.22]), we can then ensure that condition (3.12) holds.
In all the matching that we perform below, we will always assume that the gauge
bases have been chosen so that condition (3.12) holds.
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The following proposition describes all the types τ ′ for which we need to
perform some matching with τ .

PROPOSITION 3.6.9. Assume that ρ is 10-generic. Let τ = τ(s, µ) be a tame
inertial type such that Rτ

ρ 6= 0, and let w̃ = w̃(ρ, τ ) = (w̃i)i . Let (ω, a) =
(
(ωi ,

ai)
)

i ∈
∏

i Σw̃∗i
and σ = σ (s,µ)(ω,a) ∈ W ?(ρ, τ ). Let τ ′ be the minimal type of σ with

respect to ρ; cf. Remark 3.5.10. Then we have the following:

• For z̃∗ = (̃z∗i )i ∈ W̃ a as given by Table 3, we have τ ′ = τ(s ′, µ′) where

s ′ = sz∗, µ′ = µ+ s̃z∗(0)

• w̃(ρ, τ ′)̃z = w̃; and

• W ?(ρ, τ ′) ⊂ W ?(ρ, τ ).

Proof. This is immediate by computing the pairwise intersections among Σ0,
w̃∗i (r(Σ0)), and z̃∗i (Σ0).

Proof of Theorem 3.6.4. By Proposition 3.6.9 and the proof of Proposition 3.6.1,
for each σ ∈ W ?(ρ, τ ) with minimal type τ ′ with respect to ρ, we need to show
that the intersection of minimal primes

⋂
(ω,a)∈Σ∩̃z∗(Σ)

( f−1∑
i=0

c(ωi ,ai )R
expl,∇
M,w̃

)
=

f−1∑
i=0

( ⋂
(ωi ,ai )∈Σ0∩̃z∗i (Σ0)

c(ωi ,ai )R
expl,∇
M,w̃

)

of R
expl,∇
M,w̃ corresponds to the intersection of primes

⋂
σ ′∈W ?(ρ,τ ′)p(σ

′) of R
2

ρ . But
this follows from Corollary 3.6.7 (which allows us to work for each i separately)
and the explicit computations in Section 3.6.2.

We record the following lemma, which follows from Theorem 3.6.4, for future
use. Let w̃ = w̃(ρ, τ ). Suppose that `(w̃i) > 2 for all 0 6 i 6 f − 1. Let
N def
=
∑

i(4− `(w̃i)), and RN
def
=
⊗̂N

j=1O[[x j , y j ]]/(x j y j − p). In this case, there
exists a formally smooth map RN → Rexpl,∇

M,w̃
, which we fix. We think of RN as a

subalgebra of Rexpl,∇
M,w̃

. For σ ∈ W ?(ρ, τ ), let pexpl(σ ) ⊂ Rexpl,∇
M,w̃

be the prime ideal

corresponding to the weight σ . The minimal prime ideals of Rexpl,∇
M,w̃

containing

$ are of the form ((z j)
N
j=1 + ($))R

expl,∇
M,w̃

where z j ∈ {x j , y j } for all 1 6 j 6 N .

Define z j(σ ) so that pexpl(σ ) = ((z j(σ ))
N
j=1 + ($))R

expl,∇
M,w̃

.
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LEMMA 3.6.10. Assume that ρ is 10-generic and that `(w̃i) > 2 for all 0 6 i 6
f − 1. For σ1 and σ2 ∈ W ?(ρ, τ ),

#
(
{z j(σ1)}

N
j=1∆{z j(σ2)}

N
j=1

)
= 2dgph(σ1, σ2),

where ∆ denotes the symmetric difference.

Proof. From the αβα, αβ, and βα rows of Table 3, we check that if σ1, σ2 ∈

W ?(ρ, τ ), then pexpl(σ1)+ pexpl(σ2) is a prime ideal of Rexpl,∇
M,w̃

of height

dgph(σ1, σ2)+ 1.

On the other hand, the height of the intersection of
(
(z j) j+($)

)
+
(
(z′j) j+($)

)
is easily seen to be

1
2 #
(
{z j }

N
j=1∆{z

′

j }
N
j=1

)
+ 1.

For convenience, we list in Table 4 the length 4 shapes and their universal
families over R

expl,∇
M,w̃ j

.

3.6.2. Explicit computations. In this section, we record the matching of
matrices of partial Frobenii needed in the proof of Theorem 3.6.4. We are
always in the setting of the theorem. In particular, we have two types τ , τ ′ with
chosen presentations related by the element z̃∗ together with matrices of partial
Frobenii A( f−1−i), A′( f−1−i). We will fix i throughout.

We will frequently recall presentations of rings from [LLHLM18], and since
we work in characteristic p, all occurrences of the symbol e in loc. cit. will
become −1 here. We let (a, b, c) and (a′, b′, c′) ∈ F3

p be such that

(a, b, c) = s−1
i (µi) mod p, (a′, b′, c′) = (s ′i)

−1(µ′i) mod p.

Note that (a′, b′, c′) = z̃ f−1−i(a, b, c). These are the structure constants that
feature in the presentation of our explicit rings. We will also replace occurrences
of the symbols c′i j in loc. cit. by di j as we wish to decorate objects associated
with τ ′ with a prime superscript.

Case w̃ f−1−i = αβt1. From [LLHLM18, Table 5], the matrix of the partial
Frobenius A( f−1−i) has the formc31c12(c∗32)

−1 c12 c13 + vc∗13
vc∗21 c22 c23 + vd23

vc31 vc∗32

(
c31c23(c∗21)

−1
+ vd33

)
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Table 4. Universal matrix and presentation for the rings R
expl,∇
M,w̃ f−1−i

for extremal and
shadow shapes.

The relevant data for the type τ ′ occurring in the proof of Theorem 3.6.4. The first
column records the components of the shape w̃′ = w̃(ρ, τ ′). The second column
records the form of the matrix of partial Frobenius A′ ( f−1−i) and the presentation of
the ring R

expl,∇

M
′
,w̃′f−1−i

in terms of the entries of A′ ( f−1−i). The structure constants that

feature in the presentation of R
expl,∇

M
′
,w̃′f−1−i

are given by (a′, b′, c′) ∈ F3
p where (a′, b′,

c′) ≡ (s ′i )
−1(µ′i ) mod p. Note that (s ′i )

−1(µ′i ) ≡ z̃ f−1−i (a, b, c) mod p.

The ring R
expl,∇
M,w̃ f−1−i

is the quotient of F[[c12, c13, c22, c23, d23, c31, d33, c∗13 − [c
∗

13],

c∗21 − [c
∗

21], c∗32 − [c
∗

32]]] by the relations

c12c23 − c22c13 = 0; (3.14)
c22c31 = 0;
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c∗32c13 − d33c12 = 0;
c12((b − c)d33c∗21 + (a − b)c31d23) = 0;

(−1− a + c)c23c∗32 = (−1− a + b)c22d33.

Note that all equations except for the last one are mod$ reductions of equations
in [LLHLM18, Section 5.3.3]. We explain how to justify the last equation
from the computations in [LLHLM18, Section 5.3.3], which was implicit in
[LLHLM18, Table 7]. For the remainder of this paragraph, we adopt the notation
of loc. cit. We have c12((a− b)c31c′23+ (b− c)c∗21c′33) = pz∗. From the equation
c∗32c13 − pc∗32c∗13 − c′33c12 = 0, replacing p by (z∗)−1(c12((a − b)c31c′23 + (b −
c)c∗21c′33)), we deduce that c13 is a certain multiple of c12. Finally, using the
equation c12c23 = c22c13 and canceling out c12 (as it is a unit after inverting p),
we get an equation solving c23 in terms of the remaining variables. The mod $
reduction of this equation gives the last equation above.

The minimal primes of R
expl,∇
M,w̃ f−1−i

are

c(0,0) = (c12, c22); c(ε1,1) = (c12, c31); c(ε1−ε2,0) = (c31, d33)

and

c(0,1) = (c22, (b − c)d33c∗21 + (a − b)c31d23).

(Note that in R
expl,∇
M,w̃ f−1−i

, there are no more relation than those listed in (3.14).
Indeed, let R̃ be the quotient of F[[c12, c13, c22, c23, d23, c31, d33, c∗13 − [c

∗

13],

c∗21−[c
∗

21], c∗32−[c
∗

32]]] by the relations (3.14). Then the discussion above proves
that there is a surjection R̃ � R

expl,∇
M,w̃ f−1−i

. A direct check on the relations (3.14)

shows that R̃ is reduced, equidimensional of the same dimension as R
expl,∇
M,w̃ f−1−i

,
and with the same Hilbert–Samuel multiplicity. Therefore, the surjection is an
isomorphism; see Lemma 3.6.11.) We need to perform matching for the ideals
c(0,0), c(ε1,1), c(ε1−ε2,0),w(0)

def
= c(0,1) ∩ c(0,0). We provide details for the matching of

the ideal c(0,0) in Table 3. We have

R
expl,∇
M,w̃ f−1

/
c(0,0) = F[[d23, c31, d33, c∗13 − [c

∗

13], c∗21 − [c
∗

21], c∗32 − [c
∗

32]]]

and

A( f−1−i) mod c(0,0) =

 0 0 vc∗13
vc∗21 0 vd23

vc31 vc∗32 vd33

 .
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On the other hand, w̃′f−1−i = αβαγ t1, z̃∗i = αγ
+, (a′, b′, c′) = (c− 1, a, b+ 1),

and A′ ( f−1−i) has the form v2c′ ∗11 0 0
v2c′21 vc′ ∗22 0
v2d ′31 vc′32 c′ ∗33

 .
Now we note that z̃ f−1−i = t(−1,0,1)(123) and 0 0 vc∗13

vc∗21 0 vd23

vc31 vc∗32 vd33

 =
v2c′ ∗11 0 0
v2c′21 vc′ ∗22 0
v2d ′31 vc′32 c′ ∗33

0 0 v−1

1 0 0
0 v 0


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
c(0,0) ∼= R

expl,∇

M
′
,w̃′f−1−i

given by the change of variable

c∗21 = c′ ∗22, c∗13 = c′ ∗11, d23 = c′21,

c31 = c′32, c∗32 = c′ ∗33, d33 = d ′31.

Such a change of variable is allowed, provided the units that are matched with
each other agree modulo the maximal ideal because c′ ∗22 = c∗21, c′ ∗11 = c∗13, and
c′ ∗33 = c∗32 as elements of F (see Remark 3.6.8). Thus, 3.6.7 applies and we are
done with this case. The matching for c(ε1−ε2,0) can be performed in a similar
fashion.

Next we provide details for the matching of c(ε1,1). We have

R
expl,∇
M,w̃ f−1−i

/
c(ε1,1) =

F[[c22, c23, d23, d33, c∗13 − [c
∗

13], c∗21 − [c
∗

21], c∗32 − [c
∗

32]]](
(−1− a + c)c23c∗32 − (−1− a + b)c22d33

) .

Moreover,

A( f−1−i) mod c(ε1,1) =

 0 0 vc∗13
vc∗21 c22 c23 + vd23

0 vc∗32 vd33

 .
On the other hand, w̃′f−1−i = αβγβt1, z̃∗i = γ

+β, (a′, b′, c′) = (c − 1, a + 1, b)
and A′ ( f−1−i) has the form

A′ ( f−1−i)
=

 v2c′ ∗11 0 0
vc′21 + v

2d ′21 c′ ∗22 c′23
v2c′31 0 vc′ ∗33

 .
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The ring R
expl,∇

M
′
,w̃′f−1−i

is the quotient of F[[c′21, d ′21, c′23, c′31, c′ ∗11 − [c
′ ∗

11], c′ ∗22 − [c
′ ∗

22],

c′ ∗33 − [c
′ ∗

33]]] by the relation

(−1− a′ + b′)c′21c′ ∗33 − (b
′
− c′)c′31c′23 = 0.

Now we note that 0 0 vc∗13
vc∗21 c22 c23 + vd23

0 vc∗32 vd33

 =
 v2c′ ∗11 0 0
vc′21 + v

2d ′21 c′ ∗22 c′23
v2c′31 0 vc′ ∗33

0 0 v−1

v 0 0
0 1 0


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
c(ε1,1)

∼= R
expl,∇

M
′
,w̃′f−1−i

given by the change of variable

c22 = c′23, c23 = c′21, d23 = d ′21,

d33 = c′31, c∗13 = c′ ∗11, c∗21 = c′ ∗22, c∗32 = c′ ∗33.

We finish the matching in this case.
Finally, we explain the matching of the ideal w0

def
= c(0,1) ∩ c(0,0) = (c22). We

have

R
expl,∇
M,w̃ f−1−i

/
w0 =

F[[c12, d23, c31, d33, c∗13 − [c
∗

13], c∗21 − [c
∗

21], c∗32 − [c
∗

32]]](
c12((b − c)d33c∗21 + (a − b)c31d23)

) .

Moreover,

A( f−1−i) mod w0 =

c31c12(c∗32)
−1 c12 d33c12(c∗32)

−1
+ vc∗13

vc∗21 0 vd23

vc31 vc∗32 vd33

 .
On the other hand, w̃′f−1−i = αβαt1, z̃∗i = α, (a′, b′, c′) = (b, a, c) and A′ ( f−1−i)

has the form

A′ ( f−1−i)
=

 c′11 c′11c′32(c
′ ∗

31)
−1 d ′33c′11(c

′ ∗

31)
−1
+ vc′ ∗13

0 vc′ ∗22 vc′23
vc′ ∗31 vc′32 vd ′33

 .
The ring R

expl,∇

M
′
,w̃′f−1−i

is the quotient of F[[c′11, c′23, c′32, d ′33, c∗31 − [c
∗

31], c∗22 − [c
∗

22],

c∗13 − [c
∗

13]]] by the relations

c′11((a
′
− b′)c′23c′32 − (a

′
− c′)c′ ∗33d ′33) = 0.
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(We remark that the form of the (3, 3) entry of A′ ( f−1−i) is as above because
in the notation of [LLHLM18, Section 5.3.1], we have c33 = −y′33c13c∗31 = 0
mod p since c13c∗31 = c11c′33 mod p and y′33c11 = 0 mod p.)

Now we note thatc31c12(c∗32)
−1 c12 d33c12(c∗32)

−1
+ vc∗13

vc∗21 0 vd23

vc31 vc∗32 vd33

 =
=

 c′11 c′11c′32(c
′ ∗

31)
−1 d ′33c′11(c

′ ∗

31)
−1
+ vc′ ∗13

0 vc′ ∗22 vc′23
vc′ ∗31 vc′32 vd ′33

0 1 0
1 0 0
0 0 1


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
w0
∼= R

expl,∇

M
′
,w̃′f−1−i

given by the change of variable

c12 = c′11, c31 = c′32, d23 = d ′23,

d33 = d ′33, c∗32 = c′ ∗31, c∗21 = c′ ∗22, c∗13 = c′ ∗13.

Case w̃ f−1−i = αt1. From [LLHLM18, Table 5], the matrix of the partial
Frobenius A( f−1−i) has the following form: c11 c12 + vc∗12 c13

vc∗21 c22 + vd22 c23

vc31 vc32 c33 + vc∗33

 .
Set c̃32

def
=

c32c∗21−d22c31

c∗21
. Recall from item (2) above that R

expl,∇
M,w̃ f−1−i

is the quotient
of

F[[c11, c12, c13, c22, c23, c31, c̃32, c33, d22, c∗12 − [c
∗

12], c∗21 − [c
∗

21], c∗33 − [c
∗

33]]]

by the following relations:

c11c23 = 0, c∗33c11c̃32 = c13c31c̃32,

c11d22c∗33 =
b − c
a − b

c∗21c13c̃32, c13c23c̃32 = 0,

c23c31c̃32 = 0, c∗21c33 = c31c23,

c12c∗33 =
a − c
a − b

c13c̃32, c22c∗33 =
(−1− a + c)
(−1− a + b)

c23c̃32,
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and

(a − b)c13c31d22 + (c − b)c13c̃32c∗21 + (−1− a + c)c23c31c∗12 = 0.

(Note that R
expl,∇
M,w̃ f−1−i

is formally smooth of relative dimension three over the ring
R̃ defined in [LLHLM18, Proposition 8.11].)

We provide details for the matching of the ideal c(ε1,1). We have

R
expl,∇
M,w̃ f−1−i

/
c(ε1,1) =

F[[c22, c23, c32, d22, c∗21 − [c
∗

21], c∗12 − [c
∗

12], c∗33 − [c
∗

33]]](
(−1− a + b)c22c∗33 − (−1− a + c)c23c32

)
and

A( f−1−i) mod c(ε1,1) =

 0 vc∗12 0
vc∗21 c22 + vd22 c23

0 vc32 vc∗33

 .
On the other hand, w̃′f−1−i = αβγβ, z̃∗i = βγ

+β, (a′, b′, c′) = (b − 1, a + 1, c)
and A′ ( f−1−i) has the form v2c′ ∗11 0 0

v(c′21 + vd ′21) c′ ∗22 c′23
v2c′31 0 vc′ ∗33

 .
The ring R

expl,∇

M
′
,w̃′f−1−i

is the quotient of F[[c′21, d ′21, c′23, c′31, c′ ∗11 − [c
′ ∗

11], c′ ∗22 − [c
′ ∗

22],

c′ ∗33 − [c
′ ∗

33]]] by the relation

(−1− a′ + b′)c′21c′ ∗33 − (b
′
− c′)c′31c′23 = 0.

We now note that 0 vc∗12 0
vc∗21 c22 + vd22 c23

0 vc32 vc∗33

 =
 v2c′ ∗11 0 0
v(c′21 + vd ′21) c′ ∗22 c′23

v2c′31 0 vc′ ∗33

0 v−1 0
v 0 0
0 0 1


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
c(ε1,1)

∼= R
expl,∇

M
′
,w̃′f−1−i

given by the change of variables

c∗12 = c′ ∗11, c∗21 = c′ ∗22, d22 = d ′21
c23 = c′23 c32 = c′31 c∗33 = c′ ∗33.
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We now explain the matching of the ideal wε2

def
= c(ε2,0)∩ c(ε2,1) = (c11, c̃32). We

have

R
expl,∇
M,w̃ f−1−i

/
wε2 =

F[[c13, c23, c31, d22, c∗12 − [c
∗

12], c∗21 − [c
∗

21], c∗33 − [c
∗

33]]

c31((a − b)c13d22 + (−1− a + c)c∗12c23)
.

Moreover,

A( f−1−i) mod wε2 =

 0 vc∗12 c13

vc∗21 vd22 c23

vc31 vd22c31(c∗21)
−1 c23c31(c∗21)

−1
+ vc∗33

 .
On the other hand, w̃′f−1−i = αγα, z̃∗i = γ

+α and (a′, b′, c′) = (b, c− 1, a + 1)
and A′ ( f−1−i) has the form vc′ ∗11 vc′12 0

vc′21 vd ′22 c′ ∗23
vc′33c′21(c

′ ∗

23)
−1 v(c′33d ′22(c

′ ∗

23)
−1
+ vc′ ∗32) c′33

 .
The ring R

expl,∇

M
′
,w̃′f−1−i

is the quotient of F[[c′12, c′21, d ′22, c′33, c′ ∗11 − [c
′ ∗

11], c′ ∗23 − [c
′ ∗

23],

c′ ∗32 − [c
′ ∗

32]]] by the relation

c′33

(
(−1− a′ + c′)c′12c′21 − (1− b′ + c′)c′ ∗11d ′22

)
= 0.

Now we note that 0 vc∗12 c13

vc∗21 vd22 c23

vc31 vd22c31(c∗21)
−1 c23c31(c∗21)

−1
+ vc∗33


=

 vc′ ∗11 vc′12 0
vc′21 vd ′22 c′ ∗23

vc′33c′21(c
′ ∗

23)
−1 v(c′33d ′22(c

′ ∗

23)
−1
+ vc′ ∗32) c′33

0 1 0
0 0 v−1

v 0 0


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
wε2
∼= R

expl,∇

M
′
,w̃′f−1−i

given by the change of variables

c∗21 = c′ ∗23, c31 = c′33, c∗12 = c′ ∗11
d22 = c′21, c13 = c′12, c23 = d ′22, c∗33 = c′ ∗32.
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Case w̃ f−1−i = t1. From [LLHLM18, Table 5], the matrix of the partial
Frobenius A( f−1−i) has the following form:c11 + vc∗11 c12 c13

vc21 c22 + vc∗22 c23

vc31 vc32 c33 + vc∗33

 .
Recall from item (3) above that R

expl,∇
M,w̃ f−1−i

is the quotient of F[[ci j , c∗kk − [c
∗

kk],

1 6 i, j, k 6 3]] by the relations

ci i c j j = 0 for i 6= j, c11c23 = 0, c31c22 = 0,
c33c12 = 0, c12c23 = c22c13, c11c32 = c12c31,

c21c33 = c31c23,

and

(−1− a + c)c∗22c33 + (−1− a + b)c22c∗33 − (−1− a + c)c23c32 = 0
(a − b)c∗33c11 + (−1− b + c)c33c∗11 − (a − b)c13c31 = 0
(b − c)c∗11c22 + (a − c)c11c∗22 − (b − c)c12c21 = 0
c11c∗22c∗33 + c22c∗11c∗33 + c33c∗11c∗22 − c∗11c23c32 − c∗22c13c31

− c∗33c12c21 + c13c32c21 = 0.

(Note that R
expl,∇
M,w̃ f−1−i

is formally smooth of relative dimension three over the ring
R̃ defined in [LLHLM18, Corollary 8.4].)

We provide details for the matching of c(0,0) = (c11, c22, c33, c13, c23, c12).
We have

R
expl,∇
M,w̃ f−1−i

/
c(0,0) = F[[ci j , c∗kk − [c

∗

kk], 1 6 j < i 6 3, 1 6 k 6 3]]

and

A( f−1−i) mod c(0,0) =

vc∗11 0 0
vc21 vc∗22 0
vc31 vc32 vc∗33

 .
On the other hand, w̃′f−1−i = αβαγ t1 and A′ ( f−1−i) has the formv2c′ ∗11 0 0

v2c′21 vc′ ∗22 0
v2c′31 vc′32 c′ ∗33

 .
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We note that z̃ f−1−i = t(1,0,−1) andvc∗11 0 0
vc21 vc∗22 0
vc31 vc32 vc∗33

 =
v2c′ ∗11 0 0
v2c′21 vc′,∗22 0
v2c′31 vc′32 c′ ∗33

v−1 0 0
0 1 0
0 0 v


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
c(0,0) ∼= R

expl,∇

M
′
,w̃′f−1−i

given by the change of variables

ci j = c′i j for 1 6 j < i 6 3, c∗kk = c′ ∗kk for 1 6 k 6 3.

We now explain the matching for the ideal w0
def
= c(0,0) ∩ c(0,1) = (c22, c33, c23,

c∗33c12 − c13c32). We have

R
expl,∇
M,w̃ f−1−i

/
w0 =

F[[c13, c21, c31, c32, c∗11 − [c
∗

11], c∗22 − [c
∗

22], c∗33 − [c
∗

33]]]

(c13((a − c)c∗22c31 − (b − c)c32c21))

(we have used the relations

c∗33c12 − c13c32 = 0, c∗33c11 − c13c31 = 0, (a − c)c∗22c11 − (b − c)c12c21 = 0

holding in R
expl,∇
M,w̃ f−1−i

/
w0). Moreover,

A( f−1−i) mod w0 =

c13c31(c∗33)
−1
+ vc∗11 c13c32(c∗33)

−1 c13

vc21 vc∗22 0
vc31 vc32 vc∗33

 .
On the other hand, w̃ f−1−i = αβα = z̃∗i , (a′, b′, c′) = (c, b, a) and A′ ( f−1−i) has
the form  c′11 c′11c′32(c

′ ∗

31)
−1 c′11d ′33(c

′ ∗

31)
−1
+ vc′ ∗13

0 vc′ ∗22 vc′23
vc′ ∗31 vc′32 vd ′33

 .
The ring Rexpl,∇

M
′
,w̃′f−1−i

is the quotient of F[[c′11, c′23, c′32, d ′33, c′ ∗13 − [c
′ ∗

13], c′ ∗22 − [c
′ ∗

22],

c′ ∗31 − [c
′ ∗

31]]] by the relation

c′11

(
(a′ − b′)c′23c′32 − (a

′
− c′)c′ ∗22d ′33

)
= 0.

We now note thatc13c31(c∗33)
−1
+ vc∗11 c13c32(c∗33)

−1 c13

vc21 vc∗22 0
vc31 vc32 vc∗33
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=

 c′11 c′11c′32(c
′ ∗

31)
−1 c′11d ′33(c

′ ∗

31)
−1
+ vc′ ∗13

0 vc′ ∗22 vc′23
vc′ ∗31 vc′32 vd ′33

0 0 1
0 1 0
1 0 0


under the isomorphism

R
expl,∇
M,w̃ f−1−i

/
w0
∼= R

expl,∇

M′,w̃′f−1−i

given by the change of variables

c13 = c′11, c21 = c′23, c31 = d ′33,

c32 = c′32, c∗11 = c′ ∗13, c∗22 = c′ ∗22, c∗33 = c′ ∗31.

Case w̃ f−1−i = βαt1 and αβαt1: The computations of these two cases are very
similar to those we already performed and are left to the reader.

