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2 Riemannian Clustering of PolSAR Data using the Polar Decomposition

1.1 Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) data records the scat-
tering diversity by measuring the electromagnetic response in two orthogonal
polarization bases. The target decomposition algorithms are generally em-
ployed in the polarimetric signature analysis. They can be either coherent or
incoherent. The distinction depends on whether the scattering or the covari-
ance1 matrices are used, respectively. While the first is a directly measured
quantity for a full-polarimetric PolSAR pixel, the latter is a second-order sta-
tistical estimate.

One important application in PolSAR data analysis is classification. While
both supervised and unsupervised methods are popular and have various levels
of accuracy, this article will focus only on the case of unsupervised classifica-
tion. Particularly, clustering techniques are discussed.

1.1.1 PolSAR clustering
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FIGURE 1.1: Generic scheme of a centroid-based clustering algorithm for
PolSAR data.

In computer science, clustering methods are divided into several groups, as
for example: partitional, hierarchical, density, grid or model-based [1]. While
such methods are popular for PolSAR unsupervised classification, centroid-
based approaches belonging to the partitional category are the most preva-
lent. A generic scheme of a centroid-based clustering algorithm is presented
in Fig. 1.1.

The introduction of the Wishart classifier has been a major milestone in
PolSAR unsupervised classification [31, 33]. It was shown to represent an op-
timal Bayesian classifier, considering that the scattering vectors are modeled
by zero mean complex circular Gaussian vectors, completely characterized by

1also coherency. In the current text, mentioning one automatically implies the other, as
they have similar statistical properties.
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their covariance matrix [31]. It uses a metric known as the Wishart similarity
measure. The initialization of the centroids is obtained by the H − α decom-
position [15]. This is applied as a prerequisite and an estimate centroid is
provided for each class in the H − α plane (which fixes the number of clus-
ters to eight). After each run, the centroids are updated by averaging the
redistributed matrices of each class.

With the constant increase in spatial resolution, different non-Gaussian
clustering strategies have been adopted for PolSAR data classification. Based
on the conventional product model, we can distinguish two main directions
in introducing heterogeneity. By adopting either non-Gaussian target vectors
(such as K-, Kummer-U, G0-distributed clutter models) or compound co-
variance/coherencies (like scale mixtures, G0- or K-Wishart models) different
classification algorithms have been proposed [57, 18, 7, 20, 19, 28].

Being simple and effective, the Wishart classification still remains one of
the most employed clustering methods in practical applications. Its popular-
ity and fundamental importance has been proven also by many publications,
which by modifying one or more stages in the generic schema (Fig. 1.1) have
arrived to new or improved versions. Notable changes can be found in the:
a) initialization and number of clusters [10, 34, 43], b) class assignment logic
[34], or c) the distance metric. Nonetheless, the latter deserves a discussion
on its own.

1.1.2 Distance metrics for PolSAR data

Depending on the optimization strategy, the two main groups of PolSAR
distances are stochastic and geometric. The Wishart similarity measure is
probably the most used stochastic similarity/dissimilarity measure with both
unsupervised and supervised methods. As the statistics of the scattering vec-
tor/covariance matrices have been improved, the distance metrics used in
classification (or filtering) algorithms have also evolved. Non-exhaustive ex-
amples of such metrics are the revised-Wishart, the Bartlett, the Hellinger,
the Kullback-Leibler, the Bhattacharyya, the Rényi or the Chi-square, either
with a local [25] or a non-local approach [27].

Geometric metrics are optimized with respect to a specific geometric space
and usually allow the computation on the principle of the shortest path. Some
examples are the Euclidean, the Riemannian affine invariant (introduced in
Section 1.2), the log-Euclidean, or the angular geodesic [43] distances.

A concise indexing of similarity/dissimilarity measures used in PolSAR is
available in [55], while a more in-depth review can be found in [42].

