Chapitre D'ouvrage Année : 2024

Riemannian Clustering of PolSAR Data using the Polar Decomposition

Résumé

In this manuscript we propose an algorithm 1 for unsupervised classification of PolSAR data, on the 2 manifold of Hermitian positive definite matrices obtained 3 from the polar decomposition of the scattering matrix. The 4 method uses a geodetic metric for evaluating similarity of 5 Hermitian matrices and performs unsupervised classifica-6 tion for both coherent and incoherent targets. Monostatic, 7 full-polarimetric, real and simulated datasets are used for 8 testing the proposed method. With Gaussian clutter, the 9 technique is able to retrieve classification maps similar to 10 those obtained using the standard Wishart algorithm. A 11 refinement of classification results is shown for a simulated 12 dataset with 4 classess. While the Wishart classifier attains 13 an average class accuracy of almost 97%, the proposed 14 method reaches almost 99%. For real PolSAR data, the 15 final classification better preserves the texture information 16 of the original image. As a result, an improved separation 17 is shown between nearby areas of lower intensity, as for 18 example vegetation fields. 19
Fichier principal
Vignette du fichier
chapter9.pdf (28.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-03839678 , version 1 (04-11-2022)
hal-03839678 , version 2 (11-04-2023)
hal-03839678 , version 3 (10-11-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

  • HAL Id : hal-03839678 , version 3

Citer

Madalina Ciuca, Gabriel Vasile, Marco Congedo, Michel Gay. Riemannian Clustering of PolSAR Data using the Polar Decomposition. C.H. Chen. Signal and Image Processing for Remote Sensing, 3rd edition, CRC Press, 2024, Signal and Image Processing of Earth Observations, ISBN 9781032437415. ⟨hal-03839678v3⟩
557 Consultations
81 Téléchargements

Partager

More