3.6.3. Ideal relations in deformation rings. In this subsection, we collect
some results about sums of intersections of minimal primes in the potentially
crystalline deformation rings Rτ

ρ . These computations play a crucial role in
Section 5.1, where they are used to compute the value of a patching functor
on certain representations as the limit of the value of the patching functor on
simpler pieces of the representation.

Thanks to Theorem 3.6.4, all computations that we need to perform can be
done on the rings R

expl,∇
M,w̃ f−1−i

given in Table 3. We continue to adopt the notation
and setting of Theorem 3.6.4.

We will frequently make use of the following.

LEMMA 3.6.11. Suppose we have a surjection of rings g : S � R. Assume that
R and S are equidimensional of dimension d, have the same number of minimal
primes, and S is reduced. Then g is an isomorphism.

Proof. The first two hypotheses imply that the kernel of g is nilpotent since g
induces an isomorphism between the underlying topological spaces of Spec (R)
and Spec (S). But since S is reduced, this kernel must in fact be 0.

Ideal relations in R
expl,∇
M,id

LEMMA 3.6.12. In the ring R
expl,∇
M,id , we have

(w0 ∩ c(ε1,0))+ (w0 ∩ c(ε2,0)) = w0.
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Proof. An elementary check on the list of generators of the ideals w0, c(ε1,0) and
c(ε2,0) (cf. Table 3) shows that

w0 ∩ c(ε1,0) ⊇ (c33, c23, c22), w0 ∩ c(ε2,0) ⊇ (c33, c22, c13c32 − c12c∗33).

In particular (again by looking at the list of generators of w0), we have (w0 ∩

c(ε1,0))+ (w0 ∩ c(ε2,0)) ⊇ w0. The reverse inclusion is obvious.

LEMMA 3.6.13. In the ring R
expl,∇
M,id , we have

w0 ∩ c(ε1,0) ∩ c(ε2,0) = (c22, c33).

Proof. We let R̃ be the ring with the same presentation as R
expl,∇
M,id except that all

c∗i j are set to 1. As explained in [LLHLM18, Corollary 8.4], there is a natural

identification of R
expl,∇
M,id with the power series over R̃ with three variables, and

we can work with the ring R̃ instead of R
expl,∇
M,id . All the ideals that we consider

come from R̃ and are given by generators with the same name.
From Table 3, we immediately obtain (c22, c33) ⊆ w0 ∩ c(ε1,0) ∩ c(ε2,0), and,

hence, we need to prove that the surjection

R̃/(c22, c33)� R̃/(w0 ∩ c(ε1,0) ∩ c(ε2,0)) (3.15)

is an isomorphism. The ring on the right-hand side is equidimensional of
dimension three and has four minimal primes. By Lemma 3.6.11, it suffices to
show that R̃/(c22, c33) is reduced, is equidimensional of dimension three, and
has four minimal primes.

Now R̃/(c22, c33) is the quotient of the power series ring F[[c11, ci j , 1 6 i, j,
6 3, i 6= j]] by the ideal generated by the following elements:

c11c23, c12c23, c11c32 − c12c31,

c31c23, c23c32, κc11 = c21c12,

c11 − c13c31, c11 − c12c21 − c13c31 − c23c32 + c21c13c32

for some κ ∈ F× depending on (a, b, c). By standard manipulations, we conclude
that R̃/(c22, c33) is isomorphic to the quotient of the power series ring F[[ci j ,

1 6 i, j,6 3, i 6= j]] by the ideal generated by the following elements:

c31c23, c23c32, c12c23,

c31(c12 − c13c32), c13(κc31 − c21c32), c21(c12 − c13c32);
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hence, by writing c̃12
def
= c12 − c13c32, c̃31

def
= κc31 − c21c32, we obtain

R̃/(c22, c33) ∼=
F[[̃c12, c̃31, c23, c13, c21, c32]]

(̃c12c̃31, c̃12c23, c̃12c21, c̃31c23, c̃31c13, c23c32)
.

This latter ring is easily seen to be equidimensional of dimension three and has
four minimal primes. It is furthermore reduced since it is the quotient of a power
series ring by an ideal generated by square-free monomials.

From Lemma 3.6.13, the same argument used in the proof of Lemma 3.6.12
gives the following.

LEMMA 3.6.14. In the ring R
expl,∇
M,id , we have

(w0 ∩wε1 ∩ c(ε2,0))+ (w0 ∩wε2 ∩ c(ε1,0)) = w0 ∩ c(ε1,0) ∩ c(ε2,0).

Proof. From Table 3, we immediately deduce that (w0 ∩ wε1 ∩ c(ε2,0)) ⊇ (c33)

and (w0∩wε2 ∩ c(ε1,0)) ⊇ (c22). The conclusion now follows as in Lemma 3.6.12
by noting that (c22, c33) = w0 ∩ c(ε1,0) ∩ c(ε2,0).

Ideal relations in R
expl,∇
M,α .

LEMMA 3.6.15. Consider the ring R
expl,∇
M,α (cf. Table 3) and let IΛ0

def
= c(0,0) ∩

c(0,1) ∩ c(ε2,0).
Then

(1) IΛ0 = (c11c∗33 − c13c31, c23c31, c23(c32c∗21 − d22c31)),

(2) c(ε1,1) ∩ c(0,0) ∩ c(ε2,0) = (c11, c13c31),

(3) c(0,1) ∩ c(0,0) = (c23, c11c∗33 − c13c31).

Proof. As in the proof of Lemma 3.6.13, it suffices to work in the ring R̃ which
has the same presentation as R

expl,∇
M,α except that all c∗i j are set to 1. Recall that

c̃32
def
= c32 − d22c31 in R̃.

We start with item (1). From Table (3), we easily deduce

IΛ0 ⊇ (c11 − c13c31, c23c31, c23c̃32),

that is, a surjection

R̃/(c11 − c13c31, c23c31, c23c̃32)� R̃/IΛ0 (3.16)
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which we claim is an isomorphism. Note that, by construction, the ring R̃/IΛ0

has three minimal primes, and it is equidimensional of dimension three.
From [LLHLM18, Proposition 8.11], we immediately deduce that the ring

R̃/(c11 − c13c31, c23c31, c23c̃32) is isomorphic to the quotient of the power series
ring F[[c31, c13, d22, c̃32, c23]] by the ideal generated by the following elements:

c13c31c23, c13c31d22 −
b − c
a − b

c13c̃32, c23c31,

c23c̃32, (a − b)c13c31d22 + (c − b)c13c̃32 + (−1− a + c)c23c31

that is, by the ideal generated by

c13

(
c31d22 −

b − c
a − b

c̃32

)
, c23c31, c23c̃32,

or, equivalently, the ideal generated by

c13

(
c31d22 −

b − c
a − b

c̃32

)
, c23c31, c23

(
c31d22 −

b − c
a − b

c̃32

)
.

In other words, by an evident change of variables, we have

R̃
/
(c11 − c13c31, c23c31, c23c̃32) ∼= F[[X, Y, Z ,W, c′22]]

/
(XY, Y Z ,W Z)

and the latter ring is equidimensional of dimension three and has three
irreducible components. It is, moreover, reduced since the ideal of relations
is generated by square-free monomials.

The argument to prove (2) is completely analogous and we only sketch it. It is
immediate to obtain from Table 3 the inclusion c(ε1,1)∩c(0,0)∩c(ε2,0) ⊇ (c11, c13c31).
From [LLHLM18, Proposition 8.11], we see that R̃/(c11, c13c31) is isomorphic
to

F[[c13, c23, c31, c̃32, d22]]/(c13c31, c13c̃32, c31c23c̃32, c31(κc23 − c13d22)) =

= F[[c13, c23, c31, c̃32, d22]]/(c13c31, c13c̃32, c31c23),

for some κ ∈ F× depending on (a, b, c). The conclusion is obtained by an
analogous argument to the previous case.

The proof of item (3) is similar and left to the reader. (Note that c(0,1) ∩
c(0,0) ⊇ (c23, c11 − c13c31) and use the explicit presentation of R̃ given by
[LLHLM18, Proposition 8.11] to check that R̃/(c23, c11 − c13c31) is reduced
with two irreducible components of dimension three.)
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LEMMA 3.6.16. In R
expl,∇
M,α , we have

(IΛ0 ∩ c(ε1,1))+ (IΛ0 ∩ c(ε2,1) ∩ c(ε2−ε1,0)) = IΛ0, (3.17)
(c(ε1,1) ∩ c(0,0) ∩ c(ε2,0) ∩ c(0,1))+ (c(ε1,1) ∩ c(0,0) ∩ c(ε2,0) ∩ c(ε2,1))

= c(ε1,1) ∩ c(0,0) ∩ c(ε2,0), (3.18)
(c(0,1) ∩ c(0,0) ∩ c(ε2,0))+ (c(0,1) ∩ c(0,0) ∩ c(ε2−ε1,0)) = c(0,1) ∩ c(0,0). (3.19)

Proof. We work in R̃ and set c̃32
def
= c32− d22c31. An elementary check on the list

of generators of the ideals IΛ0 , c(ε2,1), c(ε2−ε1,0), and c(ε1,1) shows that

(IΛ0 ∩ c(ε1,1)) ⊇ (c11 − c13c31, c23c31), (IΛ0 ∩ c(ε2,1) ∩ c(ε2−ε1,0)) ⊇ (c23c̃32),

and we deduce (again by looking at the list of generators of IΛ0 ) that

(IΛ0 ∩ c(ε1,1))+ (IΛ0 ∩ c(ε2,1) ∩ c(ε2−ε1,0)) ⊇ IΛ0 .

The reverse inclusion is obvious.
Similarly, (c11) ⊆ c(ε1,1)∩c(0,0)∩c(ε2,0)∩c(ε2,1) and (c11−c13c31) ⊆ c(ε1,1)∩c(0,0)∩

c(ε2,0)∩c(0,1). Hence, (c(ε1,1)∩c(0,0)∩c(ε2,0)∩c(0,1))+(c(ε1,1)∩c(0,0)∩c(ε2,0)∩c(ε2,1)) ⊇

c(ε1,1) ∩ c(0,0) ∩ c(ε2,0).
The proof of item (3.19) is similar and left to the reader (note that c11−c13c31 ∈

(c(0,1) ∩ c(0,0) ∩ c(ε2,0)) and c23 ∈ (c(0,1) ∩ c(0,0) ∩ c(ε2−ε1,0))).

REMARK 3.6.17. The ideal relation appearing in Lemmas 3.6.15 and 3.6.16
are compatible with the outer automorphism of W̃∨. Explicitly, define δ̃ def

=

(123)t(0,0,−1) and let w̃ 7→ δ̃w̃δ̃−1 be the corresponding outer automorphism on
W̃∨. Then δ acts onΣ0 and the ideal relations of Lemmas 3.6.15 and 3.6.16 hold
for shape β with c(ωi ,ai ) replaced by c((̃δ∗)−1(ωi ),ai ). As an example, for shape β, the
relation (3.19) becomes (c(ε1,1) ∩ c(ε1,0) ∩ c(0,0)) + (c(ε1,1) ∩ c(ε1,0) ∩ c(ε1−ε2,0)) =

c(ε1,1) ∩ c(ε1,0).

4. Lattices in generic Deligne–Lusztig representations

The aim of this section is to classify lattices with irreducible cosocle in generic
GL3(Fq) Deligne–Lusztig representations, providing the crucial representation-
theoretic input to deduce Breuil’s lattice conjecture from the weight part of Serre
conjecture. The main result (Theorem 4.1.9) states that the submodule structure
of lattices with irreducible cosocle can be predicted using the extension graph
introduced in Section 2.
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Outline of the proof. Let R be a generic Deligne–Lusztig representation. We
have two main steps in the proof of the classification theorem: first, by local
algebraic methods, we describe the reduction of lattices with irreducible cosocles
isomorphic to a lower alcove weight with defect zero (Theorem 4.2.16). Second,
in Section 4.3, we introduce another notion of distance related to the second part
of Theorem 4.1.9, which we call saturation distance. It turns out that this notion
is closely related to the submodule structure of the reduction of lattices.

Using a crucial global input coming from the geometry of Galois deformation
rings, we show that

(1) if measured from σ the graph and saturation distances coincide, then the
reduction of the lattice with cosocle isomorphic to σ is as predicted in
Theorem 4.1.9 (Proposition 4.3.16);

(2) measured from a lower alcove weight of defect zero, the saturation
distance and the graph distance coincide (Proposition 4.3.17, which uses
Theorem 4.2.16).

In contrast to the other notions of distance that we introduce, the saturation
distance involves lattices in characteristic zero, making it far more flexible.
Taking advantage of this flexibility, we finally show by an induction on defect
that the saturation distance and the graph distance coincide, completing the proof
of Theorem 4.1.9.

Structure of Section 4. For R as above and σ ∈ JH(R), let Rσ denote the
unique (up to homothety) O-lattice in R with irreducible cosocle σ and write
R
σ

to denote its reduction modulo $ . The first main step is in Section 4.2.
The argument uses the modular representation theory of algebraic groups to
embed R

σ
into the G def

= G0(Fp)-restriction of a tensor product Vµ of algebraic
Weyl modules with non-p-restricted highest weight (see Section 4.2.2 for the
definition of Vµ). The content of Section 4.2.3 is the description of Vµ|G provided
by Theorem 4.2.7. This theorem describes the Jordan–Hölder constituents of
Vµ|G and the existence of nontrivial extensions between constituents at graph
distance one (cf. the key technical result Proposition 4.2.10). The embedding
of R

σ
in Vµ is constructed in Section 4.2.4. One first proves the existence of a

nonzero (and unique up to scalar) morphism R
σ
→ Vµ (Proposition 4.2.15); an

inductive argument, using the description of the submodule structure of Vµ|G,
then shows that the image of this morphism contains all the constituents of R

σ
.

The submodule structure of R
σ

is then obtained from that of Vµ.
The second part of the proof of Theorem 4.1.9 is the content of Section 4.3.

The key insight is the introduction of the auxiliary notion of saturation distance
on JH(R) in Section 4.3.1 which relates the position of saturated lattices in Rσ .
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Using a global input, we give in Section 4.3.1 a first coarse relation between
the saturation and the graph distance (cf. Corollary 4.3.8). Subsequently, we
prove in Section 4.3.2 that the three distances are actually equal provided that
σ verifies an appropriate condition relating its defect, its graph distance, and its
saturated distance (we say that σ is maximally saturated in R). In particular, if
σ is maximally saturated in R, the structure of R

σ
is predicted by the extension

graph (Proposition 4.3.16).
We are hence left to prove that all constituents of R are maximally saturated.

This is shown by an induction argument in Section 4.3.3. The proof of Theorem
4.1.9 concludes this section.

4.1. The classification statement.

4.1.1. Some generalities. Let C be a nonzero finite abelian category over F. Let
M be a nonzero object of C. A decreasing (respectively increasing) filtration F
on M is a collection of subobjects F n(M) ⊂ M (respectively Fn(M) ⊂ M)
for n ∈ Z such that F n+1(M) ⊂ F n(M) (respectively Fn(M) ⊂ Fn+1(M))
for all i . A filtration F is exhaustive and separated if F n(M) = 0 for i
sufficiently large (respectively small) and F n(M) = M for n sufficiently small
(respectively large), and this property will always be assumed to hold. We
write grn

F (M)
def
=

F n(M)
F n+1(M) (respectively grFn (M)

def
=

Fn(M)
Fn−1(M)

) and omit F from
the notation if it is clear from context. A filtration is semisimple if grn

F (M)
(respectively grFn (M)) is semisimple for all n ∈ Z. By shifting the filtration,
we will assume that grn

F (M) = 0 (respectively grFn (M) = 0) for n < 0 and
that gr0

F (M) 6= 0 (respectively grF0 (M) 6= 0). The length of a filtration is the
maximal ` ∈ Z such that gr`−1

F (M) 6= 0 (respectively grF`−1(M) 6= 0).
The socle of M , denoted as soc(M), is defined to be the maximal (with respect

to inclusion) semisimple subobject of M . The radical of M , denoted as rad(M),
is the minimal (with respect to inclusion) subobject of M whose corresponding
quotient is semisimple. The cosocle of M is cosoc(M) def

= M/rad(M). We
inductively define the radical and socle filtration on M : we set rad0(M) = M
and let radn(M) def

= rad
(
radn−1(M)

)
, and set soc−1(M) = 0 and let socn(M)

be the inverse image, via the canonical projection M � M/socn−1(M), of
soc (M/socn−1(M)) ⊆ M/socn−1(M). Then the radical (respectively socle)
filtration is a decreasing (respectively increasing) semisimple filtration.
Moreover, gr0

rad(M) = cosoc(M) and grsoc
0 (M) = soc(M). Since formation

of cosocle (respectively socle) is right (respectively left) exact, the filtration
induced from the radical (respectively socle) filtration on a quotient object
(respectively subobject) is the radical (respectively socle) filtration. The lengths
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of the radical and socle filtrations coincide, and we call this value the Loewy
length of M and denote it by ``(M). Any semisimple filtration has length at
least ``(M), and we say that it is a Loewy series if its length equals ``(M). If
F is a decreasing Loewy series, then we necessarily have

radn(M) ⊆F n(M) ⊆ soc``(M)−n−1(M) (4.1)

for all n ∈ {0, . . . , ``(M)}. We say that M is rigid if radn(M) = soc``(M)−n−1(M)
for all n.

We say that M is multiplicity free if every Jordan–Hölder factor of M appears
with multiplicity one. We now suppose that M is multiplicity free. We say that
σ ∈ JH(M) points to σ ′ ∈ JH(M) if there exists a subquotient of M which is
isomorphic to a nontrivial extension of σ by σ ′. We say that a subset S ⊂ JH(M)
is closed if σ ∈ S and σ points to σ ′ imply that σ ′ ∈ S.

PROPOSITION 4.1.1. The assignment of JH(N ) to a subobject N ⊂ M gives a
bijection between subobjects of M and closed subsets of JH(M).

Proof. It is easy to see that JH(N ) is a closed subset of JH(M). Suppose that S ⊂
JH(M) is a closed subset. Let N be the minimal subobject of M with S ⊂ JH(N ).
Suppose that JH(N ) \ S is nonempty and contains σ . If σ ′ ∈ JH(N ) points to
σ , then σ ′ is not in S since S is closed. By replacing σ by σ ′ repeatedly, we can
assume, without loss of generality, that σ ′ does not point to σ for all σ ′ ∈ JH(N ).
Let N ′ be the maximal subobject of N such that σ /∈ JH(N ′). This maximality
implies that the socle of N/N ′ must be isomorphic to σ . By the assumption
above, there is no subobject of N/N ′ which is an extension by σ , and, therefore,
N/N ′ is isomorphic to σ . Then the existence of N ′ contradicts the minimality
of N .

Suppose that M is multiplicity free and that F is a decreasing (respectively
increasing) filtration on M . For σ ∈ JH(M), we define dM

F (σ ) (respectively
dF

M (σ )) to be the unique value n such that HomC(σ, grn
F (M)) (respectively

HomC(σ, grFn (M))) is nonzero. For F semisimple, we say that σ ∈ JH(M)
F -points to σ ′ ∈ JH(M) if σ points to σ ′ and the (shifted) induced filtration
on the subquotient which is isomorphic to a nontrivial extension of σ by σ ′ has
length 2.

If M is multiplicity free, we can attach a directed acyclic graph Γ (M) and a
subgraph ΓF (M) of Γ (M) (respectively ΓF (M)) of Γ (M)) where the vertices
are in bijection with the Jordan–Hölder factors of M and there is an arrow σ →

σ ′ in Γ (M) if σ points to σ ′ and an arrow σ → σ ′ in ΓF (M) (respectively in
ΓF (M)) if σ F -points to σ ′. An extension path (in M) is a directed path in
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Γ (M) and an extension path in F is a directed path in ΓF (M) (respectively
ΓF (M)). The following proposition is immediate from the definitions.

PROPOSITION 4.1.2. Let N be a subquotient of M. If F is a semisimple
filtration on M, then it naturally induces a semisimple filtration on N. Moreover,
Γ (N ) (respectively ΓF (N ) and ΓF (N )) is the maximal subgraph of Γ (M)
(respectively ΓF (M) and ΓF (M)) with vertices corresponding to JH(N ).

LEMMA 4.1.3. Suppose that M is multiplicity free and σ ∈ JH(M). If dM
rad(σ ) >

0 (respectively dsoc
M (σ ) > 0), there is a σ ′ such that dM

rad(σ
′) = dM

rad(σ ) − 1
(respectively dsoc

M (σ
′) = dsoc

M (σ ) − 1) and σ ′ rad-points to σ (respectively σ soc-
points to σ ′).

Proof. We consider the radical filtration; the socle filtration is analyzed similarly.
Let d = dM

rad(σ ). Then the radical filtration on radd−1(M) is a shift of the
radical filtration on M by definition and induces the radical filtration on
radd−1(M)/radd+1(M). Then there is a σ ′ ∈ JH(grd−1

rad (M)) which rad-points to
σ , otherwise σ would not be in the radical of radd−1(M)/radd+1(M) which is
grd

rad(M).

COROLLARY 4.1.4. Suppose that M is multiplicity free and σ ∈ JH(M). Then
there is an extension path in the radical (respectively socle) filtration of length
dM

rad(σ ) (respectively dsoc
M (σ )) ending (respectively beginning) with σ .

Proof. The case dM
rad(σ ) = 0 (respectively dsoc

M (σ ) = 0) is trivial. The induction
step follows from Lemma 4.1.3.

LEMMA 4.1.5. Suppose that M is multiplicity free and F is an increasing
semisimple filtration on M. If σ points to σ ′, then dF

M (σ ) > dF
M (σ

′).

Proof. Let d be dF
M (σ ). By Proposition 4.1.1, Fd(M) contains σ ′ as a Jordan–

Hölder factor. Thus, dF
M (σ ) > dF

M (σ
′). If dF

M (σ ) = dF
M (σ

′), then there is
a subquotient of M which is isomorphic to a direct sum of σ and σ ′. This
contradicts the fact that σ points to σ ′.

PROPOSITION 4.1.6. Suppose that M ∈ C is multiplicity free. Then M is rigid
if and only if for every σ ∈ JH(M), there is an extension path in the radical
(respectively socle) filtration of length ``(M)−1−dM

rad(σ ) (respectively ``(M)−
1− dsoc

M (σ )) beginning (respectively ending) with σ .
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Proof. First, suppose that M is rigid. There is an extension path Prad in the radical
filtration of length dM

rad(σ ) ending at σ by Corollary 4.1.4. By rigidity, this is an
extension path in the socle filtration of length dM

rad(σ ) = ``(M)− 1− dsoc
M (σ ).

Now suppose that there is an extension path in the radical filtration of length
``(M)− 1− dM

rad(σ ) starting with σ . Then

dsoc
M (σ ) > ``(M)− 1− dM

rad(σ )

by Lemma 4.1.5. The reverse inequality is implied by (4.1), and we conclude
that grn

rad(M) and grsoc
``(M)−1−n(M) are isomorphic and, thus, that M is rigid.

The following is self-evident.

PROPOSITION 4.1.7. Let M ∈ C be multiplicity free. Then the dual object M∗ in
the dual abelian category C∗ is also multiplicity free. A decreasing filtration F
on M gives rise to an increasing filtration F ∗ on M∗. Then the map sending σ ∈
JH(M) to σ ∗ ∈ JH(M∗) extends to isomorphisms of directed graphs Γ (M)

∼

→

Γ (M∗) and ΓF (M)
∼

→ ΓF ∗

(M)∗ where −∗ denotes the transpose of a directed
graph. In particular, if σ0 → σ1 → · · · → σn is an extension path in F , then
σ ∗n → σ ∗n−1 → · · · → σ ∗0 is an extension path in F ∗.

4.1.2. The main result. We now use the notation from Section 4.1.1 with C
the category of finite F[G]-modules. Let R be a 2-generic Deligne–Lusztig
representation of G over E . By [Her09, Appendix, Theorem 3.4] (see the proof
of Proposition 2.3.5), R is residually multiplicity free. We will show that the
elements in JH(R) are p-regular in Lemma 4.2.13. If σ ∈ JH(R), then there
exists a unique (up to homothety) O-lattice Rσ

⊆ R with irreducible cosocle
isomorphic to σ by [EGS15, Lemma 4.1.1], and we write R

σ
to denote its

reduction modulo $ . In Section 2, we defined a distance function dgph on p-
regular Serre weights. We now want to relate the graph distance to the submodule
structure of R

σ
. To simplify notation, we fix R and write dσrad(σ

′) for dR
σ

rad(σ
′).

DEFINITION 4.1.8. Let V be a set of (isomorphism classes of) weights σ =
F(µ) with µ p-regular. Let σ ∈ V . Let Γ be a directed graph with vertex set V .
Then we say that Γ is predicted by the extension graph with respect to σ if there
is an edge from κ1 to κ2 if and only if dgph(κ1, κ2) = 1 and dgph(σ, κ1) 6 dgph(σ,

κ2) (see Definition 2.1.8).

Our main result on the representation theory side is the following.

THEOREM 4.1.9. Let R be as above and 13-generic. Let σ ∈ JH(R). Then
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(1) dgph(σ, κ) = dσrad(κ) for all κ ∈ JH(R), in particular,

``(R
σ
) = 2DefR(σ )+ 3( f − DefR(σ ))+ 1;

(2) Γrad(R
σ
) is predicted by the extension graph with respect to σ ;

(3) Γ (R
σ
) is predicted by the extension graph with respect to σ ;

(4) R
σ

is rigid; and

(5) if κ ∈ JH(R) and Rκ ↪→ Rσ is a saturated inclusion, then pdgph(κ, σ )Rσ ↪→

Rκ is a saturated inclusion.