1.1.3 Chapter contribution

This chapter presents a new framework for geometrical k-means PolSAR
clustering based on two important aspects: 1) the polar decomposition math-
ematical properties and 2) the Riemannian geometry. This framework is no



4 Riemannian Clustering of PolSAR Data using the Polar Decomposition

longer based on the use of covariance/coherency matrices. Instead, we directly
exploit the scattering matrix by applying the polar decomposition. We study
the properties of the two decomposition factors and conclude that only the
Hermitian factor can serve as a rotation-invariant input for the clustering
method.

No data vectorization is performed (compared to the case of constructing
the scattering vectors) and the algorithm is designed to exploit the geomet-
rical embedding of the Hermitian factors, which are inherently located on a
Riemannian manifold. Instead of statistically averaging the scattering vectors
(as for covariance/coherency matrix estimation), a local mean (i.e., barycen-
ter) is computed based on a geodesic distance associated to the manifold. In
other words, the algorithm does not modify, but takes advantage of both the
algebraic and the geometric structure of its input features. No underlying sta-
tistical (homogeneous or heterogeneous) clutter model is therefore assumed.

Both simulated and real full-polarimetric PolSAR data are employed for
validation. The proposed method is tested against the results obtained us-
ing the classical k-means framework with two alternative distance metrics:
one stochastic – the Wishart similarity measure and one geometric – angular
geodesic. With real data, we observe it recovers the texture information and
some of the details lost in the second order statistical approach.

The reminder of this chapter is organized as follows. Section 1.2 offers
some background on the use of the polar decomposition. It then focuses on
defining concepts and tools necessary for applying the Riemannian manifolds
theory with PolSAR data. Finally, it introduces the description of the proposed
method. Section 1.3 analyses the experimental results. The conclusion and
perspectives for future work are discussed in Section 1.4.

1.2 From coherent polar decomposition to classification
on a Riemannian manifold

This section establishes the link between the polarimetric polar decompo-
sition and metric based classification schemes on a Riemannian manifold.

1.2.1 The polar decomposition

Any complex square matrix S ∈ Cn×n can be decomposed using the polar

decomposition as the product of two factors: a unitary matrix (U, UU
H

= I,

U ∈ Cn×n) and a Hermitian matrix (H, H
H

= H, H ∈ Cn×n). H is positive

semi-definite (PSD), thus v
H

Hv ≥ 0 for any nonzero column with complex
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elements vector1, v ∈ C. In any unitarily invariant norm, U is the nearest
unitary matrix to S [38]. The influence of the two factors is interpreted as
follows: the unitary factor performs a rotation, while the Hermitian factor
acts as a stretching/deformation.

There exist two different forms of this factorization, with (1.1) being known
as the left polar decomposition and (1.2) as the right polar decomposition:

S = UH (1.1) S = KU. (1.2)

The left/right Hermitian factors are obtained as: H = (S
H

S)1/2 and K =

(SS
H

)1/2. If S is a normal matrix (i.e., it verifies S
H

S = SS
H

), it immediately

follows that H = K. For all other S matrices, S
H

S is similar to SS
H

. This
means that H and K are themselves similar (i.e., have the same eigenvalues
and the same number of independent eigenvectors). By using the properties
of the unitary U factor, (1.1) can be written using a mathematical artifice,

as: S = UHU
H

U = (UHU
H

)U = KU. As a result, K = UHU
H

= UHU−1,
which is the similarity equivalence.

From a mathematical perspective, the polar decomposition has a close
connection to the Singular Value Decomposition (SVD), from which it can
be computed. As a direct consequence, this decomposition can be inherently
applied to any complex matrix. While the Hermitian factor (H or K) from
the decomposition is always unique, the unitary term is unique only if matrix
S is non-singular.

In PolSAR, the polar decomposition has been generally used as a coherent
technique allowing feature extraction from the scattering matrix, S ∈ C2×2.
Since there are no constraints in applying the factorization, it can be used
for both symmetric/asymmetric, or otherwise, monostatic/bistatic scattering
matrices.