REMARK 4.1.10. By Proposition 2.3.5, every maximal geodesic in JH(R)
starting from σ has the same length. Then item (4) follows from items (1)
and (2) and Proposition 4.1.6. Furthermore, (3) and Proposition 4.1.1 give a
classification of submodules of R

σ
, from which one can easily deduce items

(1) and (2).

The proof of Theorem 4.1.9 will be carried out in the following subsections.

4.2. Injective envelopes. We now relax our hypotheses on G0 but keep much
of the related notation. Let G0 be a connected reductive group over Fp and let
G be the base change G0 ×Fp F. Assume that G is split and isomorphic to
Gs ×Fp F, where Gs is a connected split reductive group over Fp. Let Gder

0 be the
derived subgroup of G0 and let Gder be the base change Gder

0 ×Fp F. Assume that
Gder

0 is simply connected. Let G (respectively Gder) be the finite group G0(Fp)

(respectively Gder
0 (Fp)). Let F : G → G denote the relative Frobenius with

respect to Gs . There is an automorphism π of Gs , and hence its based root
datum, so that F ◦π : G → G is the relative Frobenius with respect to G0. This
definition of π is consistent with the special case introduced in Section 1.4. Let
h be the Coxeter number of G. We will eventually specialize to the case where
G is a product of copies of GL3 so that h = 3.

We define Proj(σ ) to be the projective hull of σ in the category of F[G]-
modules. As F[G] is a Frobenius algebra, we have an isomorphism Proj(σ ) ∼=
Inj(σ ) where Inj(σ ) denotes the injective envelope of σ (again in the category of
F[G]-modules; cf. [Alp86, Section 6, Theorems 4 and 6]).

4.2.1. Algebraic groups, Frobenius kernels, and finite groups. In this section,
we compare injective envelopes of weights for representations of Frobenius
kernel and of finite groups. One goal is to prove that, under genericity conditions,
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the graph distance introduced in Section 2.1 can be characterized in terms
of nonvanishing of Ext1

G-groups (Lemma 4.2.6). We, moreover, introduce and
describe a non-p-restricted Weyl module Vµ which will play a key role in the
proof of a particular case of Theorem 4.1.9.

Let G1 denote the Frobenius kernel of G and G1T denote the product of
T and G1 in G. We similarly define Gder

1 and Gder
1 T der. The G-representation

L(µ) remains irreducible when restricted to G1T and G1 (cf. [Jan03, II.3.10
and II.9.6]) and we will use the standard notations L1(µ) = L(µ)|G1

, L̂1(µ) =

L(µ)|G1T (cf. loc. cit.). We write Q̂1(µ) to denote the injective envelope of the
irreducible representation L̂1(µ) in the category of G1T -modules. It restricts to
an injective envelope of L1(µ) in the category of G1-modules. As in the case of
the finite group G, it is isomorphic to a projective cover of L1(µ) as well. We
recall the following important result.

THEOREM 4.2.1. Assume that p > 2(h−1) and that G has no factors of type A1.
Then Q̂1(µ) has a unique G-module structure which will be denoted by Q1(µ)

in what follows. In particular, socG Q1(µ) is isomorphic to L(µ) since L(µ) is
the unique extension of L̂1(µ). Assume that µ ∈ X1(T ) is h − 2-deep. Then

Q1(µ)|G ∼= Proj(F(µ)) ∼= Inj(F(µ)). (4.2)

Proof. The first part of the theorem is well known; cf. [Jan03, II.11.11]. In what
follows, we deduce the isomorphism (4.2) from [Pil93, Lemma 6.1] (where it is
stated when G is semisimple). It suffices to show that Q1(µ)|G is injective and
its socle is F(µ).

Claim 1. Let M be a G-module. Then socGder(M |Gder) = socG(M)|Gder . The
analogous statement holds true for G1T and Gder

1 T der and for the finite groups
G and Gder.

Proof of Claim 1. Let Z def
= G/Gder (respectively Z 1

def
= G1/Gder

1 ). For • ∈
{∅, 1}, the group Z

•
is diagonalizable, and, hence, by the Hochschild–Serre

spectral sequence [Jan03, I.6.9(3)], the restriction functor ResG
•

Gder
•

(which is
exact) induces a canonical isomorphism

Exti
G
•

(M, N )
∼

−→ H 0(Z
•
,Exti

Gder
•

(M |Gder
•
, N |Gder

•

))
(4.3)

for all i ∈ N and all G
•
-modules M, N . Since the Gder

•
-restriction of an

irreducible G
•
-module remains irreducible, we conclude that ResG

•

Gder
•

commutes
with the formation of socles and cosocles. By [Jan03, II.9.6 (11)], this implies
the required statement for the groups G1T , Gder

1 T der.
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Since Z def
= G/Gder has order prime to p, we also have a canonical isomorphism

Exti
G(M, N )

∼

−→ H 0(Z,Exti
Gder(M |Gder, N |Gder

)
(4.4)

for all i ∈ N and all G-modules M, N which implies the statement in the case
of finite groups.

Claim 2. Let ν be a p-restricted weight. Then Q̂1(ν)|Gder
1 T der is the injective

envelope of L̂1(ν)|Gder
1 T der as a Gder

1 T der-module.

Proof of Claim 2. By Claim 1, the socle of Q̂1(ν)|Gder
1 T der is isomorphic to

L̂1(ν)|Gder
1 T der . It suffices to prove injectivity. By [Jan03, II.9.4], it is enough to

prove injectivity for the restriction to Gder
1 . As Gder

1 and G1 are both finite and

Gder
1 is closed in G1, we deduce that ResG1

Gder
1

maps injectives to injectives (since
it has an exact left adjoint, cf. [Jan03, I.3.5, I.8.16]).

We are now ready to prove (4.2). We show that Q1(µ)|G is an injective G-
module with socle isomorphic to F(µ). By [Pil93, Lemma 6.1] (which also
holds in the nonsplit case; cf. the final remark of [Pil93, Section 11]) and Claim
2, we have

Q1(µ)|Gder ∼= Inj(F(µ)|Gder) (4.5)

so that Q1(µ)|Gder is an injective Gder-module with socle isomorphic to F(µ)|Gder .
We first show injectivity. The functor of G/Gder-invariants is exact on the

category of G/Gder-representations. We hence obtain a canonical isomorphism

HomG(•, Q1(µ)|G) ∼=
(
HomG′(•, Q1(µ)|Gder)

)G/Gder

,

and HomG(•, Q1(µ)|G), being the composite of two exact functors, is therefore
exact.

The socle of Q1(µ)|G contains a submodule isomorphic to F(µ) and its
restriction to Gder is isomorphic to F(µ)|Gder . Thus, the socle of Q1(µ)|G is
isomorphic to F(µ). (We are grateful to the referee for simplifying the argument
in our first version.)

Recall that an irreducible G-module L(κ), with κ ∈ X ∗
+
(T ), is said to be p-

bounded if 〈κ, α∨〉< 2(h−1)p for all coroots α ∈ R∨; a G-module is p-bounded
if all its Jordan–Hölder factors are p-bounded. Similarly, a G-module is defined
to be m-deep if the highest weights of all its Jordan–Hölder factors are m-deep.
The following lemmas will be used several times in the rest of this section.
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LEMMA 4.2.2 [Pil97, Lemma 3.1]. Let M be a G-module. If M is 3(h−1)-deep
with p-bounded highest weight, then

socG
i (M)|G = socG

i (M |G), radi
G(M)|G = radi

G(M |G).

Proof. The statement on the socle filtration for Gder and Gder follows from the
proof of [Pil97, Lemma 3.1]. While loc. cit. assumes that Gder

0 is split over
Fp, the proof applies setting n = 1 and using that L(pλ1)|Gder is isomorphic
to L(πλ1)|Gder rather than L(λ1)|Gder . By duality, noting that M is 3(h − 1)-deep
if and only if its linear dual M∗ is 3(h − 1)-deep and that soc•``(M)−i(M

∗) =

(M/radi
•
(M))∗ for • ∈ {Gder, Gder

}, we obtain the analogous statement for the
radical filtration (recall that ``(M) is the Loewy length of M). The general case
follows from Claim 1 in the proof of Theorem 4.2.1.

COROLLARY 4.2.3. Let µ ∈ X1(T ) such that Q1(µ) is 3(h − 1)-deep. Then

socG
i (Q1(µ))|G = socG

i (Inj(F(µ))), radi
G(Q1(µ))|G = radi

G(Inj(F(µ))).

Proof. This follows from Theorem 4.2.1 and Lemma 4.2.2.

If ν, κ ∈ X ∗(T ), we let mκ(ν)
def
= dimF(L(κ))ν . Moreover, we write ν ∈ L(κ)

as a shorthand for (L(κ))ν 6= 0.

LEMMA 4.2.4 (Translation principle). Assume that p > 2(h − 1). Let λ, ξ ∈
X1(T ). Assume that for all weights ν ∈ L(ξ), the weights λ + ν belong to the
same alcove as λ. Then we have the following isomorphism of G-modules:

(1) L(λ)⊗F L(ξ) =
⊕

ν∈L(ξ)L(λ+ ν)
⊕mξ (ν),

(2) Q1(λ)⊗F L(ξ) =
⊕

ν∈L(ξ)Q1(λ+ ν)
⊕mξ (ν).

Proof. We first prove item (1). The isomorphism holds upon restriction to Gder
1

by [Pil93, Lemma 5.1]. As the LHS and RHS of (1) have the same central
characters, the Gder

1 -isomorphisms extend to G-isomorphisms by (4.3).
We now switch to item (2). By the same argument as above, we deduce from

[Pil93, Lemma 5.1] a G1T -equivariant isomorphism

Q̂1(λ)⊗F L̂1(ξ) ∼=
⊕
ν∈L̂1(ξ)

Q̂1(λ+ ν)
⊕mξ (ν). (4.6)
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By item (1) and the isomorphism socG(Q1(λ)) ∼= L(λ) from Theorem 4.2.1, we
have a G-equivariant injection

socG

(⊕
ν∈L(ξ)

Q1(λ+ ν)
⊕mξ (ν)

)
=

⊕
ν∈L(ξ)

L(λ+ ν)⊕mξ (ν)

= L(λ)⊗F L(ξ) ↪→ Q1(λ)⊗F L(ξ). (4.7)

We claim that in the full subcategory of p-bounded G-modules, the functor
HomG (•, Q1(λ)⊗F L(ξ)) is exact. Granting the claim we deduce from (4.7)
a G-equivariant morphism⊕

ν∈L(ξ)

Q1(λ+ ν)
⊕mξ (ν) ↪→ Q1(λ)⊗F L(ξ)

which is injective since it is injective on socles. The morphism is hence an
isomorphism by (4.6) (note that L̂1(ξ)ν = L(ξ)ν for all ν ∈ X1(T ) since
ξ ∈ X1(T )) and item (2) follows.

We prove the claim. It will be enough to prove that for any irreducible, p-
bounded G-module L(κ), one has

Ext1
G(L(κ), Q1(λ)⊗F L(ξ)) = 0. (4.8)

As L(κ) is p-bounded, we can write κ = κ (0) + pωκ where κ (0) ∈ X1(T ) and
ωκ ∈ X ∗

+
(T ) satisfies 〈ωκ , α∨〉 < 2(h − 1) for all coroots α∨ ∈ R∨. Recall

that Q1(λ)|G1T
∼= Q̂1(λ). As Q̂1(λ) is injective as a G1-module, the Lyndon–

Hochschild–Serre spectral sequence [Jan03, I.6.6(3), I.6.5(2)], together with
(4.6), provides us with an isomorphism

Ext1
G(L(κ), Q1(λ)⊗F L(ξ))
∼= Ext1

G/G1

(
L(pωκ),HomG1

(
L1(κ

(0)), Q̂1(λ)⊗F L1(ξ)
))

∼= Ext1
G/G1

(
L(pωκ),HomG1

(
L1(κ

(0)),
⊕
ν∈L̂1(ξ)

Q̂1(λ+ ν)

)⊕mξ (ν)
)

∼=

Ext1
G

(
L(ωκ), L

(
λ+ ν − κ (0)

p

))⊕mξ (ν)

if λ+ ν − κ (0) ∈ pX 0(T )

0 else.

As 〈ωκ , α∨〉 < 2(h − 1) 6 p − 2 for all coroots α∨ ∈ R∨, it follows that ωκ lies
in the lower p-restricted alcove; in particular, there are no algebraic extensions
between L(ωκ) and L(ω) for any ω ∈ X 0(T ). This establishes (4.8).
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4.2.2. The case of GL3. We now describe the modules Q1(µ)|G in more detail
in the case G0 is

∏
ṽ∈S Reskṽ/Fp GL3 as in Section 1.4 and µ ∈ X1(T ). We recall

the alcove labeling for SL3 in [Hum06, Section 13.9] and write

A
def
= {A, B, C, D, E, F, G, H, I, J }.

If X ∈ A , let w̃X ∈ Wa be the unique element such that w̃X ·C0 = X . For i ∈ J ,
we define w̃X,i ∈ W a in the evident way. For X ∈ A J , we also define w̃X ∈ W a

in the evident way. In what follows, we let f def
= #J .

Assume from now on that p > 5 and µ is 2-deep. Let µop be w̃B · µ and
write µop as the sum

∑
i µ

op
i . Let Q1(µi) be the GL3/F-module defined in

Theorem 4.2.1. It is rigid with Loewy length ``(Q1(µ)) = 6+1 and is endowed
with a Weyl filtration (see [Jan03, II.11.13, II.11.5(5), II.4.19] and also [Hum06,
Section 13.9]) with submodule Vµi

def
= V (µop

i + pη′i) and the GL3/F-module
obtained by extension of scalars from the Weyl module for GL3/Fp with the
highest weight µop

i + pη′i . Moreover, the socle filtration of Q1(µi) (see [Hum06,
Section 13.9] for a concise reference, [AM01, Proposition 8.4] and its proof and
[Jan03, Section II.D.4]) and Vµi (cf. [BDM15, Section 4], and Table 6) is known.
(The condition that µ is 2-deep is to guarantee that all Vµi has maximal length;
their Loewy length in this case is 3 + 1.) In particular, one sees that Vµi is a
multiplicity-free submodule of Q1(µi). Then the G-modules Q1(µ) and Vµ are
defined to be the tensor products

⊗
i Q1(µi) and

⊗
i Vµi , respectively.

The module Q1(µ) is rigid with Loewy length ``(Q1(µ)) = 6 f +1. The socle
filtration on Q1(µ) is the tensor product of the socle filtrations Fil on Q1(µi) for
i ∈ J , and the graph Γ (Vµ) is the product

∏
i Γ (Vµi ). In particular, Vµ is rigid.

Let Fil be the unique increasing Loewy series for Q1(µ); its restriction to Vµ is
the unique Loewy series for Vµ.

Recall that an irreducible F[G]-module F is said to be n-deep if we can write
F ∼= L(µ)|G(Fp) for some µ ∈ X1(T ) which is n-deep. A F[G]-module is defined
to be n-deep if all its Jordan–Hölder constituents are n-deep.

LEMMA 4.2.5. Let µ ∈ X ∗(T ), n ∈ N, and w̃ ∈ W̃ . If µ is n-deep in alcove a,
then w̃ · µ is n-deep in alcove w̃ · a. In particular, if µ ∈ X1(T ) is n-deep, then
Q1(µ) and Vµ are n-deep. If µ ∈ X1(T ) is n + 2-deep, then Q1(µ)|G and Vµ|G
are all n-deep.

Proof. The first two claims are easy. To prove the final claim, first note that the
Jordan–Hölder factors of Q1(µ)|G and Vµ|G are the same, and so it suffices to
prove the claim for L|G where L ∈ JH(Vµ). Suppose that L is isomorphic to
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L(λ) and λ = λ0
+ pωλ. Then

L|G ∼= L(λ0
+ πωλ) ∼=

⊕
ε∈L(πωλ)

L(λ+ ε)mπωλ
(ε)

by Lemma 4.2.4(1). The result now follows from the fact that |〈ε, α∨〉| 6 2 for
any ε ∈ L(πωλ) and any positive root α ∈ R+ of a simple factor of G.

Assume that µ is 6-deep. By Corollary 4.2.3, the socle filtration on
Inj(F(µ)) is given by (Filn Q1(µ))|G. Since Inj(F(µ)) is rigid (it is isomorphic
to Proj(F(µ))), this is the unique increasing Loewy series. One can use
Lemma 4.2.4 to compute grn Inj(F(µ)). We do this in the case n = 1 to compute
G-extensions, justifying the name ‘extension graph’ introduced in Section 2.

LEMMA 4.2.6. Assume thatµi is 6-deep for all i and let σ def
= F(µ). Then dgph(σ,

κ) = 1 if and only if Ext1
G(κ, σ ) 6= 0, in which case the dimension of the Ext1

group is 1.

Proof. Since µ is 6-deep, Q1(µ) is 6-deep by Lemma 4.2.5 so that Q1(µ)|G ∼=

Inj(F(µ)) by Corollary 4.2.3. It suffices to show that [gr1 Q1(µ)|G : κ] 6 1 and
that dgph(σ, κ) = 1 if and only if [gr1 Q1(µ)|G : κ] = 1. Note that gr1 Q1(µ) =⊕

i(gr1 Q1(µi))⊗
⊗

j 6=i L(µ j). Let w̃µ be the element of W a so that λ def
= w̃−1

µ ·µ

is in A. The length of gr1 Q1(µ) is 3 f with Jordan–Hölder factors of the form
L(w̃ · µ) for 3 f choices of w̃. Writing w̃ as tω−w̃+ with w̃+ ∈ W̃

+

1 , the 3 f
choices of w̃ correspond to ω− = 0, ε′1,i , or ε′2,i for some i ∈ J , with w̃+ the
unique element in W̃

+

1 so that tω−w̃+ is in W a and w̃+w̃µ · A = w̃B,i w̃µ · A.
It suffices to show that

L(w̃ · µ)|G
is multiplicity free and contains exactly the weights of the form F(Trλ+η(ω,
π(w̃B,i w̃µ · A))) with ω a permutation of πω−. (Here, ω as the first argument of
Trλ+η is understood to be the image of ω in ΛW .)

We have isomorphisms

L(w̃ · µ)|G ∼= L(w̃+ · µ)⊗ L(πω−,i)|G
∼=

⊕
ω∈L(πω−,i )

F(w̃+ · µ+ ω)⊕mπω−,i (ω), (4.9)

where the second isomorphism follows from Lemma 4.2.4. On the other hand,
the pair (ω, π(w̃+,i w̃µ · A)) is β(ω, w̃+,i w̃µ) with β as in Lemma 2.1.1 since we
have that tωπ(w̃+,i w̃µ) ∈ W a . Then by definition, we have

F(Trλ+η(ω, π(w̃+w̃µ·A)))∼= F(w̃+w̃µ·(λ+ω))∼= F(w̃+·µ+w+wµω), (4.10)
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where w+wµ is the image of w̃+w̃µ in W . We conclude by combining (4.9)
and (4.10).

4.2.3. Study of the Weyl module Vµ|G. We now assume that µ ∈ X1(T ) is such
that µ ∈ B and push the analysis in Lemma 4.2.6 further to describe Vµ|G in this
case. Recall that G0

def
= Reskṽ/Fp GL3 and that G def

= G0 ×Fp F. Recall that T ⊂ G
is the diagonal torus, and ΛW is the weight lattice of Gder. Let Λη′ ⊆ ΛW be the
convex hull of the W -orbit of η′. Explicitly, we have

Λη′ =
{
(νi)i ∈ ΛW , νi ∈ {0, ±ε1,i , ±ε2,i , ±η

′

i , ±(ε1,i − ε2,i),

±(2ε1,i − ε2,i), ±(ε1,i − 2ε2,i)}
}
.

We define the subgraph Λ
�(η′,0) ⊆ Λη′ ×A as follows:

Λ
�η′,0

def
=
{
(ω, a) ∈ Λη′ ×A : ai = 0 if ωi = wη

′

i for some w ∈ W
}
.

The main result concerning Vµ is the following.

THEOREM 4.2.7. Let µ ∈ X1(T ) be a p-restricted weight such that µ is 2-deep
in alcove B.

(1) The translation map Trµop+η : Λ
(µop
+η)

W × A → X1(T )/〈(p − π)X 0(T )〉
induces a bijection:

TrVµ : Λ�(η′,0)→ JH(Vµ|G)

(ω, a) 7→ σ(ω,a).

(2) We have

[grd(Vµ)|G : σ(ω,a)] =

{
1 if d = dgph(σ(0,1), σ(ω,a))

0 if d < dgph(σ(0,1), σ(ω,a))

for all (ω, a) ∈ Λ
�(η′,0).

(3) Assume that µ is 6-deep. Then there exists a G-submodule U ⊂ Vµ|G such
that:

(a) U is multiplicity free;

(b) JH(U ) = JH(Vµ|G);

(c) if we denote the restriction Fil |U by Fil, for any σ ∈ JH(U ), we have
[grd(U ) : σ ] = 1 if and only if d = dgph(σ(0,1), σ ); and
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(d) if (ω, a), (ω′, a′) ∈ Λ
�(η′,0), then σ(ω,a) points to σ(ω′,a′) (with respect

to U ) if and only if dgph(σ(0,1), σ(ω,a)) > dgph(σ(0,1), σ(ω′,a′)), and
dgph(σ(ω,a), σ(ω′,a′)) = 1. In particular, Γ (U )op (that is, the graph
obtained from Γ (U ) by reversing the direction of the edges) is
predicted by the extension graph with respect to σ(0,1).

Proof of 4.2.7(1) and (2). We first show that the image of TrVµ contains
JH(Vµ|G). Let w̃ ∈ W a such that [Vµ : L(w̃ · µ)] 6= 0. It suffices to show
that TrVµ contains

JH(L(w̃ · µ)|G). (4.11)

The proof is similar to that of Lemma 4.2.6. There is a decomposition w̃ = tω−w̃+
where w̃+ ∈ W̃

+

1 . Again, L(w̃ · µ)|G is isomorphic to L(w̃+ · µ) ⊗ L(πω−)|G,
which is isomorphic to ⊕

ε∈L(πω−)

F(w̃+ · µ+ ε)⊕mπω− (ε)

by Lemma 4.2.4. As in the proof of Lemma 4.2.6, the summand F(w̃+ · µ+ ε)
is σ(w0ε,π(w̃+·w̃h ·A)). Then (4.11) is contained in the image of TrVµ by an analysis
of the weights of L(πω−). Indeed, w̃ · µ is in one of the alcoves in the set {A,
B,C, D, E, F,G}J so that ω−,i can be taken to be one of 0, ε1,i , ε2,i , and η′i for
all i , and if ω−,i is η′i , then w̃+,i = w̃B,i .

Item (1) follows from (2) and the above paragraph. We now prove item (2).
With w̃ as above, we define ni(w̃i) ∈ N by

[grni (w̃i )
(Vµi ) : L(w̃i · µi)] 6= 0.

Let 0 6 d 6 3 f . Since Vµ is multiplicity free, it suffices to show that⊕
∑

i ni (w̃i )=d

L(w̃ · µ)|G (4.12)

contains weights of the form σ(ω,a) with multiplicity one if (ω, a) ∈ Λ
�(η′,0) and

the distance between (ωi , ai) and (0i , 1i) is nπ−1i(w̃π−1i) for all i . If ν ∈ L(πω−)
is a permutation of πω−, then it appears in L(πω−) with multiplicity one. Thus,
σ(ε,π(w̃+w̃h )·A) appears in (4.12) with multiplicity one. A casewise analysis, using
the fifth column of Table 5 and the description of the socle layers of Vµi in
[BDM15], shows that the distance from (νi , π(w̃+,π−1i · w̃B,π−1i) · A) to (0i , 1i)

is nπ−1i(w̃π−1i). For example, if nπ−1i(w̃π−1i) = 2, then ω−,π−1i is ε′1,π−1i or ε′2,π−1i
and w̃+,π−1i is trivial. Then νi is a permutation of ε1,i or ε2,i .

We now move to the proof of Theorem 4.2.7(3). We start with the following
preliminary lemma.
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Table 5. Comparison between alcoves Ci , affine Weyl group elements w̃i and the graph.

For each element w̃∗ in the first column, we consider the decomposition w̃i = ωi,− ·

w̃i,+ with (w̃i,+)i ∈ W̃
+

. In the fourth column, we write the alcove containing w̃i ·

A. In the fifth column, we write the π i th coordinate of the points in the graph (with
origin µ+η′) corresponding to an irreducible constituent of (

⊗
i L(w̃i ·µi ))|G. Similar

comments apply to the second half of the table. Note that in this case, we consider the
decomposition w̃i = ω−,i · w̃+,i with w̃+,i ∈ W̃

+

1 w̃B and the graph has origin in µop
+η.

Finally, we have set α1 and α2 ∈ X ∗(T ) to be (1,−1, 0) and (0, 1,−1), respectively.

LEMMA 4.2.8. Letµ ∈ X1(T ) be a p-restricted weight which is 2-deep in alcove
B. There exists a G-submodule U ⊂ Vµ|G such that JH(U ) = JH(Vµ|G) and

[grd(U )|G : σ(ω,a)] =

{
1 if d = dgph(σ(0,1), σ(ω,a))

0 if d 6= dgph(σ(0,1), σ(ω,a)),
(4.13)

where gr is with respect to Fil def
= Fil |U . In particular, U is multiplicity free.

Proof. The notation in this proof is complicated by necessity. To illustrate the
simple underlying idea, we first present the proof in the case that f = #J = 1.
We have the following:

gr3(Vµ) ∼= L(w̃Gw̃B · µ)

gr2(Vµ) ∼= L(w̃Ew̃B · µ)⊕ L(w̃Fw̃B · µ)
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Table 6. Graph of V (µop
+ pη′).

The graphs of V (µop
+ pη′) when f = 1 (and µ is 2-deep). In the first (respectively

second) diagram, µ ∈ X1(T ) is upper alcove (respectively lower alcove). For each
alcove, we write below the unique weight L such that L(x, y, z) ↑ L . We remark that
gr1(V (µ

op
+ pη′) = gr1(Q1(µ)) if µ = (x, y, z) is upper alcove, while gr1(V (µ

op
+

pη′)⊕ L(µop) = gr1(Q1(µ)) if µ = (x, y, z) is lower alcove.

gr1(Vµ) ∼= L(w̃Cw̃B · µ)⊕ L(w̃B · µ)⊕ L(w̃Dw̃B · µ)

gr0(Vµ) ∼= L(µ).

For the alcove a, there is a decomposition w̃a as the product tωa,−w̃a,+ where
w̃a,+ ∈ W̃+

1 and ωa,− ∈ X ∗(T ). Let λ be w̃B · µ. Then

L(w̃aw̃B · µ)|G ∼= L(w̃a · λ) ∼= L(w̃a,+ · λ+ pωa,−)|G
∼= (L(w̃a,+ · λ)⊗ L(pωa,−))|G
∼= (L(w̃a,+ · λ)⊗ L(ωa,−))|G

∼=

⊕
ω∈L(ωa,−)

L(w̃a,+ · λ+ ω)|
⊕mωa,− (ω)

G

∼=

⊕
ω∈L(ωa,−)

F(Trλ+η(ω, a))⊕mωa,− (ω),

where a is the unique pX ∗(T )-translate of a lying in {A, B}. The third
isomorphism above follows from the Steinberg tensor product theorem, and the
fifth isomorphism follows from Lemma 4.2.4(1). We see then that gr1(Vµ)|G is
isomorphic to the multiplicity-free direct sum of F(Trλ+η(ω, 0)) where ω is a
permutation of 0, ε1, or ε2. Similarly, gr2(Vµ)|G is isomorphic to the multiplicity-
free direct sum of F(Trλ+η(ω, 1)) where ω is a permutation of ε1 or ε2. Finally,
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gr3(Vµ)|G is isomorphic to
⊕

ω∈L(η′) F(Trλ+η(ω, 0))mη′ (ω). Then, we can take U
to be the preimage of

⊕
ω∈L(η′) F(Trλ+η(ω, 0)) in Vµ|G. It is then easy to check

that U satisfies the required properties.
We now proceed to the general case. Let i ∈ J . We have an exact sequence of

G-modules
0→ rad(Vµi )→ Vµi

pi
→ L(µop

i + pη′i)→ 0,

which gives the exact sequence

0→ rad(Vµi )⊗
⊗
j 6=i

Vµ j → Vµ→ L(µop
i + pη′i)⊗

⊗
j 6=i

Vµ j → 0.

Then L(µop
i + pη′i)⊗

⊗
j 6=i Vµ j |G is isomorphic to

L(µop
i )⊗

(
Vµπ i ⊗ L(η′π i)

)
⊗

⊗
j 6=i, π i

Vµ j |G.

Then we claim that

Vµπ i ⊗ L(η′π i)
∼=

⊕
ω∈L(η′π i )

V
⊕mη′

π i
(ω)

µπ i+ω

as G-representations. We have an embedding

Vµπ i ⊗ L(η′π i) ↪→ Q1(µπ i)⊗ L(η′π i)
∼=

⊕
ω∈L(η′π i )

Q1(µπ i + ω)
⊕mη′

π i
(ω)
, (4.14)

where the last isomorphism follows from Lemma 4.2.4. Since

(1) Vµπ i ⊗ L(η′π i) contains all the Jordan–Hölder factors of the right-hand side
of (4.14) with highest weights in alcove G (using Lemma 4.2.4) and

(2)
⊕

ω∈L(η′π i )
V
⊕mη′

π i
(ω)

µπ i+ω is the minimal submodule of the right-hand side
of (4.14) containing all the Jordan–Hölder factors (counted with
multiplicities) with highest weights in alcove G (using the cosocle
filtration of Vµπ i+ω),

there is an injective map
⊕

ω∈L(η′π i )
V
⊕mη′

π i
(ω)

µπ i+ω ↪→ Vµπ i ⊗ L(η′π i) which must be an
isomorphism since the domain and codomain have the same length.

Let Ui be the preimage of⊕
ω∈L(η′i ), ω 6=0

L(µop
i )⊗ Vµπ i+ω ⊗

⊗
j 6=i, π i

Vµ j |G
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in Vµ|G. Let U be the intersection ∩iUi . We claim that U has the desired
properties. If d < dgph(σ(0,1), σ(ω,a)), then (4.13) holds by Theorem 4.2.7(2). If
d = dgph(σ(0,1), σ(ω,a)), then [grd(Vµ|G) : σ(ω,a)] = 1 and [grd(Ui) : σ(ω,a)] = 1 for
all i by the proof of Theorem 4.2.7(2). We conclude that [grd(U ) : σ(ω,a)] = 1.

We now suppose that d > dgph(σ(0,1), σ(ω,a)) and use the notation of the
proof of Theorem 4.2.7(2). Suppose that σ(ω,a) is a Jordan–Hölder factor of
L(w̃ · µ)|G ∩ grd(U ). Then there is some i such that nπ−1i(w̃π−1i) > di where
di is the distance from (ωi , ai) to (0i , 1i). More precisely, nπ−1i(w̃π−1i) is 3 and
(ωi , ai) is (0i , 0i). However, one can check as in the proof of Theorem 4.2.7(2)
that L(w̃ · µ)|G ∩ grd(Uπ−1i) does not contain any weight of the form σ(ω,a) with
(ωi , ai) = (0i , 0i).

PROPOSITION 4.2.9. Let λ, θ be 6-deep in an alcove in {A, B, C, D, E,
F, G}J . Then Ext1

G(L(θ), L(λ)) is at most one-dimensional, and it is one-
dimensional if and only if λ and θ are linked and lie in adjacent alcoves (that is,
there exists i0 ∈ J such that λi = θi for all i 6= i0 and λi0 and θi0 lie in different
alcoves sharing a face).

Proof. We immediately reduce to the case of GL3. Using (4.3), it suffices to
consider the case of SL3, where the result follows from [And87, Section 4.1].

Let µ ∈ X1(T ) be a p-restricted weight 6-deep in alcove B. Let w̃, ỹ ∈ W a

be elements such that the alcoves containing λ def
= w̃ ·µ, θ

def
= ỹ ·µ are in {A, B,

C, D, E, F, G}J and Ext1
G(L(θ), L(λ)) 6= 0. Note that λ, θ are both 6-deep

in their alcove by Lemma 4.2.5.
Let i0 ∈ J be as in Proposition 4.2.9. Let M be a nonsplit extension of L(θ)

by L(λ), which is unique up to isomorphism by Proposition 4.2.9.

PROPOSITION 4.2.10. If F0 and F1 are in the socle and cosocle of M |G,
respectively, with [M |G : F0] = 1 = [M |G : F1] and dgph(F0, F1) = 1, then there
is a subquotient of M |G which is a nonsplit extension, unique up to isomorphism
by Lemma 4.2.6, of F1 by F0.

Proposition 4.2.10 will be proven in several steps. Let λ be λ0
+ pωλ and

θ = θ 0
+ pωθ so that λ0 and θ 0 are in X1(T ) and ωλ and ωθ belong to {0, ε′1,i ,

ε′2,i , η
′

i}
J . We begin with an algebraization lemma.

LEMMA 4.2.11. With M and i0 defined as above, assume, moreover, that λi is
p-restricted for all i 6= i0. Then there is an injection M ↪→ Q1(λ

0)⊗ L(pωλ) ∼=(⊗
i 6=i0

Q1(λi)
)
⊗ Q1(λ

0
i0
)⊗ L(pωλ) whose restriction to G is an injective hull.
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Proof. The proof follows closely the argument of [Pil97, Lemma 3.1] (which is,
in turn, based on [And87, Lemma 2.2]). There is an injection

soc M ∼= L(λ0)⊗ L(pωλ) ↪→ Q1(λ
0)⊗ L(pωλ).

This extends to an injection M ↪→ Q1(λ
0)⊗ L(pωλ) since

Ext1
G(L(θ), Q1(λ

0)⊗ L(pωλ)) = 0

by the proof of (4.8). Both Q1(λ
0)⊗ L(pωλ) and M are 6-deep by Lemma 4.2.5.

By Lemma 4.2.2, the restriction to G of the map M ↪→ Q1(λ
0)⊗ L(pωλ) is an

isomorphism on socles and is, thus, essential. The restriction Q1(λ
0)⊗L(pωλ)|G

is an injective object by Lemma 4.2.4 and Theorem 4.2.1.

We begin with the following special case of Proposition 4.2.10, from which
the general case will follow by the translation principle.

PROPOSITION 4.2.12. If λi is p-restricted for all i 6= i0, the conclusion of
Proposition 4.2.10 holds.

Proof. We assume that dgph(F0, F1) = 1. Fix nonzero maps Proj(F1) → M |G
and M |G→ Inj(F0), unique up to scalar. If suffices to show that the composition

Proj(F1)→ M |G → Inj(F0) (4.15)

is nonzero. The first map factors through Proj(F1)/rad2(Proj(F1)) since the
Loewy length of M |G is 2. The second map factors as M |G ↪→ Inj(M |G) �
Inj(F0) where the second map is a projection to a direct summand. Applying gr1
to the composition

Proj(F1)/rad2(Proj(F1))→ M |G ↪→ Inj(M |G)� Inj(F0),

we obtain
F1 ↪→ gr1(M |G) ↪→ gr1 Inj(M |G)� gr1 Inj(F0), (4.16)

where the grading is with respect to the socle filtration. It suffices to show that
the composition (4.16) is nonzero.

By Lemma 4.2.4, F0 (respectively F1) is isomorphic to F(λ′) where λ′ = λ0
+

ελ (respectively F(θ 0
+ εθ )) for some ελ ∈ L(πωλ) (respectively εθ ∈ L(πωθ )).

Then using Lemma 4.2.11, (4.16) can be rewritten as

L(θ 0
+εθ )|G ↪→ L(θ)|G ↪→

(
gr1

(
Q1(λ

0)⊗L(pωλ)
))
|G �

(
gr1 Q1(λ

0
+ελ)

)
|G,

where the second map is the restriction of a map of G-modules. By Lemma 4.2.2,
the socle filtrations of Q1(λ

0)⊗ L(pωλ) and Q1(λ
0)⊗ L(πωλ) both induce the
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socle filtration on Q1(λ
0) ⊗ L(pωλ)|G. Applying Lemma 4.2.4 to Q1(λ

0) ⊗

L(πωλ) and using the description of Q1(λ
0
+ ν) in [Hum06, Section 13.9],

we see that the graded pieces of the socle filtration of Q1(λ
0) ⊗ L(πωλ) are

grk

(
Q1(λ

0)
)
⊗ L(πωλ). We claim that the graded pieces of the socle filtration

of Q1(λ
0) ⊗ L(pωλ) are grk

(
Q1(λ

0)
)
⊗ L(pωλ). Taking the tensor product

of the socle filtration on Q1(λ
0) with L(pωλ) gives a semisimple filtration

F (as follows from Steinberg’s tensor product theorem). Moreover, since the
restrictions Q1(λ

0)⊗L(πωλ)|G and Q1(λ
0)⊗L(pωλ)|G are isomorphic, Lemma

4.2.2 implies that the dimensions of the graded pieces of the socle filtrations
of Q1(λ

0) ⊗ L(πωλ) and Q1(λ
0) ⊗ L(pωλ) agree. A dimension consideration

implies that F is the socle filtration.
In particular, we have

gr1

(
Q1(λ

0)⊗ L(pωλ)
)
∼=

⊕
i

(
L(pωλ)⊗ (gr1 Q1(λ

0
i ))⊗

⊗
j 6=i

L(λ0
j)
)
.

The algebraic map L(θ) ↪→ gr1(Q1(λ
0) ⊗ L(pωλ)) factors through the direct

summand
L(λi0)⊗ (gr1 Q1(λ

0
i0
))⊗ L(pωλ)

by alcove considerations, where λi0
def
=
∑

i 6=i0
λi . (Note that λi = λ

0
i and θi = λi

for all i 6= i0.) Additionally, the map F1 → gr1 Inj(F0) ∼= (gr1 Q1(λ
′))|G factors

through the direct summand

L(λ′,i0)⊗ (gr1 Q1(λ
′

i0
))|G,

where λ′,i0 =
∑

i 6=i0
λ′i since if j 6= i0, then the highest weights of the Jordan–

Hölder factors of ((⊗
i 6= j

L(λ′i)
)
⊗ (gr1 Q1(λ

′

j))
)
|G

lie in the same alcove as the highest weight of L(λ0) except exactly at embedding
j . Thus, it suffices to show that the composition

L(θ 0
+ εθ )|G ↪→ L(θ)|G ↪→ L(λi0)⊗ (gr1 Q1(λ

0
i0
))⊗ L(pωλ)|G

� L(λ′,i0)⊗ (gr1 Q1(λ
′

i0
))|G (4.17)

is nonzero.
The G-module gr1 Q1(λ

0
i0
) is the direct sum of three irreducible modules in

alcoves A, C , and D (respectively B, E , and F) if λ0
i0

is in alcove B (respectively
A). Let w̃1, w̃2, and w̃3 be the elements of Wa such that w̃1·A, w̃2·A, and w̃3·A are
the alcoves A, C , and D (respectively B, E , and F), respectively. Let w̃B ∈Wa be
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the element such that B = w̃B ·A. The natural identification X ∗(T )\W̃/Ω ∼= {A,
B} where Ω = StabW̃ (A) and the fact that θ 0

i0
is in alcove A (respectively B) if

λ0
i0

is in alcove B (respectively A) shows that X ∗(T )ỹi0w̃BΩ = X ∗(T )w̃ jΩ for
any j ∈ {1, 2, 3}. Moreover, it is not difficult to check that

X ∗(T )ỹi0w̃BΩ =

3∐
j=1

X ∗(T )w̃ j .

This implies that there exist unique j ∈ {1, 2, 3} and ω ∈ X ∗(T ) such that

t−ωθ,i0 ỹi0w̃B(w̃λt−ωλ,i0 w̃i0w̃B)
−1
= t−ωw̃ j , (4.18)

where w̃λ ∈ Wa is the unique element such that w̃λ ·λ0
i0
∈ A or, equivalently, that

w̃λt−ωλ,i0 w̃i0w̃B ∈ Ω . Then we have that

θ 0
i0
+ pω = tωt−ωθ,i0 ỹi0 · µi0 = w̃ j w̃λt−ωλ,i0 w̃i0 · µi0 = w̃ j w̃λ · λ

0
i0

so that, by construction, ω ∈ X ∗(T ) is the unique weight such that L(θ 0
i0
+ pω)

is a Jordan–Hölder factor of gr1 Q1(λ
0
i0
). We now consider ω as an element of

X ∗(T ) in the i0-embedding.
We now proceed casewise. If ωλ (respectively ωθ ) is 0, then gr0(M |G)

(respectively gr1(M |G)) is irreducible, and so the map M |G→ Inj(F0) is injective
(respectively the map Proj(F1)→ M |G is surjective) and the composition (4.15)
is nonzero.

Now assume that ωλ and ωθ are both nonzero. At most one of ωλ and ωθ can
be η′i0

. By duality, we can and will assume that ωλ 6= η′i0
. Then ωλ is either ε′1,i0

or ε′2,i0
. We assume that ωλ is ε′2,i0

, the other case being symmetric. So if λi0 is in
alcove D (respectively F), then θi0 is in alcove E or F (respectively C , D, or G)
by Proposition 4.2.9. We claim that if ωθ is ε′1,i0

(respectively ε′2,i0
or η′i0

), then
the ω defined above is ε′2,i0

+ (1, 1, 1)i0 (respectively 0 or ε′1,i0
). Indeed, since

t−ωw̃ j · A ∈ {A, B} by (4.18) and w̃ j · A ∈ {A, B,C, D, E, F} by definition,
ωi0 is in {0, ε′1, ε

′

2} + X 0(T ). From (4.18), we see that ω ≡ ωθ − ωλ (mod ΛR).
These two facts determine ω.

A morphism

L(θi0)
∼= L(θ 0

i0
+ pωθ )→ (gr1 Q1(λ

0
i0
))⊗ L(pωλ)

must factor through L(θ 0
i0
+ pω′) ⊗ L(pωλ) for some ω′. By construction, ω′

must be ω. We conclude that the map

L(θ) ↪→ L(λi0)⊗ (gr1 Q1(λ
0
i0
))⊗ L(pωλ)
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factors through L(θ 0
+ pω)⊗ L(pωλ). It suffices to show that the composition

L(θ 0
+ εθ )|G ↪→ L(θ)|G ↪→ L(θ 0)⊗ L(pω)⊗ L(pωλ)|G

� L(λ′,i0)⊗ (gr1 Q1(λ
′

i0
))|G

is nonzero.
Let ε′λ ∈ L(πωλ) be such that λ0

+ ελ and θ 0
+ ε′λ are in the same W̃ -orbit

under the p-dot action. Similar to an earlier argument of the three simple Jordan–
Hölder factors of L(λ′,i0)⊗ (gr1 Q1(λ

′

i0
)), only the restriction to G of one of the

form L(θ 0
+ ε′λ) ⊗ L(pω′) for some ω′ contains F1

∼= F(θ 0
+ εθ ) as a Jordan–

Hölder factor. By construction, ω′ must be ω. It now suffices to show that the
composition

L(θ 0
+ εθ )|G ↪→ L(θ 0

+ πωθ )|G ∼= L(θ)|G ↪→ L(θ 0)⊗ L(pω)⊗ L(pωλ)|G
∼= L(θ 0)⊗ L(πωλ)⊗ L(pω)|G � L(θ 0

+ ε′λ)⊗ L(pω)|G
(4.19)

is nonzero. Moreover, the multiplicity [L(θ 0
+ ε′λ)⊗ L(pω)|G : F1] is one.

Assume now that ωθ is not ε′1,i0
. Then using the assumption that [M |G : F1] = 1

so that εθ 6= 0, one can check that F1 appears in L(θ 0) ⊗ L(pω) ⊗ L(pωλ)|G
with multiplicity one, and we see that (4.19) is nonzero.

Finally, we assume that ωθ is ε′1,i0
. Let ε be εθ − ε′λ which is in L(πω) by the

composition (4.19). Note that ε 6≡ ε′λ (mod X 0(T )). The weight F1 appears with
multiplicity two in

⊕
νλ∈L(πωλ) L(θ 0

+νλ)⊗L(pω)|G and with multiplicity one in
each of L(θ 0

+ ε′λ)⊗ L(pω)|G and L(θ 0
+ ε−π(1, 1, 1)i0)⊗ L(pω)|G. Assume

for the sake of contradiction that the composition (4.19) is zero. Then the image
of the composition of the first four maps of (4.19) is contained in L(θ 0

+ε−π(1,
1, 1)i0) ⊗ L(pω)|G. In particular, since ε 6≡ ε′λ (mod X 0(T )), the image of the
composition of the first three maps of (4.19) is not stable under the involution
action on L(θ 0)⊗L(pω)⊗L(pωλ)|G ∼= L(θ 0

+p(1, 1, 1)i0)⊗L(pωλ)⊗L(pωλ)|G
which permutes the last two tensor factors. Since F1 appears with multiplicity
one in L(θ)|G, this implies that the image of

L(θ 0
+ p(1, 1, 1)i0)⊗ L(pωθ − p(1, 1, 1)i0)

↪→ L(θ 0
+ p(1, 1, 1)i0)⊗ L(pωλ)⊗ L(pωλ),

which induces the second map of (4.19), is not stable under this involution action
(note the key role played by Lemma 4.2.11). However, the unique submodule of
L(pωλ)⊗ L(pωλ) isomorphic to L(pωθ − p(1, 1, 1)i0) is the submodule where
this involution acts by −1. This is a contradiction.
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Proof of Proposition 4.2.10. We write λ and θ as λ0
+ pωλ and θ 0

+ pωθ ,
respectively, where λ0 and θ 0 are p-restricted weights. Write ωλ as ωλ,i0 + ω

i0
λ

where ωλ,i0 (respectively ωi0
λ ) is 0 away from (respectively at) embedding i0.

Similarly, write ωθ as ωθ,i0 + ω
i0
θ . Then ωi0

λ equals ωi0
θ by assumption, and so

we set ωi0
def
= ω

i0
λ = ω

i0
θ . Let Mi0 be the unique up to isomorphism nontrivial

extension of L(θi0) by L(λi0) and let M i0 be
⊗

i 6=i0
L(λi) so that M is isomorphic

to Mi0 ⊗ M i0 . Then M |G is isomorphic to

Mi0 ⊗ M i0 |G
∼= Mi0 ⊗

(⊗
i 6=i0

L(λ0
i )

)
⊗ L(pωi0)|G

∼= Mi0 ⊗

(⊗
i 6=i0

L(λ0
i )

)
⊗ L(πωi0)|G.

Let M ′ be Mi0 ⊗
(⊗

i 6=i0
L(λ0

i )
)
⊗ L(πωi0). By Lemma 4.2.2, we have that

soc(M ′)|G ∼= soc(M ′|G) ∼= soc(M |G) ∼= soc(M)|G so that

soc(M ′) ∼= L(λi0)⊗

(⊗
i 6=i0

L(λ0
i )

)
⊗ L(πωi0).

Similarly, we have that

cosoc(M ′) ∼= L(θi0)⊗

(⊗
i 6=i0

L(λ0
i )

)
⊗ L(πωi0).

The socle and cosocle of M ′ can be decomposed using Lemma 4.2.4. Fix a
direct sum decomposition cosoc(M ′) =

⊕
j M ′1, j into simple modules. Using

the known dimensions of Ext1
G groups between simple modules and the fact

that M ′ is rigid of Loewy length 2, one sees that the minimal submodule
M ′j of M ′ whose projection to cosoc(M ′) contains M ′1, j has length exactly 2.
Thus, the natural surjection ⊕M ′j �

∑
M ′j = M ′ is an isomorphism by length

considerations. More explicitly, if M ′1, j is isomorphic to L(λ0
+ pωλ,i0 + πε

i0)

for some εi0 ∈ L(ωi0), then M ′0, j is isomorphic to L(θ 0
+ pωθ,i0 +wπε

i0) for the
unique element w ∈ W such that these weights are linked.

The alcoves of F1 and F0 differ only in embedding i0. Then by Lemma 4.2.6,
the corresponding elements of Λν

W under Trν for any appropriate ν must be the
same for all embeddings except for π(i0). By the above explicit description,
we conclude that F1 is in JH(M ′1, j |G) if and only if F0 is in JH(M ′0, j |G). So it
suffices to prove the proposition for M ′j in place of M . This now follows from
Proposition 4.2.12.
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Proof of Theorem 4.2.7(3). Let Γ be the directed graph with vertices JH(U ) =
JH(Vµ|G) so that there is a directed edge σ1 → σ2 for σ1 and σ2 ∈ JH(Vµ|G) if
and only if dgph(σ(0,1), σ1) > dgph(σ(0,1), σ2) and dgph(σ1, σ2) = 1. Note that the
first condition ensures that Γ is acyclic.

We claim that Γ is a subgraph of Γ (U ). Let σ1 and σ2 be in JH(U ) with
dgph(σ1, σ2) = 1. Let d j = dgph(σ(0,1), σ j) for j = 1 and 2 and suppose that
d1 > d2 so that d1 = d2 + 1. Then by Lemma 4.2.8, dsoc

U (σ j) is d j for j = 1 and
2. Moreover, by Theorem 4.2.7(2) and parity reasons, [grd j

(Vµ)|G : σk] = δ jk for
j and k in {1, 2}. Using that every nontrivial extension which can occur in the
layers of Vµ does occur (see Table 6), it is easy to check that there is a unique
length 2 subquotient M of Fild1(Vµ)/Fild2−1(Vµ) such that σ1 and σ2 appear in
JH(M |G) with multiplicity one. By Proposition 4.2.10, there is a subquotient of
M |G which is a nonsplit extension of σ1 by σ2. For multiplicity reasons, this must
also be a subquotient of U . Hence, there is a directed edge from σ1 to σ2 in Γ (U ).

We now claim that if Γ is a subgraph of a directed graph Γ ′ such that

(1) Γ and Γ ′ have the same vertices,

(2) Γ ′ is acyclic, and

(3) σ1 → σ2 is a subgraph of Γ ′ only if dgph(σ1, σ2) = 1,

then Γ ′ = Γ . Since Γ (U ) satisfies these conditions ((3) follows from
Lemmas 4.2.5 and 4.2.6), this would complete the proof.