The pioneering works of Carrea et al. [11, 12] have initially described
the behavior of the two decomposition factors. The Hermitian positive semi-
definite matrix is referred as a ”boost” matrix.

Otherwise, references [49, 50, 51] express the scattering matrix polar de-
composition using the formalism of quaternions and derive descriptive features
from the polar factors. They propose both a coherent approach on single-look
(also, 1-look) quad-pol data, as well as a generalization for incoherent multi-
look data.

In optical polarimetry, the polar decomposition splits a complex 2 × 2
Jones matrix in a retarder (i.e., the unitary matrix) and a diattenuator (i.e.,
the Hermitian matrix). The same significance is attributed to the two prod-
ucts obtained from decomposing a nondepolarizing Mueller matrix [35], while

1Notation: Boldface is used for vectors and matrices, with the first using lowercase and
the second upper-case letters.
I denotes the identity matrix of size n×n. Known operators are: (·)T as the transpose, (·)∗

as the complex conjugate, and (·)H as the conjugate-transpose. || · ||F refers to the Frobenius
norm, while | · | is the absolute value.
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a generalized polar decomposition (retarder, diattenuator and depolarizer fac-
tors extraction) is further proposed for a general Mueller matrix. Classifica-
tion is performed coherently (i.e., in a pixel-by-pixel manner) in [54], on real
PolSAR data in Mueller matrix format, following the above-mentioned gener-
alized polar decomposition model.

In the proposed method, the polar decomposition is used to decompose
the scattering matrix, but clustering technique applies only to the Hermitian
terms. More details of the algorithm implementation are given in Subsection
1.2.6.

1.2.2 Riemannian manifold and corresponding distances

It is well known that positive-definite matrices are naturally embedded in
a non-linear, smooth differentiable manifold. On such a manifold, the shortest
path connecting any two points is named a geodesic: it is not a straight line,
as in the Euclidean space, but a path which follows the curvature of the space.

Applying a suitable metric on the tangent bundle yields a Riemannian
manifold, P(n). The best-known metric used for the PSD manifold is the
affine invariant Riemannian metric (AIRM) [16].

For any two positive definite matrices A and B, AIRM provides a closed-
form distance measure

dgeod,P(n)(A,B) = || log(A−1/2BA−1/2)||F , (1.3)

which can be interpreted as a similarity/dissimilarity criterion. Operator
log(X) represents the matrix logarithm. For positive-definite matrices it is

usually computed using the eigenvalue decomposition: X = VDV
H

, D =
diag(λ1, λ2, ..., λn) and the usual logarithm function. The operator diag(·) re-
turns a diagonal matrix having the elements inside parenthesis on the main
diagonal. Then, Dlog = diag(log(λ1), log[λ2), ..., log(λn)] and

log(X) = V ·Dlog ·V
H

. (1.4)

The AIRM geodesic distance complies to several invariance properties
such as self-duality, congruence invariance, joint homogeneity and determi-
nant identity, among others [16]. In particular, the congruence (or, affine)
invariance reads

dgeod,P(n)(JAJ
H

,JBJ
H

) = dgeod,P(n)(A,B), (1.5)

for any non-singular matrix J.
For real PolSAR data, due the presence of noise (thermal or speckle),

the Hermitian factors of the observed scattering matrices are always positive
definite. They lie on a PSD Riemannian manifold with dimension n = 3. We
can associate to any general matrix H,

H =

(
h11 h12

h∗12 h22

)
, (1.6)
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a point in R3, according to the mapping [37]:

F(H) =
1√
2
[h12 + h∗12, h22 − h11, h22 + h11] . (1.7)

Form positive definite matrices {H1,H2, ...,Hm},m > 2, the Riemannian
barycenter, i.e., geometric center of mass or geometric mean, is a point H0

which attains the minimum value of [6]

argmin
H0

m∑
i=1

dgeod,P(n)(H0,Hi)
2. (1.8)

It is worth mentioning that the Riemannian mean presents some invariant
properties. Among others [37]:

• permutation invariance:
H0 is still the solution considering any rearrangement of the original set
{Hi}, 1 ≤ i ≤ m.