Assume that σ1 → σ2 is a subgraph of Γ ′. By (3) and the geometry of the
extension graph, we have that dgph(σ(0,1), σ1) = dgph(σ(0,1), σ2) ± 1, and, hence,
it is enough to prove that dgph(σ(0,1), σ1)= dgph(σ(0,1), σ2)+1. Suppose otherwise.
Then σ2 → σ1 is a subgraph of Γ by definition and thus a subgraph of Γ ′. But
this contradicts (2).

4.2.4. The embedding construction. We start with the following observation.

LEMMA 4.2.13. Let R be an n-generic Deligne–Lusztig representation. Then R
is n − 2-deep.

Proof. If we write R = Rs(µ + η) with µ being n-deep, it is hence enough to
prove that σr(ω,a) is n − 2-deep for any obvious weight σ(ω,a) in JH(R). This
follows from Proposition 2.3.4.

From now onward, we assume thatµ is 6-deep in alcove B. (By Lemma 4.2.13,
the Deligne–Lusztig representation R def

= Rs(µ
op
+ η′) is therefore 4-deep.) We

write σ op def
= F(µ) = F(Trµop+η(0, 1)). Note from Proposition 2.3.5 that the
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unique element σ ∈ JH(R) satisfying dgph(σ, σ
op)= 3 f (that is, having maximal

graph distance from σ op) is

σ
def
= F(µop

+ s(η′)) = F(Trµop+η(s(η′), 0)).

To ease notation, we write λ def
= µop

+ s(η′) (hence, σ = F(λ)).

LEMMA 4.2.14. Let µ ∈ X1(T ) be a weight such that µ ∈ B is 6-deep and
R def
= Rs(µ

op
+ η′). Set σ op def

= F(µ) and let σ def
= F(λ) ∈ JH(R) be the unique

constituent at maximal graph distance. We have

[Inj(σ op) : σ ] = [Vµ|G : σ ] = [U : σ ] = [gr3 f (Vµ|G) : σ ] = 1.

Proof. The equations [Vµ|G : σ ] = [U : σ ] = [gr3 f (Vµ|G) : σ ] = 1 follow from
Theorem 4.2.7(2). The equation [Inj(σ op) : σ ] = 1 is proved similarly using
Theorem 4.2.1.

PROPOSITION 4.2.15. Let µ ∈ X1(T ) be a weight such that µ ∈ B is 6-deep
and R def

= Rs(µ
op
+ η′). Set σ op def

= F(µ) and let σ def
= F(λ) ∈ JH(R) be the

unique constituent at maximal graph distance. Let Rσ be an O-lattice in R with
irreducible cosocle isomorphic to σ . There is an injection ι : R

σ
→ U.

Note that the map ι is unique up to scalar as there is a unique up to scalar
nonzero morphism Proj(σ )→ U by Lemma 4.2.14.

Proof. Since σ op
∈ JH(R

σ
), there is a unique up to scalar nonzero map

R
σ
→ Inj(σ op). (4.20)

We first prove that the map (4.20) factors through the embedding

U
α
↪→ Inj(σ op) (4.21)

or, equivalently, that the composite of (4.20) with the natural projection
Inj(σ op) � coker(α) is zero. As formation of cosocle is right exact and R

σ

has irreducible cosocle isomorphic to σ , the image of the composite map
R
σ
→ coker(α) is either zero or has irreducible cosocle σ . By Lemma 4.2.14,

we know that σ is not a Jordan–Hölder constituent of coker(α), and, therefore,
HomG(R

σ
, coker(α)) = 0. Now the image of this nonzero map contains σ as

a Jordan–Hölder factor. Since the minimal submodule of U containing σ as
a Jordan–Hölder factor has length 9 f , which is the length of R

σ
, by Theorem

4.2.7(3) and Proposition 4.1.1, this map must be an injection.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


Serre weights and Breuil’s lattice conjecture in dimension three 99

THEOREM 4.2.16. With the hypotheses of Theorem 4.1.9, assume, moreover,
that σ is a lowest alcove weight with DefR(σ ) = 0. Then Theorem 4.1.9(1)–(4)
hold.

Proof. By Remark 4.1.10, it suffices to prove Theorem 4.1.9(3). This follows
from Theorem 4.2.7(3) and Propositions 4.2.15 and 4.1.2.

4.3. Proof of the structure theorem in the general case. The aim of this
section is to deduce Theorem 4.1.9 from the particular case in Theorem 4.2.16.
For this, we introduce a third notion of distance called the saturation distance (see
Definition 4.3.4). The first step is to show an inequality between the graph and
saturation distances (Corollary 4.3.8) and then proceed further in Section 4.3.2
to prove that under appropriate conditions on σ ∈ JH(R) (that is, when σ is
maximally saturated), the notions of graph, saturation, and cosocle distances
(dσrad(κ)) actually coincide (Proposition 4.3.16). The agreement of the three
distances is equivalent to Theorem 4.1.9, taking into account Lemma 4.3.12. In
Section 4.3.3, we show that all weights are maximally saturated, thus concluding
the proof of Theorem 4.1.9.

4.3.1. Notions of distances. In what follows, R is a 3-generic Deligne–Lusztig
representation. Recall that if σ ∈ JH(R), we write dσrad as a shorthand for dR

σ

rad.We
establish some properties of dσrad. We deduce the following from Lemma 4.2.6.

COROLLARY 4.3.1. Assume that R is 6-deep and σ ∈ JH(R). Then dgph(σ,

σ ′) 6 dσrad(σ
′) for all σ ′ ∈ JH(R).

Proof. The assumption that R is 6-deep implies that all the elements in JH(R)
satisfy the hypotheses of Lemma 4.2.6. If κ ∈ JH(R) and k + 1 = dσrad(κ),
then Ext1

G

(
grk(R

σ
), κ

)
6= 0. Hence, Ext1

G

(
κ ′, κ) 6= 0 for some κ ′ ∈ JH(R) with

dσrad(κ
′) = k. Equivalently, dgph(κ, κ

′) = 1 by Lemma 4.2.6. If d = dσrad(σ
′), we

conclude that there is a sequence of weights σi for 0 6 i 6 d − 1 such that
σ0 = σ , σd = σ

′ and dgph(σi , σi+1) = 1 for all i . Hence, dgph(σ, σ
′) 6 d.

LEMMA 4.3.2. Let σ, σ1 ∈ JH(R). There is a unique minimal subrepresentation
Qσ (σ1) ⊆ R

σ
containing σ1 as a Jordan–Hölder factor. Moreover, we have that

(1) cosoc(Qσ (σ1)) ∼= σ1;

(2) Qσ (σ1) is the image of any nonzero map R
σ1
→ R

σ
.
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Proof. Let Qσ (σ1) be the image of any nonzero map R
σ1
→ R

σ
. It is clear that

cosoc(Qσ (σ1)) ∼= σ1. Suppose that M ⊂ R
σ

is a subrepresentation containing σ1

as a Jordan–Hölder factor. As R
σ

is multiplicity free, R
σ
/M does not contain σ1

as a Jordan–Hölder factor, and, hence, the composition Qσ (σ1) ↪→ R
σ
� R

σ
/M

is 0 or, equivalently, Qσ (σ1) ⊂ M .

LEMMA 4.3.3. Let σ and σ1 ∈ JH(R) and let σ2 ∈ JH(Qσ (σ1)). If n = dσ1
rad(σ2),

then we have HomG
(
σ2, grn

rad(Qσ (σ1))
)
6= 0. Moreover, dσrad(σ2) > dσrad(σ1) +

dσ1
rad(σ2).

Note that, a priori, the inequality may be strict so that what we call the cosocle
distance dσrad(κ) from σ to κ is not a priori necessarily a metric.

Proof. Since formation of cosocle is right exact, we see that the map R
σ1 �

Qσ (σ1) is strictly compatible with the radical filtrations. This proves the first
claim.

Let F = {Filk(R
σ
)}k be the decreasing filtration defined by Filk(R

σ
) =

radk+dσrad(σ1)(R
σ
) (that is, F is the radical filtration of R

σ
shifted by dσrad(σ1)).

Under the inclusion Qσ (σ1) ↪→ R
σ
, F induces a semisimple filtration on

Qσ (σ1), beginning at 0. So, with the radical filtration on the domain and F on
the codomain, this inclusion is compatible with the filtrations. This immediately
gives dσrad(σ2)− dσrad(σ1) > dσ1

rad(σ2) for any σ2 ∈ JH(Qσ (σ1)).

We now introduce a third notion of distance on the set JH(R) and give a
comparison result with the graph distance (Corollary 4.3.8). To do this, we make
crucial use of a global input (Proposition 4.3.7). We also use these results to
deduce some basic results about Γrad(R

σ
) (see, for example, Lemma 4.3.12).

DEFINITION 4.3.4. Let σ1, σ2 ∈ JH(R). Let Rσ1 be an O-lattice with irreducible
cosocle σ1 and fix a saturated inclusion of lattices Rσ2 ⊆ Rσ1 . The saturation
distance (with respect to R) between σ1 and σ2, noted by dsat(σ1, σ2), is defined
to be the unique integer d such that pd Rσ1 ⊆ Rσ2 is a saturated inclusion.

REMARK 4.3.5. We indicate a justification for the existence of the integer d in
Definition 4.3.4. Given two O-lattices Λ1 and Λ2 in an E-vector space V , there
is a unique d ∈ Z such that $ dΛ2 ⊂ Λ1 is a saturated inclusion. If V , Λ1, and
Λ2 are obtained from base change from an unramified subfield of E , then, in
fact, $ d is a power of p up to units. Since R, Rσ1 , and Rσ2 are defined over an
unramified extension of Qp, the integer d in Definition 4.3.4 exists.

The following lemma is clear.
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LEMMA 4.3.6. The saturation distance is a metric on JH(R).

The following proposition is the main global input.

PROPOSITION 4.3.7. Let R be a 13-generic Deligne–Lusztig representation. Let
σ1, σ2 ∈ JH(R) be such that dgph(σ1, σ2) = 1. Then dsat(σ1, σ2) = 1.

Proof. Let τS be the collection of tame inertial type such that σ(τS)= R. We can
and do fix a collection ρS of semisimple 10-generic Galois representation such
that if w̃ def

= w̃(ρS, τS), then `(w̃∗i ) > 2 for all i ∈ J and σ1 and σ2 ∈ W ?(ρS,

τS). (Note that the condition that R, hence τS , is 13-generic guarantees that
ρS is 10-generic by the argument of Proposition 3.4.5.) Fix a weak minimal
patching functor M∞ for ρS , which exists by Corollary 3.5.16. Recall Rτṽ ,β ṽ ,2

Mṽ ,ρ ṽ

from [LLHLM18, Definition 5.10].
For i ∈ {1, 2}, define the modules

M ′
∞
(Rσi )

def
= M∞(Rσi )⊗̂(

⊗̂ṽ∈S R2
ρṽ

)(⊗̂
ṽ∈S

Rτṽ ,β ṽ ,2

Mṽ ,ρ ṽ

)
M ′
∞
(σi)

def
= M∞(σi)⊗̂

(
⊗̂ṽ∈S R2

ρṽ

)(⊗̂
ṽ∈S

Rτṽ ,β ṽ ,2

Mṽ ,ρ ṽ

)
.

Similarly, define R′
∞
(τS) and R

′

∞
(τS). Then M ′

∞
(Rσi ) is p-torsion-free and

maximally Cohen–Macaulay over R′
∞
(τS), and generically of rank one, and

similarly M ′
∞
(σi) is maximally Cohen–Macaulay over R

′

∞
(τS).

We recall the setup of Lemma 3.6.10. The ring R′
∞
(τS) is formally smooth

over
⊗̂

ṽ∈S Rexpl,∇
Mṽ ,w̃ṽ

, where we write Mṽ ∈ Y η,τṽ (F) for the unique Kisin

module corresponding to ρ ṽ as in Theorem 3.3.12. By letting N def
=
∑

i∈J (4 −

`(w̃∗i )), the latter ring is formally smooth over RN
def
=
⊗̂N

j=1O[[x j , y j ]]/(x j y j −

p) by [LLHLM18, §5.3.2] using that `(w̃∗i ) > 1 for all i ∈ J . Fix an
isomorphism RN [[t1, . . . , tk]]

∼

→ R′
∞
(τS). Let S ⊂ RN [[t1, . . . , tk]] be the subring

Zp[[(x j , y j)
N
j=1, (t j)

k
j=1]]/(x j y j − p)N

j=1. If M ′ is a maximal Cohen–Macaulay
R′
∞
(τS)-module, it is a maximal Cohen–Macaulay S-module as well by [Gro65,

Corollaire 5.7.10] and using that the maximal ideal of R′
∞
(τS) is the only prime

above the maximal ideal of S. The maximality follows from the fact that R′
∞
(τS)

is finite over S. It is convenient to work over S below since Spec S/pS is reduced.
For σ ∈ JH(R), AnnR′∞(τS )(M

′

∞
(σ )) is p(σ )R′

∞
(τS) by Proposition 3.6.1(2).

For σ ∈ W ?(ρS, τS), let p(σ ) be (z j(σ ))
N
j=1 + ($) where z j(σ ) ∈ {x j , y j } for

each 1 6 j 6 N . Let pS(σ ) ⊂ S be the preimage of p(σ )R′
∞
(τS) for all σ ∈

JH(R) so that pS(σ ) = (z j(σ ))
N
j=1 + (p) and SuppS M ′

∞
(σ ) = Spec (S/pS(σ )).
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For all 1 6 j 6 N , assume, without loss of generality, that z j(σ1) = x j and let
z j

def
= z j(σ2). Then by Lemma 3.6.10, #({x j } j∆{z j } j) = 2. We assume, without

loss of generality, that z1 = y1 and z j = x j for j 6= 1. To simplify notation, let
Ri = Rσi for i = 1, 2. We fix a chain of saturated inclusion of lattices pk R1 ⊆

R2 ⊆ R1 with k > 1. Since R is residually multiplicity free, C def
= coker(R2 +

pR1 ↪→ R1) does not contain σ2 as a Jordan–Hölder factor (as can be seen from
descent to an unramified coefficient ring). Thus,

SuppS M ′
∞
(C) ⊂

⋃
σ∈JH(R), σ 6=σ2

Spec S/pS(σ ).

The scheme-theoretic support of M ′
∞
(C) in Spec S is contained in Spec S/pS

and is thus generically reduced so that by the proof of Lemma 3.6.2, the scheme-
theoretic support of M ′

∞
(C) in Spec S is a closed subscheme of

Spec
(

S/
⋂

σ∈JH(R), σ 6=σ2

pS(σ )

)
.

Since x1 y2 · · · yN ∈ pS(σ ) for all σ ∈ JH(R) with σ 6= σ2, x1 y2 · · · yN annihilates
M ′
∞
(C) or, equivalently,

x1 y2 · · · yN M ′
∞
(R1) ⊂ M ′

∞
(R2)+ pM ′

∞
(R1).

Symmetrically, we have

y1 y2 · · · yN M ′
∞
(R2) ⊂ M ′

∞
(pk R1)+ pM ′

∞
(R2).

Combining these, we have

x1 y2 · · · yN y1 y2 · · · yN M ′
∞
(R1)

⊂ y1 y2 · · · yN M ′
∞
(R2)+ y1 y2 · · · yN pM ′

∞
(R1)

⊂ M ′
∞
(pk R1)+ pM ′

∞
(R2)+ y1 y2 · · · yN pM ′

∞
(R1).

Simplifying and canceling p, we have

y2
2 · · · y

2
N M ′

∞
(R1) ⊂ pk−1 M ′

∞
(R1)+ M ′

∞
(R2)+ y1 y2 · · · yN M ′

∞
(R1).

Assume that k > 1. Then projecting via M ′
∞
(R1) � M ′

∞
(R1) � M ′

∞
(σ1), we

have the inclusion

y2
2 · · · y

2
N M ′

∞
(σ1) ⊂ y1 y2 · · · yN M ′

∞
(σ1).

This is a contradiction since M ′
∞
(σ1) is free over (a power series ring over)

F[[y1, . . . , yN ]], being maximal Cohen–Macaulay over it.
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We deduce the following inequality.

COROLLARY 4.3.8. Assume that R is 13-generic and let σ1, σ2 ∈ JH(R). Then
dgph(σ1, σ2) > dsat(σ1, σ2).

Proof. The proof proceeds by induction on dgph(σ1, σ2), the case dgph(σ1, σ2) =

1 being covered by Proposition 4.3.7. Pick a weight κ ∈ JH(R) distinct from σ1

and σ2 such that dgph(σ1, κ)+ dgph(κ, σ2) = dgph(σ1, σ2). Then we have

dgph(σ1, σ2) = dgph(σ1, κ)+ dgph(κ, σ2)

> dsat(σ1, κ)+ dsat(κ, σ2) > dsat(σ1, σ2).

We conclude this section showing that, under appropriate genericity
conditions on the Deligne–Lusztig representation R, the graph Γrad(R

σ
) is

predicted by the extension graph if its Loewy strata are predicted by the
extension graph (which is a weaker assumption, a priori).

LEMMA 4.3.9. Assume that R is 13-generic. Let σ1, σ2 ∈ JH(R) be such that
dgph(σ1, σ2) = 1. Let us fix σ ∈ JH(R) as well as two saturated inclusions of
lattices Rσ2 ⊆ Rσ and Rσ1 ⊆ Rσ . Then either Rσ2 ⊆ Rσ1 or Rσ1 ⊆ Rσ2 .

Proof. We have dgph(σ1, σ2) = dsat(σ1, σ2) = 1 by Proposition 4.3.7. Hence,
there exists an integer k ∈ Z such that

pk+1 Rσ1 ⊆ Rσ2 ⊆ pk Rσ1

is a chain of saturated inclusions of lattices (see Remark 4.3.5). The first
inclusion implies that pk+1 Rσ1 ⊆ Rσ so that k + 1 > 0. The second inclusion
implies that p−k Rσ2 ⊂ Rσ so that −k > 0. Hence, k = 0 or −1 and the result
follows.

LEMMA 4.3.10. Assume that R is 13-generic. Let σ, σ1, σ2 ∈ JH(R) and fix
saturated inclusions Rσi ⊆ Rσ for i = 1, 2. If dσrad(σ2) > dσrad(σ1) and dgph(σ1,

σ2) = 1, then Rσ2 ⊆ Rσ1 .

Proof. By Lemma 4.3.9, either Rσ1 ⊂ Rσ2 or Rσ2 ⊂ Rσ1 . Suppose that the former
holds. Then Qσ (σ1) ⊂ Qσ (σ2), and thus dσrad(σ1) > dσrad(σ2) by Lemma 4.3.3.
This is a contradiction.

DEFINITION 4.3.11. Assume that R is 2-generic and let σ ∈ JH(R). We say
that the radical strata of R

σ
are predicted by the extension graph if dgph(σ, σ

′) =

dσrad(σ
′) for all σ ′ ∈ JH(R).
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LEMMA 4.3.12. Assume that R is 13-generic and let σ ∈ JH(R). If the radical
strata of R

σ
are predicted by the extension graph, then Γrad(R

σ
) is predicted by

the extension graph with respect to σ .

Proof. Let σi and σi+1 be elements of JH(R) such that dgph(σ, σi)= i and dgph(σ,

σi+1) = i + 1. As the radical strata of R
σ

are predicted by the extension graph,
we have dgph(σ, σi) = dσrad(σi) and dgph(σ, σi+1) = dσrad(σi+1).

If dgph(σi , σi+1) = 1, then σi+1 ∈ JH(Qσ (σi)) by Lemma 4.3.10. By Lemma
4.3.3, we have

i + 1 = dσrad(σi+1) > dσrad(σi)+ dσi
rad(σi+1) = i + dσi

rad(σi+1).

This implies that σi+1 appears in the second layer of the radical filtration of
Qσ (σi), whose cosocle is isomorphic to σi by Lemma 4.3.2(1). Then there is
an edge from σi to σi+1 in Γrad(R

σ
).

Conversely, if there is an edge from σi to σi+1 in Γrad(R
σ
), then dgph(σi , σi+1)

is 1 by Lemma 4.2.6.

4.3.2. Distance equalities. In this subsection, we define when a weight σ ∈
JH(R) is maximally saturated. Crucially using Lemma 4.2.6, we show that if σ
is maximally saturated, then the graph, saturation, and cosocle distances from σ

are equal, and, therefore, the structure Theorem 4.1.9 holds for R
σ
. From now

on, we assume that the Deligne–Lusztig representation R is 13-generic.
From Proposition 2.3.5 and the definition of defect (Definition 2.8), it follows

that
max

{
dgph(σ, κ), κ ∈ JH(R)

}
= 3 f − DefR(σ ). (4.22)

Furthermore, if DefR(σ ) = 0, then there is a unique σ op
∈ JH(R) which has

maximal graph distance from σ .

DEFINITION 4.3.13. Let σ ∈ JH(R). We say that the weight σ is maximally
saturated in R if the following property holds:

If κ ∈ JH(R) verifies dgph(σ, κ)= 3 f−DefR(σ ), then dsat(σ, κ)= 3 f−DefR(σ ).

(4.23)

The following proposition motivates Definition 4.3.13.

PROPOSITION 4.3.14. A weight σ ∈ JH(R) is maximally saturated if and only
if dgph(σ, κ) = dsat(σ, κ) for all κ ∈ JH(R).
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Proof. The ‘if’ part is clear. Let κ ∈ JH(R) be any weight and write d def
= dgph(σ,

κ) and D def
= 3 f − DefR(σ ). There are weights σ = σ0, σ1, . . . , σD so that

κ ∈ {σ0, σ1, . . . , σD} ⊂ JH(R), dgph(σi , σi+1) = 1 for all 0 6 i 6 D − 1 and
dgph(σ, σD) = D. It is then easy to see that dgph(σi , σ j) = j−i if 0 6 i 6 j 6 D.
We have the following chain of a priori inequalities

dsat(σ, σD) 6 dsat(σ, κ)+ dsat(κ, σD)

6 dgph(σ, κ)+ dgph(κ, σD)

= dgph(σ, σD)

= dsat(σ, σD),

using Corollary 4.3.8 where the last equality holds by assumption. We conclude
that the above inequalities are in fact equalities and that dsat(σ, κ) = dgph(σ,

κ).

The following lemma will be the key in relating the notions of saturation and
cosocle distance.

LEMMA 4.3.15. Let d < ``(R
σ
) and let

σd ← σd−1 ← · · · ← σ1 ← σ0
def
= σ

be an extension path in Γrad(R
σ
) (note that dσrad(σi) = i for all i ∈ {0, . . . , d}).

For each i ∈ {0, . . . , d}, let us fix a saturated inclusion Rσi ⊆ Rσ . Then we have
a chain of (saturated) inclusions

Rσd ⊆ Rσd−1 ⊆ · · · ⊆ Rσ1 ⊆ Rσ0 .

Proof. Since dσrad(σi+1) = i + 1 > i = dσrad(σi) for 0 6 i 6 d − 1, the result
follows from Lemma 4.3.10.

We can use Lemma 4.3.15 to show that all three notions of distance from σ

agree in some particular situations.

PROPOSITION 4.3.16. If σ ∈ JH(R) is maximally saturated, then Γrad(R
σ
) is

predicted by the extension graph with respect to σ .

Proof. Assume that σ is maximally saturated. By Lemma 4.3.12, it suffices to
show that dgph(σ, σ

′) = dσrad(σ
′) for all σ ′ ∈ JH(R). Let σ ′ ∈ JH(R) and d =

dgph(σ, σ
′). We have that HomG(σ

′, grk(R
σ
)) 6= 0 for some k > d by Corollary
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4.3.1. Assume for the sake of contradiction that k > d . By the definition of the
radical filtration, we may, and do, fix an extension path of length k+1 in Γrad(R

σ
):

σ ′ = σk ← σk−1 ← · · · ← σ1 ← σ0 = σ.

Since dgph(σ0, σk) = d < k and dgph(σ0, σi) 6 dσ0
rad(σi) = i for all i by

Corollary 4.3.1, there exists an index i ∈ {0, . . . , k − 1} such that

(1) dgph(σ0, σi) = i and

(2) dgph(σ0, σi+1) < i + 1.

Moreover, since the extension graph is bipartite, we have that dgph(σ0, σi+1) 6
i − 1. By Lemma 4.3.15, there is a chain of saturated inclusions:

Rσi+1 ⊆ Rσi ⊆ · · · ⊆ Rσ1 ⊆ Rσ ,

where, in particular, Rσi ⊆ Rσ is saturated as well. As dgph(σ0, σi+1) = dsat(σ0,

σi+1) by Proposition 4.3.14, we further have pi−1 Rσ
⊆ Rσi+1 . We conclude that

pi−1 Rσ
⊆ Rσi ⊆ Rσ and, hence, that dsat(σ0, σi) 6 i − 1. This contradicts (1)

since dgph(σ0, σi) = dsat(σ0, σi) by Proposition 4.3.14.

We now use Theorem 4.2.16 to prove that lower alcove weights of defect zero
are maximally saturated.

PROPOSITION 4.3.17. Let R be a 13-generic Deligne–Lusztig representation
and let σ ∈ JH(R) be a constituent with DefR(σ ) = 0. Assume that σ ∼= F(λ)
where λ ∈ X1(T ) is in alcove A. Then σ is maximally saturated in R.

Proof. By Theorem 4.2.16, we can and do fix an extension path in Γrad(R
σ
) with

starting point σ0
def
= σ : σ op

= σ3 f ← σ3 f−1 ← · · · ← σ1 ← σ0. By Lemma
4.3.15, we have a sequence of saturated inclusions:

Rσ
⊇ Rσ1 ⊇ · · · ⊇ Rσ3 f−1 ⊇ Rσ op

,

where Rσ op
⊆ Rσ is itself saturated. For each 0 6 i 6 3 f − 1, let ni be dsat(σi ,

σ op). It suffices to show that n0 = dgph(σ0, σ
op) = 3 f .

By Theorem 4.2.16, the reduction of the lattice in the dual Deligne–Lusztig
representation R∗ with cosocle σ∨ is rigid and Γ ((R∗)

σ∨

) is predicted by the
extension graph with respect to σ∨. Noting that the reduction of the dual of
a lattice is the dual of the reduction of a lattice and using Proposition 4.1.7,
we see that Γrad(R

σ op

) is predicted by the extension graph with respect to σ op.
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In particular, σ0 ← σ1 ← · · · ← σ3 f−1 ← σ3 f = σ op is an extension path
in Γrad(R

σ
), and, hence, from Lemma 4.3.15, we deduce a chain of (saturated)

inclusions
Rσ op
⊇ pn3 f−1 Rσ3 f−1 ⊇ · · · ⊇ pn1 Rσ1 ⊇ pn0 Rσ

where we necessarily have ni−1 > ni for all i (as Rσi+1 ⊆ Rσi is saturated). In
particular, n0 > 3 f . On the other hand, Corollary 4.3.8 implies that n0 6 3 f so
that n0 = 3 f .

4.3.3. Induction on defect. In this subsection, we show inductively that all
weights are maximally saturated, starting from lower alcove weights as in
Proposition 4.3.17. We conclude the section with the proof of Theorem 4.1.9.
We first start with the defect zero case.

LEMMA 4.3.18. Let R be a 13-generic Deligne–Lusztig representation. If σ ∈
JH(R) and DefR(σ ) = 0, then σ is maximally saturated.

Proof. We claim that if σ def
= σ0, σ1 ∈ JH(R) such that DefR(σ0)= 0, DefR(σ1)=

0, dgph(σ0, σ1) = 1, and σ0 is maximally saturated, then σ1 is maximally
saturated. The result then follows from Proposition 4.3.17 and an easy induction
argument.

By Proposition 4.3.16, the graph Γrad(R
σ
) is predicted by the extension graph.

By duality (cf. the proof of Proposition 4.3.17), the graph Γrad(R
σ op

) is also
predicted by the extension graph. Hence, we may and do choose two extension
paths, of starting point σ , in the graph Γrad(R

σ0
) having the form: σ op

0 ←

σ ′3 f−1 ← · · · ← σ ′2 ← σ1 ← σ0 and σ op
0 ← σ

op
1 ← σ ′′3 f−2 ← · · · ← σ ′′1 ← σ0

where σ ′i , σ
′′

i ∈ JH(R
σ
). As the graph Γrad(R

σ op

) is predicted by the extension
graph, the extension paths above induce extensions paths in R

σ op

by ‘reversing
the arrows and the endpoints’. Let us fix saturated inclusions of lattices Rσ ′i ,

Rσ ′′i ⊆ Rσ , Rσ1, Rσ
op
1 ⊆ Rσ op . Since σ and σ op are maximally saturated, we

deduce that p3 f−i Rσ ′i , p3 f−i Rσ ′′i ⊆ Rσ op , p3 f−1 Rσ1, pRσ
op
1 ⊆ Rσ op are saturated

inclusions as well.
By Lemma 4.3.15, we deduce the following chain of saturated inclusions:

p3 f−1 Rσ1 ⊆· · ·⊆ pRσ ′3 f−1

⊆
Rσ ′3 f−1⊆· · ·⊆ Rσ1

⊆

p3 f Rσ1⊆ p3 f Rσ
⊆

⊆
Rσ op

⊆

⊆
Rσ

p3 f−1 Rσ ′′1 ⊆· · · ⊆ pRσ
op
1

⊆

Rσ
op
1 ⊆ · · ·⊆ Rσ ′′1

⊆

(4.24)
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We claim that the inclusions p3 f Rσ1 ⊆ pRσ
op
1 and pRσ

op
1 ⊆ Rσ1 , obtained by

composing the saturated inclusions above, are saturated.
We first show that p3 f Rσ1 ⊆ pRσ

op
1 is saturated. If not, then we obtain a

chain of saturated inclusion p3 f−1 Rσ1 ⊆ pRσ
op
1 ⊆ Rσ op . We deduce that σ1 is

a constituent in image Qσ op(σ
op
1 ) and hence dσ

op

rad (σ1) > dσ
op

rad (σ
op
1 ) + dσ

op
1

rad (σ1) >
dgph(σ

op, σ
op
1 ) + dgph(σ

op
1 , σ1) > 3 f + 1 by Corollary 4.3.1 and Lemma 4.3.3.

On the other hand, as the graph Γrad(R
σ

op
0 ) is predicted by the extension graph,

we have that dσ
op

rad (σ1) = dgph(σ
op, σ1) = 3 f − 1 contradiction.

The evident analogue of the previous argument shows that pRσ
op
1 ⊆ Rσ1 is

saturated as well. Hence, dsat(σ1, σ
op
1 ) = 3 f .

We now give the induction argument.

PROPOSITION 4.3.19. Let R be a 13-generic Deligne–Lusztig representation.
Then any constituent σ ∈ JH(R) is maximally saturated in R.

Proof. We induct on the defect δ def
= DefR(σ ) for σ ∈ JH(R). The case δ = 0

holds by Lemma 4.3.18. Suppose that δ > 0. To ease notation, let d def
= 3 f − δ

and pick a weight σd ∈ JH(R) such that dgph(σ, σd) = d (in other words, σd ∈

JH(R) is at maximal graph distance from σ ); we will show that d = dsat(σ, σd).
Note that DefR(σd) 6 DefR(σ ). If DefR(σd) < DefR(σ ), then σd is maximally
saturated (by induction on DefR(σd)), and, hence, dgph(σ, σd) = dsat(σ, σd) by
Proposition 4.3.14.

We now consider the case DefR(σd) = DefR(σ ). By a direct check on the
extension graph, we see that there exists σd−1 ∈ JH(R) with dgph(σd, σd−1) = 1
and DefR(σd−1) = DefR(σ )− 1. Note that dgph(σd−1, σ ) = d − 1. By induction,
the weight σd−1 is maximally saturated; hence, dsat(σd−1, κ) = dgph(σd−1, κ) =

dσd−1
rad (κ) for all κ ∈ JH(R) by Propositions 4.3.14 and 4.3.16.
Let Rσd−1 ⊆ Rσ , Rσd ⊆ Rσ be saturated inclusions of lattices. By Lemma 4.3.9,

we are in one of the following situations:
(1) Rσd ⊆ Rσd−1 ⊆ Rσ ;

(2) Rσd−1 ⊆ Rσd ⊆ Rσ ,

where the inclusions are all saturated.
Case (1). Taking κ = σ in the above, we have that dsat(σ, σd−1) = d − 1 and,

hence, obtain chains of saturated inclusions:

pd−1 Rσ
⊆ Rσd−1 ⊆ Rσ

Rσd

⊆
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Assume for the sake of contradiction that dsat(σ, σd) < d , that is, that we have a
factorization

pd−1 Rσ
⊆� r

$$

Rσd−1 ⊆ Rσ .

Rσd

⊆

Then, we necessarily have that dsat(σ, σd) = d − 1. We obtain a commutative
diagram:

pd−1 Rσ �
�

//

����

Rσd �
�

//

����

Rσd−1

����

(pd−1 Rσ )
⊗

O F

6=0

::6=0
// R

σd

6=0
// R

σd−1

where the lower arrows are all nonzero.
In particular, σ is a constituent of Qσd−1(σd). By Corollary 4.3.1 and Lemma

4.3.3, we have dσd−1
rad (σ ) > dσd−1

rad (σd)+ dσd
rad(σ ) > dgph(σd−1, σd)+ dgph(σd, σ ) =

d + 1. On the other hand, as σd−1 is maximally saturated, dσd−1
rad (σ ) = d − 1, a

contradiction.
Case (2). We now have a commutative diagram

Rσd−1 �
�

//

����

Rσd �
�

//

����

Rσ

����

R
σd−1

6=0

==6=0
// R

σd

6=0
// R

σ

where again the lower arrows are nonzero. Exactly as in the previous case, we
deduce that dσrad(σd−1) > dσrad(σd)+ 1 > d + 1.

We therefore may, and do, fix an extension path in the radical filtration of R
σ
:

σd−1 = σ
′

k ← σ ′k−1 ← · · · ← σ ′1 ← σ ′0 = σ.

For notational convenience, we set κi
def
= σ ′k−i . As k > d + 1, and as σd−1

is maximally saturated, we deduce as in the proof of Proposition 4.3.16, the
existence of an index i ∈ {0, . . . , k − 1} such that

(1) dgph(κ0, κi) = dsat(κ0, κi) = i and
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(2) dgph(κ0, κi+1) = dsat(κ0, κi+1) < i + 1, and actually dgph(κ0, κi+1) 6 i − 1.

Fix a chain of saturated inclusions Rκ0 ⊆ Rκ1 ⊆ · · · ⊆ Rκk . Item (2) implies
that Rκ0 ⊆ Rκi+1 ⊆ p−i+1 Rκ0 . The induced inclusion Rκi ⊆ Rκi+1 ⊆ p−i+1 Rκ0

contradicts item (1).

Proof of Theorem 4.1.9. (5) follows from Propositions 4.3.14 and 4.3.19.
Items (1) and (2) follow from Propositions 4.3.16 and 4.3.19. Note that Γrad(R

σ
)

is a subgraph of Γ (R
σ
). Using Lemma 4.2.6 and the fact that Γ (R

σ
) is acyclic,

Γ (R
σ
) must in fact be Γrad(R

σ
). This implies (3).

5. Breuil’s Conjectures

In this section, we deduce generalizations of Breuil’s conjectures on mod p
multiplicity one and lattices from the results in Sections 3–4. In Sections 5.1–
5.2, we prove a version of Breuil’s conjectures for abstract patching functors.
Finally, we deduce the main results in Section 5.3.

5.1. Cyclicity for patching functors. In this subsection, we show that
certain patched modules for tame types are locally free of rank one over the
corresponding local deformation space using several inductive steps. The base
case is Lemma 5.1.3. Each inductive step uses one of the two arguments in
[EGS15, Section 10]. It is here that the results of Section 3.6.3 enter.

Recall from Section 1.4 that S is a finite set so that for each ṽ ∈ S , F̃v is a finite
unramified extension of Qp of degree fṽ. For each ṽ, let ρ ṽ : G F̃v → GL3(F) be
a 10-generic semisimple continuous Galois representation and let ρS be (ρ ṽ)ṽ∈S .
Recall the weak minimal patching functor setting of Section 3.5. Suppose that
ρS |IS

∼= τS(s, µ) for s ∈ W and µ ∈ X ∗(T ).
Let K be

∏
ṽ∈S K ṽ. Suppose that M∞ is a weak minimal patching functor for

ρS (cf. Definition 3.5.1). For each ṽ ∈ S , let τṽ be a 13-generic tame inertial type
for F̃v. Recall Rτṽ ,β ṽ ,2

Mṽ ,ρ ṽ
from [LLHLM18, Definition 5.10]. We let τS be (τṽ)ṽ so

that σ(τS) is the K -module
⊗

ṽ∈S σ(τṽ). Let

R′
∞
(τS)

def
= R∞(τS)⊗̂(⊗̂ṽ∈S Rτ̃vṽ )

(⊗̂
ṽ∈S

Rτṽ ,β ṽ ,2

Mṽ ,ρ ṽ

)
and

M ′
∞
(V ) def
= M∞(V )⊗̂(⊗̂ṽ∈S Rτ̃vṽ )

(⊗̂
ṽ∈S

Rτṽ ,β ṽ ,2

Mṽ ,ρ ṽ

)
for any subquotient V of a lattice in σ(τS).
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We assume that R∞(τS) is nonzero. Then there exists w̃ = (w̃ṽ)ṽ∈S =

(w̃i)i∈J ∈ Adm∨(η) such that τS ∼= τS(s(w∗)−1, µ + s(w̃∗)−1(0)) with the
lowest alcove presentation (s(w∗)−1, µ + s(w̃∗)−1(0) − η) by Theorem 3.3.12
and Proposition 3.4.1. Note that w̃ṽ = w̃(ρ ṽ, τṽ). Then, as explained in
Section 3.6.1, SpfR

′

∞
(τS) (respectively SpfR′

∞
(τS)) is formally smooth over

Spf
(⊗̂

i∈J R
expl,∇
Mṽ ,w̃i

)
(respectively Spf

(⊗̂
i∈J Rexpl,∇

Mṽ ,w̃i

)
if `(w̃i) > 1 for all i ∈

J ), where i = (̃v, iṽ). We consider R
′

∞
(τS) (respectively R′

∞
(τS)) both as

a
⊗̂

i∈J R
expl,∇
Mṽ ,w̃i

-algebra and a
⊗̂

ṽ∈S R
2

ρ ṽ
-algebra (respectively a

⊗̂
i∈J Rexpl,∇

Mṽ ,w̃i
-

algebra and a
⊗̂

ṽ∈S R2
ρ ṽ

-algebra). It is easy to see that M ′
∞
(V ) is a cyclic R′

∞
(τS)-

module if and only if M∞(V ) is a cyclic R∞(τS)-module. Moreover, M ′
∞
(V )

is always maximal Cohen–Macaulay over its support. It will often be more
convenient to prove that M ′

∞
(V ) is a cyclic R′

∞
(τS)-module, and we will switch

to M ′
∞
(V ) without comment. If σ ∈ JH(σ (τS)), then recall from Section 4.1.2

that σ(τS)σ is the unique O-lattice up to homothety in σ(τS) with cosocle σ .

THEOREM 5.1.1. Let τS be a 13-generic tame type and σ def
= F(λ) ∈ W ?(ρS, τS)

such that for all i ∈ J ,

λπ−1(i) ∈ X1(T ) is in alcove C1 if `(w̃∗i ) 6 1. (5.1)

Then M∞(σ (τS)σ ) is free of rank one as a R∞(τS)-module.

The proof of Theorem 5.1.1 proceeds by proving cases of increasing complexity.
We distinguish five steps in the argument.

LEMMA 5.1.2. If σ ∈ W ?(ρS), then M∞(σ ) is a cyclic R∞(τS)-module.

Proof. The proof follows the methods of Diamond and Fujiwara [Dia97].
Note that the support of M∞(σ ) is formally smooth as can be checked from
Theorem 3.5.2. Since M∞(σ ) is maximal Cohen–Macaulay over its formally
smooth support by Definition 3.5.1(3), it is free over its support by the
Auslander–Buchsbaum–Serre theorem and the Auslander–Buchsbaum formula.
Since e(M∞(σ )) = 1 by Theorem 3.5.2, the free rank is one.

If V is a $ -torsion K -module satisfying the hypotheses of Lemma 3.6.2, we
write R∞(V ) to denote the quotient R∞/I (V ). For the rest of this subsection, we
assume that the weight σ satisfies the conditions of Theorem 5.1.1.

LEMMA 5.1.3. Assume that `(w̃∗i ) > 1 for all i ∈ J . Let σ ∈ W ?(ρS, τS) and
let V be a nonzero quotient of σ(τS)σ . Then M∞(V ) is a cyclic R∞(τS)-module.
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Proof. If R′
∞
(τS) is formally smooth over O, then the result follows from

Lemma 5.1.2. Suppose otherwise. We use the notation of the proof of Lemma
4.3.7 with R = σ(τS). Recall that for σ ∈ JH(σ (τS)), pS(σ ) = (z j(σ ))

N
j=1+ (p).

By Lemma 3.6.10, for σ1 and σ2 ∈ W ?(ρS, τS), we have

#
(
{z j(σ1)} j∆{z j(σ2)} j

)
= 2dgph(σ1, σ2). (5.2)

Let σ1 ∈ W ?(ρS, τS) be such that dgph(σ, σ1) = 1. Furthermore, fix a

saturated inclusion σ(τS)σ1 ↪→ σ(τS)
σ . Letting M def

= M ′
∞
(σ (τS)

σ ) and M1
def
=

M ′
∞
(σ (τS)

σ1), we have a map M1 → M . By Proposition 4.3.7, σ(τS)σ/σ(τS)σ1

is p-torsion, with Jordan–Hölder factors determined by Theorem 4.1.9. By the
proofs of Lemmas 3.6.2 and 4.3.7, the scheme-theoretic support of M/M1 in
Spec S is

Spec
(

S/
⋂

σ ′∈JH(σ (τS )σ /σ(τS )σ1 )

pS(σ
′)

)
. (5.3)

The sets {z j(σ1)} j and {z j(σ )} j differ at exactly one component, say j1. The
equation (5.2) determines pS(σ

′) for all σ ′ ∈ JH(σ (τS)) from which one checks
that z j1(σ ) is in pS(σ

′) for any σ ′ ∈ JH(σ (τS)σ/σ(τS)σ1). By (5.3), we see that
coker(M1 → M) is killed by z j1(σ ). Similarly, we have that coker(pM →
M1) is annihilated by z j1(σ1). Hence, we have inclusions z j1(σ )M ⊂ M1 and
z j1(σ1)M1 ⊂ pM . Combining these, we have that pM = z j1(σ )z j1(σ1)M ⊂
z j1(σ1)M1 ⊂ pM . We conclude that the above inclusions are equalities.

Applying the above argument for all σ1 ∈ W ?(ρS, τS) at distance one from
σ , we have that M ′

∞
(σ ) ∼= M ′

∞
(σ (τS)

σ )/($, {zi(σ )}i). The left-hand side,
and hence the right-hand side, is cyclic by Lemma 5.1.2. We conclude that
M ′
∞
(σ (τS)

σ ) is cyclic by Nakayama’s lemma. Since M ′
∞
(V ) is a nonzero

quotient of M ′
∞
(σ (τS)

σ ), it too is cyclic.

As in Section 2.3, let σ(ω,a)
def
= F(Trµ(sω, a)) (where (sω, a) ∈ Λµ

W × A).
Then W ?(ρS) = {σ(ω,a) : (ω, a) ∈ r(Σ)}. Similarly, for w̃ ∈ Adm∨(η), we have
a bijection

(w̃∗)−1(Σ)
∼

→ JH(σ (τS))
(ω, a) 7→ σ(ω,a),

where τS
def
= τ(s(w∗)−1, µ− s(w̃∗)−1(0)). In what follows, σ ∈ W ?(ρS, τS) is a

Serre weight satisfying (5.1) and V is a nonzero quotient of σ(τS)σ . We assume
that for each i ∈ J , there exists a subset ΣV,i ⊆ (w̃

∗

i )
−1(Σ0) such that∏

i∈J

ΣV,i
∼

→ JH(V ) (5.4)
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(ω, a) 7→ σ(ω,a) = F(Trµ(sω, a))

is a bijection. All representations we consider below satisfy this assumption.
In the following lemmas, we use a gluing procedure to show that M∞(V )

is cyclic in cases where the set W ?(ρS, τS) is of increasing complexity. In
Figures 3–7, we give a pictorial realization of the gluing procedure employed
in the proofs of Lemma 5.1.4–5.1.7, respectively.

LEMMA 5.1.4. Suppose that for each i ∈ J , either `(w̃∗i ) > 1 or ΣV,i ⊂ {(ω,

1), (0, 0), (ε1, 0), (ε2, 0)} for some ω ∈ {0, ε1, ε2}. Then M∞(V ) is a cyclic
R∞(τS)-module.

Proof. Note that by condition (5.1), one has (ω, 1) ∈ ΣV,i whenever `(w̃∗i ) 6 1.
In this case, we assume, without loss of generality, that (ω, 0) ∈ ΣV,i (because
the quotient of a cyclic module is cyclic). Let ΣV,i be the image of ΣV,i in ΛW
under the natural projection. We proceed by induction on

n = #
{
i ∈ J : `(w̃∗i ) 6 1 and #ΣV,i = 3

}
.

If n = 0, then a casewise check shows that there exists w̃′ ∈ Adm(η) such that
for all i ∈ J , `(w̃′i) > 1 and ΣV,i ⊂ Σ(w̃′i )

−1 . For example, if ΣV,i ⊂ {(0, 1), (0,
0), (ε1, 0)}, then one takes w̃′i = βαt1. Let τ ′S be τS(s(w′)−1, µ + s(w̃′)−1(0))
where w′ ∈ W is the image of w̃′. Then M∞(V ) is a cyclic R∞(τ ′S)-module by
Lemma 5.1.3. Hence, M∞(V ) is a cyclic R∞-module, and, thus, it is a cyclic
R∞(τS)-module as well.

Suppose now that n > 0 so that there is an i ′ ∈ J such that #ΣVi ′
= 3

and `(w̃∗i ′) 6 1. By Theorem 4.1.9 and Propositions 4.1.1 and 4.1.2, there
are quotients V 1 and V 2 of V satisfying (5.4) with the following additional
properties:

(1) ΣV,i ′ = ΣV 1,i ′ ∪ΣV 2,i ′ ,

(2) (ω, 0) ∈ ΣV 1,i ′ ∩ΣV 2,i ′ ,

(3) #ΣV 1,i ′, #ΣV 2,i ′ = 2, and

(4) ΣV j ,i = ΣV,i for all i 6= i ′ and j = 1, 2.

For example, if ΣV,i ′ = {(0, 1), (0, 0), (ε1, 0), (ε2, 0)}, then one takes ΣV 1,i ′ =

{(0, 1), (0, 0), (ε1, 0)} and ΣV 2,i ′ = {(0, 1), (0, 0), (ε2, 0)} (cf. Figure 3).
Let V 3 be the quotient of V 1 and V 2 satisfying (5.4) such thatΣV 3,i = ΣV 1,i ∩

ΣV 2,i for all i . By the inductive hypothesis, M ′
∞
(V 1), M ′

∞
(V 2), and M ′

∞
(V 3) are

cyclic. Let I j be AnnR′∞(τS )M
′

∞
(V j) for j = 1, 2, 3. By (1), we have an injection
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V ↪→ V 1
⊕V 2. In fact, this injection lands in V 1

×V 3 V 2. Comparing lengths, we
see that the injection V ↪→ V 1

×V 3 V 2 is in fact an isomorphism, which, using
the exactness of M∞ (see Definition 3.5.1), gives the first isomorphism below:

M ′
∞
(V ) ∼= M ′

∞
(V 1)×M ′∞(V 3) M ′

∞
(V 2)

∼= R′
∞
(τS)/I1 ×R′∞(τS )/I3 R′

∞
(τS)/I2

∼= R′
∞
(τS)/I1 ×R′∞(τS )/(I1+I2) R′

∞
(τS)/I2

∼= R′
∞
(τS)/(I1 ∩ I2).

The second isomorphism follows from Lemma 3.6.2. The third isomorphism
follows from the fact that I1 + I2 = I3 by Theorem 3.6.4, Table 3, and Lemmas
3.6.12 and 3.6.16(3.19). We deduce in particular that M ′

∞
(V ) is cyclic.

We remind the reader that our parametrization of Serre weights σ(ω,a) is
‘centered at ρS’. Thus, σ(ω,a) ∈ W ?(ρS) exactly when (ω, a) ∈ r(Σ), and
σ(ω,a) ∈ JH(σ (τS)) exactly when (ω, a) ∈ (w̃∗)−1(Σ).

LEMMA 5.1.5. Suppose that for all i ∈ J , either `(w̃∗i ) > 1 or

ΣV,i ⊂ (w̃
∗

i )
−1(Σ0 \ {(ν1, 0), (ν2, 1), (ν3, 0)}),

where (ν1, ν2, ν3) is (ε1 − ε2, ε1, ε1 + ε2), (ε2 − ε1, ε2, ε1 + ε2), or (ε1 − ε2, 0,
ε2 − ε1). Then M∞(V ) is a cyclic R∞(τS)-module.

Proof. We note that #(ΣV,i ∩r(Σ0)) 6 5 for all i ∈ J . We proceed by induction
on n = #{i ∈ J : #(ΣV,i ∩ r(Σ0)) = 5}. There is a unique w̃′i ∈ Adm(2, 1, 0)
such that

(w̃∗i )
−1(Σ0 \ {(ν1, 0), (ν2, 1), (ν3, 0)}) = (w̃∗i )

−1(Σ0) ∩ (w̃
′

i)
−1(Σ0). (5.5)

One can check that if #((w̃∗i )
−1(Σ0 \ {(ν1, 0), (ν2, 1), (ν3, 0)}) ∩ r(Σ0)) 6 4,

then one of `(w̃∗i ) and `(w̃′i) is strictly greater than one. If we change the type
τS so that w̃∗i is replaced by w̃′i , but w̃∗i ′ are unchanged for i ′ 6= i , there is still a
surjection σ(τS)σ � V by (5.5) and Theorem 4.1.9. We can therefore assume,
without loss of generality, that for each i , either `(w̃∗i ) > 1 or #((w̃∗i )

−1(Σ0\{(ν1,

0), (ν2, 1), (ν3, 0)}) ∩ r(Σ0)) = 5.
Suppose that n = 0. If `(w̃∗i ) 6 1 for some i ∈ J , then #((w̃∗i )

−1(Σ0 \ {(ν1,

0), (ν2, 1), (ν3, 0)}) ∩ r(Σ0)) = 5 by assumption. On the other hand, ΣV,i ∩

r(Σ0) < 5, which implies that ΣV,i ∩ r(Σ0) ⊂ {(ω, 1), (0, 0), (ε1, 0), (ε2, 0)}
where ω = 0, ε1, or ε2 by considerations of submodule structure. Hence, there is
a quotient V ′ of V such that V ′ is of the form in Lemma 5.1.4 and the induced
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map M∞(V )→ M∞(V ′) is an isomorphism by exactness of M∞ and Theorem
3.5.2. We are then done by Lemma 5.1.4.

Suppose now that n > 0. Suppose that #(ΣV,i ′ ∩ r(Σ0)) = 5 for some i ′ ∈ J .
This, in particular, implies that #(ΣV,i ′) = 6, by consideration of submodule
structure given in Theorem 4.1.9. Then V has a unique quotient V 1 such that
ΣV 1,i = ΣV,i if i 6= i ′ andΣ1

V,i ′ = ΣV,i ′ \ {(w̃
∗

i ′)
−1(ν4, 1)} where ν4 = 0, ε1, or ε2

and ν4 6= ν2 (cf. Figure 4 for an example in the particular case where w̃i ′ = t1).
Then M∞(V 1) is cyclic by the induction hypothesis. There is also a submodule
V 2
⊂ V such that ΣV 2,i = ΣV,i if i 6= i ′ and #ΣV 2,i ′ = #

(
ΣV 2,i ′ ∩ r(Σ0)

)
= 2

(cf. Figure 4; note also that (w̃∗i ′)
−1(ν4, 1) ∈ ΣV 2,i ′ since soc V 2

⊆ soc V ). One
can check that M∞(V 2) is cyclic by the inductive hypothesis. Then letting M ′′ =
ker(M∞(V )� M∞(V 1)) and M ′ = M∞(V 2), [EGS15, Lemma 10.1.13] implies
that M∞(V ) is cyclic.

LEMMA 5.1.6. Suppose that for all i ∈ J , either `(w̃i) > 1 or ΣV,i ⊂

(w̃∗i )
−1(Σ0 \ {(ν, 0)}) where ν is ε1 − ε2, ε2 − ε1, or ε1 + ε2. Then M∞(V )

is a cyclic R∞(τS)-module.

In the setting of Lemma 5.1.6, note that when `(w̃i) 6 1, the conditionΣV,i ⊂

(w̃∗i )
−1(Σ0 \ {(ν, 0)}), ν ∈ {ε1 − ε2, ε2 − ε1, ε1 + ε2} is equivalent to #ΣV,i < 9.

Proof. We proceed by induction on

n = #{i ∈ J :`(w̃∗i ) 6 1 and ΣV,i 6⊂ (w̃
∗

i )
−1(Σ0 \ {(ν1, 0), (ν2, 1), (ν3, 0)}) for

(ν1, ν2, ν3) = (ε1 − ε2, ε1, ε1 + ε2), (ε2 − ε1, ε2, ε1 + ε2),

and (ε1 − ε2, 0, ε2 − ε1)}.

The case n = 0 is covered by Lemma 5.1.5. Suppose that n > 0 and that i ′ ∈ J
with `(w̃∗i ′) 6 1 and

ΣV,i ′ 6⊂ (w̃
∗

i ′)
−1(Σ0 \ {(ν1, 0), (ν2, 1), (ν3, 0)})

for (ν1, ν2, ν3) ∈ {(ε1−ε2, ε1, ε1+ε2), (ε2−ε1, ε2, ε1+ε2), (ε1−ε2, 0, ε2−ε1)}.
Assume, without loss of generality, that ΣV,i ′ = (w̃∗i ′)

−1(Σ0 \ {(ν, 0)}), as the
quotient of a cyclic module is again cyclic. We can further assume, without loss
of generality, that ν = ε1 + ε2 (which implies that if σ = σ(ω,a), then (ωi ′, ai ′) =

(w̃∗i ′)
−1(0, 1)). Then there are quotients V 1 and V 2 of V such that

(1) ΣV,i ′ = ΣV 1,i ′ ∪ΣV 2,i ′ ,

(2) ΣV j ,i = ΣV,i for i 6= i ′ and j = 1, 2,

(3) ΣV 1,i ′ ⊂ (w̃
∗

i ′)
−1(Σ0 \ {(ε1 − ε2, 0), (ε1, 1), (ε1 + ε2, 0)}), and
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(4) ΣV 2,i ′ ⊂ (w̃
∗

i ′)
−1(Σ0 \ {(ε2 − ε1, 0), (ε2, 1), (ε1 + ε2, 0)})

(cf. Figure 5 for an example when w̃i ′ = α). We now argue by induction as in the
proof of Lemma 5.1.4 using Theorem 3.6.4 and Lemmas 3.6.14, 3.6.16(3.17),
and 3.6.16(3.18). Note that the analogue of Lemma 3.6.16 for the shapes β and
γ hold symmetrically (see Remark 3.6.5).

LEMMA 5.1.7. With V as described before Lemma 5.1.4, M∞(V ) is a cyclic
R∞(τS)-module.

Proof. We proceed by induction on

n = #{i ∈ J : `(w̃∗i ) 6 1 and #ΣV,i = 9}.

(In the definition of n, note that the condition #ΣV,i = 9 can be replaced by ‘for
all ν ∈ {ε1−ε2, ε2−ε1, ε1+ε2}, one hasΣV,i 6⊂ (w̃

∗

i )
−1(Σ0\{(ν, 0)})’.) The case

n = 0 is covered by Lemma 5.1.6. Suppose that n > 0. Let i ′ ∈ J be such that
`(w̃∗i ′) 6 1 and #ΣV,i ′ = 9 (equivalently, `(w̃∗i ′) 6 1 and ΣV,i ′ = (w̃

∗

i ′)
−1(Σ0)).

Then V has a quotient V 1 such that ΣV 1,i = ΣV,i if i 6= i ′ and ΣV 1,i ′ = ΣV,i ′ \

{(w̃∗i ′)
−1(ν, 0)} where ν = ε1−ε2, ε2−ε1, or ε1+ε2 (cf. Figure 7 for an example

when w̃∗i ′ = γ
+t1). If the map M∞(V ) → M∞(V 1) is an isomorphism, we are

done. Otherwise, there is a submodule V 2 of V such that ΣV 2,i = ΣV,i if i 6= i ′,
#ΣV 2,i ′ = #

(
ΣV 2,i ′ ∩ r(Σ0)

)
= 2, and (w̃∗i ′)

−1(ν, 0) ∈ ΣV 2,i ′ ⊂ r(Σ0). Then one
argues as in the proof of Lemma 5.1.5.

Proof of Theorem 5.1.1. Lemma 5.1.7 implies that M∞(σ (τS)σ ) is a cyclic
R∞(τ )-module. Nakayama’s lemma implies that M∞(σ (τS)σ ) is a cyclic
R∞(τS)-module. By Theorem 3.5.2, M∞(σ ), and thus M∞(σ (τS)σ ), is nonzero.
By Theorem 3.5.3, R∞(τS) is irreducible and reduced so that Definition 3.5.1(3)
implies that M∞(σ (τS)σ ) is a faithful R∞(τS)-module. Since a faithful cyclic
module is free of rank one, we are done.

Finally, we show that the hypothesis of Theorem 5.1.1 is actually necessary.

PROPOSITION 5.1.8. Let τS be a 13-generic tame type and σ def
= F(λ) ∈ W ?(ρS,

τS). Assume that for some i ∈ J ,

λπ−1(i) ∈ X1(T ) is in alcove C0 and `(w̃∗i ) 6 1. (5.6)

Then M∞(σ (τS)σ ) is not free as an R∞(τS)-module.

Proof. As we will not make use of this, we only give a sketch of proof. Unlike
the rest of this section, we will parametrize the weights by centering around
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τS so that τS = τ(s, µ) and σ(ω,a) means σ(ω,a)
def
= F(Trµ(sω, a)). In particular,

W ?(ρS, τS) consists of σ(ω,a) such that (ω, a) ∈ Σw̃∗ .
We write σ = σ(ω,a), so (ω, a) ∈Σ . For each i satisfying (5.6), we have ai = 0.

If moreover (ωi , ai) ∈Σ
inn
0 , we set (ω′i , a′i) = (ωi , 1), otherwise we set (ω′i , a′i) to

be one of the two elements inΣ0 that are adjacent to (ωi , ai). For i not satisfying
(5.6), we set (ω′i , a′i) = (ωi , ai). Thus, we obtain a weight σ ′ = σ(ω′,a′) which
satisfies the hypothesis of Theorem 5.1.1.

We now fix a saturated inclusion ı : σ(τS)σ ↪→ σ(τS)
σ ′ , and let C denote the

cokernel. Since M∞(σ (τS)σ
′

) ∼= R∞(τS), M∞(ı) identifies M∞(σ (τS)σ ) with
an ideal I (C) of R∞(τS). Thus, we need to show that I (C) is not a principal
ideal, and to do so, it suffices to show that the image of I (C) in R∞(τS) is not
principal.

Let V denote the cokernel of ı mod $ . Using Theorem 4.1.9, we see that V is
multiplicity free, and JH(V )∩W ?(ρS) consists of σ(ν,c) in (ν, c) ∈Σw̃∗\

∏
i ΣV c,i ,

where

• if i does not satisfy (5.6), ΣV c,i = Σw̃∗i
;

• if i satisfies (5.6) and (ωi , ai) ∈ Σ
inn
0 ,ΣV c,i = {(ωi , 0), (µ1, 1), (µ2, 1)} where

{ωi , µ1, µ2} = {0, ε1, ε2}; and

• if i satisfies (5.6) and (ωi , ai) /∈ Σ
inn
0 , ΣV c,i =

{
(ωi , 0), (ω′′i , 1)

}
where ω′′i is

such that {ωi , ω
′

i , ω
′′

i } = {ε2 − ε1, 0, ε2}, {ε1 − ε2, 0, ε1}, or {ε1 + ε2, ε1, ε2}.

Lemma 3.6.2 shows that M∞(V ) ∼= R∞(τS)/I (V ), where I (V ) is the
intersection, over κ ∈ JH(V )∩W ?(ρS), of the ideals p(κ) defined in Proposition
3.6.1. Note that the image of I (C) in R∞(τS) is I (V )R∞(τS). Thus, we need
to show I (V )R∞(τS) or, equivalently, I (V )R

′

∞
(τS) is not principal. Recall

that there is a formally smooth map
⊗̂

i∈J R
expl,∇
Mṽ ,w̃i

→ R
′

∞
(τS). We claim

that the ideal I (V ) comes from I def
=
⊗̂

i

(⋂
(νi ,ci )∈Σw̃∗i

\ΣV c ,i
c(νi ,ci )R

expl,∇
Mṽ ,w̃ fṽ−1−i

)
.

To check the claim, let R
expl,∇
M,w̃

def
=

⊗̂
i∈J R

expl,∇
Mṽ ,w̃i

. We first check that

R
expl,∇
M,w̃ /I has the expected cycle. To do this, we check using Table 3 that

R
expl,∇
Mṽ ,w̃ fṽ−1−i

/
⋂

(νi ,ci )∈Σw̃∗i
\ΣV c ,i

c(νi ,ci )R
expl,∇
Mṽ ,w̃ fṽ−1−i

is filtered by R
expl,∇
Mṽ ,w̃ fṽ−1−i

/c(ν j ,c j )

for (ν j , c j) ∈ Σw̃∗i
\ ΣV c,i and that

⋂
(νi ,ci )∈Σw̃∗i

\ΣV c ,i
c(νi ,ci )R

expl,∇
Mṽ ,w̃ fṽ−1−i

is filtered

by R
expl,∇
Mṽ ,w̃ fṽ−1−i

/c(ν j ,c j ) for (ν j , c j) ∈ ΣV c,i . Thus, we can filter the quotient

R
expl,∇
M,w̃ /I with factors of the form ⊗̂i∈J R

expl,∇
Mṽ ,w̃i

/pi , where the pi are minimal

primes of R
expl,∇
Mṽ ,w̃i

(note that taking completion is an exact operation). As Γ (im(ı
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(mod $))) decomposes as a product over J , an inductive argument using
Theorem 3.6.4 and the above filtration on R

expl,∇
M,w̃ /I shows that the cycle of

R
expl,∇
M,w̃ /I is given by the components of R

expl,∇
M,w̃ labeled by the Serre weights

corresponding to Γ (im(ı (mod $))). In order to prove the claim, we are left to
show that I is a radical ideal. To see this, we make the following observation: If
R, S are two reduced local Noetherian rings over a perfect field k and J , L are
radical ideals of R, S, then J ⊗k L is a radical ideal of R ⊗k S. This is because
(R ⊗ S)/(J ⊗ L) embeds into ((R/J ) ⊗ S) × (R ⊗ (S/L)) (as can be seen
by choosing bases of J, L as k-vector spaces and extending them to bases of
R, S), and the latter ring is reduced. Finally, we note that in the situation above,
the property of being a radical ideal is preserved by completion so that J ⊗̂k L is
also radical in R⊗̂k S. The claim is proven.

By Nakayama’s lemma, the size of a minimal set of generators of I is given
by the dimension over F of

I ⊗
⊗̂i∈J R

expl,∇
Mṽ ,w̃i

F =
⊗

i

( ⋂
(νi ,ci )∈Σw̃∗i

\ΣV c ,i

c(νi ,ci ) ⊗R
expl,∇
Mṽ ,w̃ fṽ−1−i

F
)

Hence, it suffices to show that for i satisfying (5.6),⋂
(νi ,ci )∈Σw̃∗i

\ΣV c ,i
c(νi ,ci ) ⊗R

expl,∇
Mṽ ,w̃ fṽ−1−i

F

has dimension greater than one, which can be checked from Table 3.

5.2. Gauges for patching functors. In this subsection, we compute the
image of maps between patched modules for lattices in Deligne–Lusztig
representations. This can be viewed as a calculation of lattice gauges in families.
The main ingredient for this section is Theorem 5.1.1, after which algebro-
geometric arguments using the projection formula and the Cohen–Macaulay
property prove Theorem 5.2.3. We learned these arguments from M. Emerton.

We continue to use the weak minimal patching functor setting of Section 3.5.
Let S , ρS , R∞, X∞, and M∞ be as in Section 5.1. Let τS be (τṽ)ṽ∈S , where
τṽ is a 13-generic tame type. Let X∞(τS)

def
= Spec R∞(τS). It is a normal and

Cohen–Macaulay scheme by (the proof of) Theorem 3.5.3. Let Z ⊂ X∞(τS) be
the locus of points lying on two irreducible components of the special fiber of
X∞(τS). Note that the codimension of Z ⊂ X∞(τS) is two. Let

j : U def
= X∞(τS) \ Z ↪→ X∞(τS)
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be the natural open immersion. Note that j and U come from pulling back
the open immersion j0 : U0 ↪→ Spf(

⊗̂
ṽ∈S Rτṽ

ṽ ) via the formally smooth map
X∞(τS)→ Spf(

⊗̂
ṽ∈S Rτṽ

ṽ ), where U0 is defined in an analogous way as U .

LEMMA 5.2.1. The scheme U is regular.

Proof. The irreducible components of the special fiber of X∞(τS) are formally
smooth over F; hence, the special fiber U of U is regular by the last part of
Theorem 3.5.3. The dimension of the tangent space of U at a characteristic
p point is at most one more than the dimension of the tangent space of U at
that point. By p-flatness, the Krull dimension of U is one more than the Krull
dimension of U , and so U is regular at characteristic p points. Since the generic
fiber of U , which is isomorphic to the generic fiber of X∞(τS), is regular, U is
regular.

We now use the notation j∗ and j∗ which take quasicoherent sheaves on
X∞(τS) to those on U and vice versa, respectively.

LEMMA 5.2.2. Let σ, κ ∈ JH(σ (τS)) and let ι : σ(τS)κ ↪→ σ(τS)
σ be a

saturated injection. For any θ =
⊗

ṽ∈S θṽ ∈ W ?(ρS), let m(θ) be the multiplicity
with which θ appears in the cokernel of ι. Then the induced injection j∗M∞(ι) :
j∗M∞(σ (τS)κ) ↪→ j∗M∞(σ (τS)σ ) has image

j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)M∞(σ (τS)σ )
)
,

where p(θ) =
∑

ṽ∈S p(θṽ).

Proof. Note that j∗(M∞(σ (τS)κ)) and j∗(M∞(σ (τS)σ )) are locally free (of rank
one) since they are Cohen–Macaulay of full support over the regular scheme U
(see Definition 3.5.1). Then the image of j∗M∞(ι) is J ⊗OU j∗(M∞(σ (τS)σ )),
where J is the ideal sheaf of the Cartier divisor corresponding to the cokernel of
j∗M∞(ι). It is easily seen that J = j∗

(∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)

. Finally, we
have that

j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)
⊗OU j∗

(
M∞(σ (τS)σ )

)
∼= j∗

( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)

j∗
(

M∞(σ (τS)σ )
)
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= j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)M∞(σ (τS)σ )
)

where the isomorphism follows from the fact that j∗(M∞(σ (τS)σ )) is locally
free.

Let σ be as in Theorem 5.1.1 so that M∞(σ (τS)σ ) is cyclic.

THEOREM 5.2.3. With the notation of Lemma 5.2.2, suppose further that σ
is as in Theorem 5.1.1. Then the induced injection M∞(ι) : M∞(σ (τS)κ) ↪→
M∞(σ (τS)σ ) has image

j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)

M∞(σ (τS)σ ).

Proof. If M is a Cohen–Macaulay sheaf on X∞(τS), then j∗ j∗M =M since
the codimension of Z is two (cf. [HK04, Proposition 3.5]). Hence, the image of
M∞(ι) is

j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)M∞(σ (τS)σ )
)

by Lemma 5.2.2. Since M∞(σ (τS)σ ) is free over R∞(τS), we have that

j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)M∞(σ (τS)σ )
)

= j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)

M∞(σ (τS)σ ).

REMARK 5.2.4. As j comes from pulling back j0 via X∞(τS) →
Spf(

⊗̂
ṽ∈S Rτṽ

ṽ ) and p(θ) are ideals of Spf(
⊗̂

ṽ∈S Rτṽ
ṽ ), we see that the ideal

j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)
= j0∗ j∗0

( ∏
θ∈W ?(ρS )

p(θ)m(θ)
⊗̂
ṽ∈S

Rτṽ
ṽ

)
R∞(τS)

comes from an ideal in ⊗̂ṽ∈S R�ṽ .

5.3. Global applications. In this subsection, we deduce generalizations of
conjectures of Dembélé and Breuil on mod p multiplicity one and lattices,
respectively (see [Bre14, Conjectures B.1 and 1.2]). Theorem 5.3.4 follows
immediately from Theorem 5.1.1. While Theorem 5.3.5 also follows from
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Theorem 5.2.3, it is crucial that the image of the map between two patched
modules given in Theorem 5.2.3 is described by an ideal. This is far from formal
and relies crucially on Theorem 5.1.1.

We use the setup in [LLHLM18, Section 7.1]. Let F/Q be a CM field with
maximal totally real subfield F+ 6= Q and letΣ+p (respectivelyΣp) be the set of
places of F+ (respectively of F) lying above p. Let G/F+ be a reductive group
which is an outer form for GL3, which is quasisplit at all finite places of F+, and
which splits over F . Suppose that G/F+ is definite, that is, that G(F+v ) ∼= U3(R)
for all v|∞. Recall from [EGH13, Section 7.1] that G admits a reductive model
G defined over OF+[1/N ], for some N ∈ N which is prime to p, together with
an isomorphism

ι : G/OF [1/N ]
ι
→ GL3/OF [1/N ] (5.7)

which specializes to ιw : G(OF+v )
∼

→ G(OFw)
ι
→ GL3(OFw) for all places w ∈

Σp with w|F+ = v.
Let U = U pUp 6 G(A(∞,p)

F+ )× G(OF+,p) be a compact open subgroup. If W
is a finite O-module endowed with a continuous action of U , we write S(U,W )

to denote the space of algebraic automorphic forms with coefficients in W :

S(U,W )
def
=

{
f : G(F+)\G(A∞F+)→ W | f (gu)

= u−1 f (g) ∀ g ∈ G(A∞F+), u ∈ U
}
.

We define

S(U p,W )
def
= lim
−→
Up

S(U pUp,W ) and S̃(U p,W )
def
= lim
←−

s

S(U p,W/$ s)

where in the first limit, the subgroups Up 6 G(OF+,p) run over the compact open
neighborhoods of 1 ∈ G(OF+,p).

For U as above, let PU be the set of finite places w in F whose restriction
v

def
= w|F+ is a place that splits in F and at which U is unramified. Let P ⊂ PU be

a subset of finite complement. Then the universal Hecke algebra TP = O[T (i)
w ,

w ∈ P, 0 6 i 6 n] on P acts naturally on S(U,W ). Let r : G F → GL3(F) be
a continuous Galois representation. We let m ⊆ TP be the maximal ideal which
is the kernel of the system of Hecke eigenvalues α : TP → F associated with r ,
that is, α satisfies

det
(
1− r∨(Frobw)X

)
=

3∑
j=0

(−1) j(NF/Q(w))
( j

2)α(T ( j)
w )X j

for all w as above. Then we say that r is automorphic if S(U,W )m is nonzero
for some U and W .
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For technical reasons, we choose a place v1 of F+ as in [CEG+16, Section 2.3].
We now fix U p 6 G(A(∞,p)

F+ ) to be the subgroup with:

(1) (U p)v = G(OF+v ) for all finite places v of F+ which split in F and do not
belong to Σ+p ∪ {v1};

(2) (U p)v1 is the preimage of the upper triangular matrices under the map

G(OF+v1
)→ G(kv1)

ι̃v1
→ GL3(kṽ1);

(3) (U p)v is hyperspecial maximal compact in G(F+v ) if v is inert in F .

Let r be an automorphic Galois representation. LetΣ+0 denote the set of finite
places of F+ which are the restriction of the finite places of F away from p
where r ramifies. For each v ∈ Σ+0 , we let τṽ be the minimally ramified type
in the sense of [CHT08, Definition 2.4.14] corresponding to r |G F̃v

and σ(τṽ)
be the GL3(OF̃v )-representation over E associated with it (cf. the beginning of
Section 5.3.1). We write σ(τv)

def
= σ(τṽ) ◦ ι̃v, which is a G(OF+v )-representation

independent of the choice of ṽ|v. For each v ∈ Σ+0 , fix a O-lattice σ(τv)◦ in
σ(τv) and let WΣ+0

be ⊗v∈Σ+0 σ(τv)
◦.

We let Tuniv denote the abstract Hecke algebra over O generated by the formal
variables T ( j)

w , where w runs over the finite places of F such that w|F+ is split
in F and w|F+ /∈ Σ+0 ∪Σ

+

p ∪ {v1}, and by T ( j)
v1

for j = 1, 2, 3. For a G(A(∞,p)
F+ )-

module V over O, Tuniv acts naturally on S(U pUp,W ), S(U p,W ), and S̃(U p,

W ) where W = WΣ+0
⊗ V (cf. [CEG+16, Section 2.3]), and we let m ⊆ Tuniv be

the maximal ideal as before. We will now assume that S(U,W )m is nonzero for
some choice of V above. In fact, one can show, by the proof of Proposition 6.0.2,
that this is a consequence of the hypothesis that r is automorphic.

In the remainder of this section, we let r : G F → GL3(F) be an automorphic
Galois representation that satisfies the Taylor–Wiles conditions in the sense of
[LLHLM18, Definition 7.3]. We assume furthermore that

(i) the extension F/F+ is unramified at all finite places;

(ii) (split ramification) if r : G F → GL3(F) is ramified at a place w of F , then
v = w|F+ splits as wwc;

(iii) p is unramified in F+ and all places in F+ above p split in F ; and

(iv) r |G Fw
is semisimple for all w ∈ Σp.
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For each v ∈ Σ+p , we choose a place ṽ|v of F and let S be the set {̃v|v ∈ Σ+p }.

Let ρ ṽ be r |G F̃v
and ρS be (ρ ṽ)ṽ∈S . We set K def

=
∏

ṽ∈S GL3(OF̃v ). Let M̃∞ be
the weak minimal patching functor for r in the sense of [LLHLM18, Definition
7.11] constructed in [LLHLM18, Proposition 7.15]. As in Section 3.5, we let
M∞ be M̃∞ ◦

∏
ṽ∈S ι̃v, which is a weak minimal patching functor for ρS by

Proposition 3.5.14.
Along with the construction of M̃∞ (cf. [CEG+16, Section 2.8], [Le18,

Section 4.2], and [LLHLM18, Section 7.3]), one has a ring homomorphism
R∞ =

⊗̂
ṽ∈S R2

ṽ [[x1, . . . , xh]] → Tuniv
U pG(OF+,p)

(WΣ+0
)m, where Tuniv

U pG(OF+,p)
(WΣ+0

)

is the image of Tuniv in

EndO
(
S(U pG(OF+,p),WΣ+0

)
)
.

We also write m for the pullback in R∞ of the maximal ideal of
Tuniv

U pG(OF+,p)
(WΣ+0

)m. Then if WΣ+p
is a smooth, finite-dimensional G(OF+,p)-

representation over F, one has

(M̃∞(WΣ+p
)/m)∨ = S(U pG(OF+,p),WΣ+0

⊗W
∨

Σ+p
)[m] (5.8)

where ·∨ denotes Pontrjagin duals (cf. [Le18, Theorem 4.1.5]).

5.3.1. Automorphy lifting. Recall from Proposition 2.2.6 that if ṽ ∈ S and τṽ
is a 1-generic tame inertial type for IF̃v , we defined a GL3(OF̃v )-representation
σ(τṽ) over E corresponding to τṽ by results toward inertial local Langlands. We
again let σ(τS) be

⊗
ṽ∈S σ(τṽ).

THEOREM 5.3.1. Let r : G F → GL3(E) be an absolutely irreducible Galois
representation such that

(1) for all places w ∈ Σp, r |IFw
is semisimple and 10-generic;

(2) r is unramified almost everywhere and satisfies r c ∼= r∨ε−2;

(3) for all places ṽ ∈ S , the representation r |G F̃v
is potentially crystalline, with

parallel Hodge–Tate weights (2, 1, 0) and with tame inertial type τṽ (see
[LLHLM18, Definition 2.1]);

(4) r satisfies the Taylor–Wiles conditions as above and r has split
ramification; and

(5) r ∼= r ı(π) for a regular algebriac conjugate self dual cuspidal (RACSDC)
representation π of GL3(AF) with trivial infinitesimal character such that⊗

ṽ∈S σ(τṽ) is a K -type for
⊗

ṽ∈S πṽ.
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Then r is automorphic in the sense of [LLHLM18, Section 7.2].

Proof. Given Theorems 5.3.3 and 3.5.3, the proof of [LLHLM18, Theorem 7.4]
goes through unchanged.

REMARK 5.3.2. Compared to [LLHLM18, Theorem 7.4], we relaxed the
hypothesis that p splits completely to p being unramified. However, we also
assumed that r is semisimple at all places above p. The reason is that we only
established the connectedness of the generic fiber of Rτ

ρ when ρ is semisimple
(though we do know it for non-semisimple ρ in the case that all shapes have
length > 2). In work in progress, we will establish a counterpart of [LLHLM18,
Theorem 7.4] for non-semisimple representations. This will allow us to remove
the semisimplicity hypothesis in a manner similar to [LLHLM18, Theorem 7.4].

5.3.2. The Serre weight conjecture. Let r : G F → GL3(F) be as in the
beginning of Section 5.3. Recall that for each v ∈ Σ+p , we chose a place ṽ|v
of F and set S to be the set {̃v|v ∈ Σ+p }. Furthermore, we let ρ ṽ be r |G F̃v

and ρS
be (ρ ṽ)ṽ∈S . Recall that K is the product

∏
ṽ∈S GL3(OF̃v ). Let W (r) be the set of

irreducible K -representations σ over F such that

S
(

U pG(OF+,p),WΣ+0
⊗

(
σ∨ ◦

∏
ṽ∈S

ι̃v

))
m

6= 0.

We have the following version of the weight part of Serre’s conjecture.

THEOREM 5.3.3. Let r : G F → GL3(F) be a continuous Galois representation,
satisfying the Taylor–Wiles conditions. Assume that ρ ṽ

def
= r |G F̃v

is semisimple and
10-generic for all ṽ ∈ S , that r is automorphic, and that r has split ramification.
Then W (r) ◦

∏
ṽ∈S ι̃v = W ?(ρS).

Proof. We have that W BM(ρS)=W (r)◦
∏

ṽ∈S ι̃v by (5.8). The result now follows
from Theorem 3.5.2.

5.3.3. Mod p multiplicity one. We continue using the setup from the beginning
of Section 5.3. We have the following mod p multiplicity one result.

THEOREM 5.3.4. Let τS and σ ∈ W ?(ρS, τS) be as in the statement of Theorem
5.1.1. Then

S
(

U pG(OF+,p),

(
σ(τS)

σ
◦

∏
v∈Σ+p

ι̃v

)∨
⊗OE WΣ+0

)
[m]
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is one-dimensional over F.

Proof. By (5.8),

M∞(σ (τS)σ )/m ∼= M̃∞

(
σ(τS)

σ
◦

∏
v∈Σ+p

ι̃v

)
/m

∼=

(
S
(

U pG(OF+,p),

(
σ(τS)

σ
◦

∏
v∈Σ+p

ι̃v

)∨
⊗O WΣ+0

)
[m]

)∨
.

By Theorem 5.1.1, the dimension of M∞(σ (τS)σ )/m is one.

5.3.4. Lattices in cohomology. Let r : G F → GL3(E) be an automorphic
Galois representation as in Theorem 5.3.1. We say that r is minimally ramified
if r |G F̃v

is minimally ramified in the sense of [CHT08, Definition 2.4.14] for all
v ∈ Σ+0 . Following the notation of [LLHLM18, Section 7.1], let λ be the kernel
of the system of Hecke eigenvalues α : Tuniv

→ O associated with r , that is, α
satisfies

det
(
1− r∨(Frobw)X

)
=

3∑
j=0

(−1) j(NF/Q(w))
( j

2)α(T ( j)
w )X j

for all w as above. We now set W def
= WΣ+0

as in Section 5.3.3. By Theorem
5.3.1, S̃(U p,W )[λ] is nonzero. Since r is minimally ramified, r corresponds to a
prime ideal of R∞ as in [HLM17, Theorem 5.2.1]. By an abuse of notation, we
call this ideal λ. Note that we have that M∞/λ ∼= S̃(U p,W )d/λ by (the proof of)
[CEG+16, Corollary 2.11].

THEOREM 5.3.5. Let r : G F → GL3(E) be as in Theorem 5.3.1. Assume
furthermore that r is minimally ramified. Let {τṽ}ṽ∈S be a 13-generic tame type.
The lattice σ(τ)0 def

= σ(τ)∩ S̃(U p,W )[λ] ⊂ σ(τ)∩ S̃(U p,W )[λ] ⊗O E ∼= σ(τ)
depends only on {r |G F̃v

}ṽ∈S .

Proof. Let ρS be (r |G F̃v
)ṽ∈S . Fix σ ∈ JH(σ (τS)) as in Theorem 5.1.1, a saturated

inclusion σ(τS)σ ⊂ σ(τS)0, and saturated inclusions σ(τS)κ ⊂ σ(τS)σ for all
κ ∈ JH(σ (τS)). Let γ (κ) ∈O so that γ (κ)−1σ(τS)

κ
⊂ σ(τS)

0 is saturated. Then
σ(τS)

0
=
∑

κ∈JH(σ (τS )) γ (κ)
−1σ(τS)

κ for some γ (κ) ∈ O by [EGS15, Lemma
4.1.2]. It suffices to show that for each κ ∈ JH(σ (τS)), the ideal (γ (κ)) ⊂ O
depends only on ρS .
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Observe that the image of the inclusion

O ∼= HomUp(σ (τS)
σ , S̃(U p,W )[λ])→ HomUp(σ (τS)

κ , S̃(U p,W )[λ]) ∼= O,

is given by the ideal (γ (κ)). By Schikhov duality, the natural inclusion

O ∼= HomUp((S̃(U
p,W )[λ])d, (σ (τS)

σ )d)

→ HomUp((S̃(U
p,W )[λ])d, (σ (τS)

κ)d) ∼= O

is also given by the ideal (γ (κ)). By another application of Schikhov duality, the
natural inclusion

O ∼= HomUp((S̃(U
p,W )[λ])d, (σ (τS)

κ)d)d

→ HomUp((S̃(U
p,W )[λ])d, (σ (τS)

σ )d)d ∼= O

is also given by the ideal (γ (κ)). Since S̃(U p,W )[λ]d is canonically isomorphic
to the torsion-free part of S̃(U p,W )d/λ, the ideal (γ (κ)) gives the inclusion

HomUp(M∞/λ, (σ (τS)
κ)d)d → HomUp(M∞/λ, (σ (τS)

σ )d)d.

Again, note that HomUp(M∞/λ, (σ (τS)
σ )d)d is isomorphic to (the p-torsion-free

part of)
HomUp(M∞, (σ (τS)

σ )d)d/λ = M∞(σ (τS)σ )/λ,

and similarly for κ . So the image of

O ∼= M∞(σ (τS)κ)/λ→ M∞(σ (τS)σ )/λ ∼= O (5.9)

is given by the ideal (γ (κ)).
On the other hand, the image of (5.9) is given by(

j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
))(

M∞(σ (τS)σ )/λ
)

by Theorem 5.2.3. Then (γ (κ)) is generated by elements in the ideal

j∗ j∗
( ∏
θ∈W ?(ρS )

p(θ)m(θ)R∞(τS)
)

modulo the ideal λ. By Remark 5.2.4, the above ideal comes from ⊗̂ṽ∈S R�ṽ ;
hence, the ideal generated by its generators modulo λ depends only on {r |G F̃v

}ṽ∈S .
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REMARK 5.3.6. In the hypotheses of Theorem 5.3.5, assume further that w̃(ρ ṽ,
τṽ)i has length at least 2 for all ṽ ∈ S and i ∈ Z/ fṽ. Then the lattice σ(τ)0 can
be described explicitly as in [Le18, Theorem 14].

In the following figures, we give a pictorial realization of the gluing procedure
appearing in the proofs of Lemmas 5.1.4–5.1.7. Recall that w̃∗i ′ = w̃(ρS, τS)

∗

i ′ .

Figure 3. Comparison of ΣV j ,i ′ in Lemma 5.1.4.

From left to right with arrows pointing down, we have ΣV 1,i ′ , ΣV 3,i ′ , and ΣV 2,i ′ .
The edges correspond to adjacent pairs.

Figure 4. Comparison of ΣV,i ′ and ΣV j ,i ′ in Lemma 5.1.5 when w̃∗i ′ t−1 = id.

Assume (ν1, ν2, ν3) = (ε1− ε2, ε1, ε1+ ε2) and w̃∗i ′ t−1 = id. Then ν4 = ε2. From
left to right with arrows pointing down, we haveΣV,i ′ ,ΣV 1,i ′ , and ΣV 2,i ′ (a Weyl
segment). In red are the elements in r(Σ0).

Figure 5. Comparison of ΣV j ,i ′ in Lemma 5.1.6 when w̃∗i ′ t−1 = α.

In the notation of Lemma 5.1.6 consider the case where ν = ε1+ε2 and w̃∗i ′ t−1 =

α. On the left, we have ΣV 2,i ′ , where we write the elements in r(Σ0) in red.
Similarly on the right for ΣV 1,i ′ .
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Figure 6. Comparison of ΣV j ,i ′ in Lemma 5.1.6 when w̃∗i ′ t−1 = γ
+.

In the notation of Lemma 5.1.6, consider the case where ν = ε1+ε2 and w̃∗i ′ t−1 =

γ +. On the left, we have ΣV 2,i ′ , where we write the elements in r(Σ0) in red.
Similarly on the right for ΣV 1,i ′ .

Figure 7. Comparison of ΣV j ,i ′ in Lemma 5.1.7 when w̃∗i ′ t−1 = γ
+.

In the notation of Lemma 5.1.7, consider the case where ν = ε1+ε2 and w̃∗i ′ t−1 =

γ +. On the left, we have ΣV,i ′ (respectively ΣV 1,i ′ removing the dotted lower
part), where we write the elements in r(Σ0) in red. On the right, we have one of
the possible choices for ΣV 2,i ′ .

6. Addendum to [LLHLM18]

(1) In Theorem 1.1, the statement that ‘its special fiber is as predicted by
the geometric Breuil–Mézard conjecture’ means the following: under the
assumptions of Theorem 1.1, the special fiber of R(2,1,0),τ

ρ is reduced and
the number of irreducible components is less or equal to #

(
W ?(ρss) ∩

JH(σ (τ ))
)
, with equality if ρ is semisimple. This can be checked directly

using Theorem 6.14, Tables 3, 7, 8, Propositionsg 8.5, 8.6, and 8.12, and
the results of Section 8.2.2.

(2) In Proposition 3.4, the codomain of Ttan should be replaced by{
(ρ, γ0) | ρ ∈ RepF′[ε]/(ε2)(G K∞), γ0 : ρ mod ε

∼

→ T ∗dd(M)
}
.

(3) After Equation (3.7), we remark that if (MA, ρA, δA) ∈ Dτ,2

M,ρ
, then we have

a canonical isomorphism MA ⊗A F ∼

→M.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.1


Serre weights and Breuil’s lattice conjecture in dimension three 129

(4) After Definition 4.15, the symbol Y [0,2],τ
M

(R) denotes the category of pairs

(MR, R) where MR ∈ Y [0,h],τ (R) and R : MR ⊗R F ∼

→ M is an
isomorphism in Y [0,h],τ (F). A similar comment applies to Y µ,τ

M
(R).

(5) Proof of Theorem 4.17: the ring R is p-flat and reduced by [Cal18, Lemma
2.6].

(6) The formula in Lemma 5.2 still converges in 1
λ

Mat(R[1/p][[u]]) for R a
complete local Noetherian flat O-algebra R. While it is possible to show
that it lies in Orig

R , for the computations and the arguments in this paper, we
only need that its formation is compatible with base change.

(7) In Corollary 5.13, T1, . . . , T8 should be replaced by T1, . . . , T9. Similar
comment applies to the displayed equation before Theorem 6.14.

(8) In Section 5.3.2, ‘c11 ≡ 0 modulo$ ’ should read ‘c11 and c13 ≡ 0 modulo
the maximal ideal’.

(9) In Section 5.3.3, line −6 and −4, the c∗13 in the displayed equations must
be replaced by c13.

(10) Definition 7.1 should also define automorphic of weight V , level U , and
coefficients W as follows.

DEFINITION 6.0.1. Let r : G F → GL3(F) be a continuous Galois
representation. Let V be a Serre weight for G, U be a compact open
subgroup of G(A∞,pF ) × G(OF+,p) which is unramified at places v|p, and
W be an O-module with a U -action for which the factor G(OF+,p) acts
trivially. We say that r is automorphic of weight V , level U, and coefficients
W if there exists a cofinite subset P ⊂ PU such that

S(U, V ⊗W )m 6= 0,

where m is the kernel of the system of Hecke eigenvalues α : TP → F
associated with r , and α satisfies the equality

det
(
1− r∨(Frobw)X

)
=

3∑
j=0

(−1) j(NF/Q(w))
( j

2)α(T ( j)
w )X j

for all w ∈ P . We say that r is automorphic of weight V (or that V is a
Serre weight of r ) if r is automorphic of weight V , level U, and coefficients
W for some subgroup U and coefficients W as above. We write W (r) for
the set of all Serre weights of r . We say that r is automorphic if W (r) 6= ∅.
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(11) In Definition 7.11(2), ‘automorphic of weight V ’ should be replaced with
‘automorphic of weight V , level U , and coefficients W ’ where U is a fixed
compact open subgroup of G(A∞,pF ) × G(OF+,p) which is unramified at
places v|p and W is a fixed O-module with a U -action on which the factor
G(OF+,p) acts trivially. This definition of patching functor depends on the
implicit choices of U and W .

(12) The definition of e(M), given before Proposition 7.14, is incorrect. The
correct definition of e(M) is the following: given a finitely generated R∞-
module M with scheme-theoretic support Spec A of dimension at most
d , define e(M) to be d! times the coefficient of the degree d-term of the
Hilbert polynomial of M (considered as an A-module).

(13) In the paragraph following the proof of Proposition 7.14, the definition of
Σ0 should exclude primes dividing p.

(14) In the proof of Proposition 7.15, ‘automorphic of weight V ’ should be
replaced with ‘automorphic of weight V , level U , and coefficients W ’,
where U =

∏
v-∞Uv and Uv is

• G(Ov) for v which split in F except for v1,
• the preimage of the upper triangular matrices under the map

G(Ov)→ G(kv)
∼

→
ι̃v

GL3(kṽ)

if v = v1, or
• a maximal hyperspecial maximal compact open subgroup of G(Fv) if v

is inert in F ,

and W is an O-lattice in
⊗

v∈Σ+0
σ(τṽ) ◦ ι̃v.

(15) In the proof of Proposition 7.16, the tame inertial type τ ′ should read: τ ′ def
=

ω
−((b+1)+p(b+1))
2 ⊕ ω

−((c−1)+pa)
2 ⊕ ω

−(a+p(c−1))
2 .

(16) The proof of Theorem 7.8 also requires the following proposition, which
is a level-lowering result based on techniques in [Tay08]. The proof of
Theorem 7.4, which was omitted, uses the same techniques.

PROPOSITION 6.0.2. Let r : G F → GL3(F) be a continuous Galois
representation with split ramification outside p, which is automorphic and
satisfies the Taylor–Wiles conditions. If r is automorphic of a reachable
weight, then it is automorphic of a reachable weight and level U and
coefficients W , where U =

∏
v-∞Uv and Uv is
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• G(Ov) for v which split in F except for v1,

• the preimage of the upper triangular matrices under the map

G(Ov)→ G(kv)
∼

→
ι̃v

GL3(kṽ)

if v = v1, or

• a maximal hyperspecial maximal compact open subgroup of G(Fv) if v
is inert in F,

and W is an O-lattice in
⊗

v∈Σ+0
σ(τṽ) ◦ ι̃v.

Proof. If r is automorphic of a reachable weight V , then S(U, V ⊗ W )m
is nonzero for some level U and coefficients W . Let V be

⊗
v Vv where

Vv = Vṽ ◦ ι̃v. Choose tame types τv such that

• ρv is admissible with respect to τv;

• `(w(ρv, τv)) > 3; and

• Vṽ ∈ JH(σ (τv)).

Letting σ be an O-lattice in
⊗

v σ(τv) ◦ ι̃v, we have that S(U, σ ⊗ W )m

is nonzero. By [EGH13, Lemma 7.1.6 and Theorem 7.2.1], r ⊗F Fp is
isomorphic to the reduction of rπ : G F → GLn(Qp) for some π as in
[EGH13, Theorem 7.2.1]. Let πF be the regular, algebraic, (conjugate)
self dual, cuspidal automorphic representation of GLn(AF) obtained from
π through base change. Choose a totally real extension L+ of F+ such that

• 4|[L+ : Q];
• L+/F+ is Galois and solvable;

• L def
= L+F is linearly disjoint from F

ker r
(ζp) over F ;

• L/L+ is everywhere unramified;

• p is unramified in L+;

• v1 splits completely in L;

• if πL is the base change of πF to L and w is a place of L lying above ṽ
for v ∈ Σ+0 , then πL ,w has Iwahori fixed vectors and τv|ILw

is trivial.

One can define analogues of Runiv
τ and Runiv

S from [Gee11, Section 5] as
follows. Let S be the union of {v1} and Σ+. Let S̃ be the union of {̃v1} and
{̃v : v ∈ Σ+}. Let SL be the set of places in L+ lying above places in S, and
let S̃L be the set of places in L lying above places in S̃. Let Σ̃L ,p be the set
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of places in L lying over a place in Σ̃+p , Σ̃L ,0 the set of places in L lying
over a place in Σ̃+0 , and Σ̃L ,1 be the set of places in L lying over ṽ1. Let Σ̃L

be the union of Σ̃L ,p and Σ̃L ,0. If ṽ ∈ Σ̃L ,p, let τṽ be τṽ|F+ |IL . If ṽ ∈ Σ̃L ,0, let
R�,τṽ be the lifting ring for r |GL ṽ

parametrizing lifts whose characteristic
polynomial is (X − 1)3. We let Runiv

τ be the universal deformation ring
corresponding to the deformation problem(

F/F+, S, S̃,OE , r , ε−2δF/F+, {R�ṽ1
} ∪ {R�,τṽṽ }v∈Σ+

)
,

and we let Runiv
S be the universal deformation ring corresponding to the

deformation problem(
L/L+, SL, S̃L,OE , r |GL , ε

−2δL/L+, {R�ũ1
}ũ1∈S̃L ,1 ∪ {R

�,τṽ
ṽ }ṽ∈Σ̃L

)
.

The proof of [Gee11, Theorem 5.1.4] shows that Runiv
τ is finite over

OE . Indeed, Runiv
τ is finite over Runiv

S and Runiv
S is finite over OE since

(Runiv
S )red is isomorphic to an appropriate Hecke algebra by the proof of

[Gue11, Theorem 3.4]. One replaces Fontaine–Laffaille deformation rings
with R�,τṽ for ṽ ∈ Σ̃L ,p, which is geometrically integral by [LLHLM18,
Section 5.3].

That Runiv
τ is finite over OE implies that there is a conjugate self-dual

lift r : G F → GL3(Qp) of r which is minimally ramified outside p
and potentially crystalline of type ((0, 1, 2), τv) at ṽ for each v ∈ Σ+0 .
Moreover, we have that the restriction r |GL , which corresponds to a point
of Spec Runiv

S , is automorphic. Solvable base change then implies that r
is automorphic. Local–global compatibility implies that S(U, σ ⊗ W )m is
nonzero for U and W as in the statement of the proposition. Then S(U,
V ′ ⊗W )m is nonzero for some reachable V ′ ∈ JH(σ ).

This would then show that M∞(
⊗

v∈Σ+p
σ(τv)

◦) is nonzero in the third
paragraph (one cannot directly cite Definition 7.11(2) because of the
change above).

(17) In Section 8.1, after the proof of Lemma 8.2, the O-algebra Rτ,β,2

M,ρ
has

relative dimension 15 over O.

(18) In Corollary 8.4, there should be the further relation c12c33 = 0.

(19) The final sentence of Corollary 8.4 should be replaced by the claim that
the ring Rτ,β,2

M,ρ
/$ is a quotient of R̃[[c∗i i − [c

∗

i i ], x j , 1 6 i 6 3, 1 6 j 6
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9]]. This comment applies also to Proposition 8.11. These changes justify
the dimension hypothesis in Lemma 8.8, which is used in the proof of
Proposition 8.6.

(20) In the proof of Proposition 8.11, we remark that c33 = c23c31(c∗21)
−1.

(21) In the caption of Table 4, the coefficients are in F.

(22) In the caption of Table 5, the coefficients are in R.

(23) The entry (1, 3) of Table 6 should read ‘Leading term of the monodromy
condition’.

(24) The missing entries in the second column of Table 6 can be read off from
Table 5 and the missing entry in the third column of Table 6 can be read
off from Proposition 8.3.

(25) In Table 6, the leading term of the monodromy condition for αβαγ , the
second c∗33 should be removed. Moreover, in the caption, the a( j)

s j+1(i) for
i = 1, 2, 3 should be bold.
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[HK04] B. Hassett and S. J. Kovács, ‘Reflexive pull-backs and base extension’, J. Algebraic
Geom. 13(2) (2004), 233–247.

[HLM17] F. Herzig, D. Le and S. Morra, ‘On mod p local-global compatibility for GL3 in the
ordinary case’, Compos. Math. 153(11) (2017), 2215–2286.

[Hum06] J. E. Humphreys, Modular Representations of Finite Groups of Lie Type, London
Mathematical Society Lecture Note Series, 326 (Cambridge University Press,
Cambridge, 2006).

[Jan03] J. C. Jantzen, Representations of Algebraic Groups, second edn, Mathematical
Surveys and Monographs, 107 (American Mathematical Society, Providence, RI,
2003).

[Kis08] M. Kisin, ‘Potentially semi-stable deformation rings’, J. Amer. Math. Soc. 21(2)
(2008), 513–546.

[Le18] D. Le, ‘Lattices in the cohomology of U (3) arithmetic manifolds’, Math. Ann.
372(1–2) (2018), 55–89.

[LLHL19] D. Le, B. V. Le Hung and B. Levin, ‘Weight elimination in Serre-type conjectures’,
Duke Math. J. 168(13) (2019), 2433–2506.

[LLHLM18] D. Le, B. V. Le Hung, B. Levin and S. Morra, ‘Potentially crystalline deformation
rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212(1)
(2018), 1–107.

[Pil93] C. Pillen, ‘Reduction modulo p of some Deligne–Lusztig characters’, Arch. Math.
(Basel) 61(5) (1993), 421–433.

[Pil97] ‘Loewy series for principal series representations of finite Chevalley groups’,
J. Algebra 189(1) (1997), 101–124.

[Sta19] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu,
2019.

[Tay08] R. Taylor, ‘Automorphy for some l-adic lifts of automorphic mod l Galois
representations. II’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239.

https://doi.org/10.1017/fmp.2020.1 Published online by Cambridge University Press

https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://doi.org/10.1017/fmp.2020.1

	Introduction
	Breuil's lattice conjecture
	Serre weight and Breuil–Mézard conjectures
	Representation theory results
	Notation

	Extension graph
	Definition and properties of the extension graph
	Types and Serre weights
	Combinatorics of types and Serre weights

	Serre weight conjectures
	Background
	Étale -modules with descent data
	Semisimple Kisin modules
	Shapes and Serre weights
	Type elimination results.

	Serre weight conjectures
	Setup and summary of results.
	Types, weights, and the Breuil–Mézard philosophy.
	Proofs

	The geometric Breuil–Mézard conjecture
	Matching components.
	Explicit computations.
	Ideal relations in deformation rings.


	Lattices in generic Deligne–Lusztig representations
	The classification statement
	Some generalities.
	The main result.

	Injective envelopes
	Algebraic groups, Frobenius kernels, and finite groups.
	The case of GL3.
	Study of the Weyl module Vµ|G.
	The embedding construction.

	Proof of the structure theorem in the general case
	Notions of distances.
	Distance equalities.
	Induction on defect.


	Breuil's Conjectures
	Cyclicity for patching functors
	Gauges for patching functors
	Global applications
	Automorphy lifting.
	The Serre weight conjecture.
	Mod p multiplicity one.
	Lattices in cohomology.


	Addendum to LLLM
	References