• congruence invariance:

Changing the matrix set to {VHiV
H}, 1 ≤ i ≤ m, V non-singular, the

barycenter changes accordingly, becoming VH0V
H

.

• inversion invariance:
H−10 is the corresponding barycenter for the set of inverse matrices
{H−1i }, 1 ≤ i ≤ m.

It was shown that, on the Riemannian manifolds of positive-definite ma-
trices, the solution to the minimization problem in (1.8) always exists and is
unique [21, 5]. While there is no closed-form solution, convergent results are
obtained by iterative minimization methods, for example based on a gradient
descent [37, 5].

1.2.3 Unitary manifold and corresponding distances

On the manifold of unitary matrices, U(n), the geodesic distance between
two generic matrices A and B is [21]:

dU (A,B) = || log(A
H

B)||F . (1.9)

The space of unitary matrices is a Lie group, endorsed with a Lie algebra.
Computing the barycenter of p unitary matrices {U1,U2, ...,Up} is addressed
often in relation to the properties of this Lie space. The barycenters are com-
puted using a distance-minimization method, similar to the Hermitian case by
(1.8). Sometimes a projective iteration algorithm (i.e., based on projections
to the Lie algebra and back into the Lie group) is used for the task [21]. To
the best of our knowledge, there is no closed-form solution neither for this
computation.
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The update rule for calculating the average of matrices {Uj}, 1 ≤ j ≤ p
used in the current experiments is:

Uk+1 = Uk · exp

 1

N

∑
j=1

log(U
H

kUj)

 . (1.10)

Operator exp(·) represents the matrix exponential and is the inverse operation
of log(·). These two operations no longer have a simplified form with unitary
matrices. Moreover, for computing the barycenter in the manifold of unitary
matrices, a simple gradient descent may not always converge due to numerical
problems.

This work focuses particularly on the Hermitian factors, only computing
some barycenter of unitary factors for illustration purposes. Therefore, while
more sophisticated solutions may exist, they are not addressed here.

Given the interpretation of a unitary matrix as a complex rotation matrix
(normal rotation and phase terms), we argue there is a significant advantage
in eliminating this rotation from the original PolSAR scattering matrix.

1.2.4 Hermitian matrices and Riemannian geometry in Pol-
SAR

It has been more than a decade since the Riemannian manifold embedding
is used with PolSAR data, exclusively in evaluating the coherency/covariance
matrices.
In the general literature, we have identified different methodologies proposed
for this manifold embedding. Some methods operate directly on the Rieman-
nian manifold, while others operate with projections (i.e., onto the tangent
space, embeddings of lower dimension, etc.). The proposed method fits the
first direction. A short literature review, with techniques and applications
that use Riemannian geodesics in PolSAR data manipulation techniques is
given below.

In [22, 23], Formont et al. challenge the use of the popular Wishart simi-
larity for measuring the similarity between PolSAR covariance matrices. They
modify the Wishart unsupervised classification algorithm of [33] and introduce
AIRM as distance metric. Other examples which use the metric for clustering
applications are in [47, 60].

In [3, 45], the AIRM distance is used in PolSAR/PolInSAR time-series
unsupervised classification with a binary partition tree algorithm applied in
the space of covariance matrices. Another method, the nearest regularized
subspace, is also modified to incorporate the same manifold metric [46].

The supervised classification of PolSAR data via dictionary learning, the
SVM technique and the AIRM metric is employed in [59, 58].

For adaptive PolSAR speckle filtering, [39, 40] propose a modified mean
shift algorithm. The method uses a different geodesic distance measure, the
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log-Euclidean Riemannian metric and its corresponding gradient, when calcu-
lating the local maximum point required by the implementation. This metric
is also used for PolSAR supervised classification, e.g., with dictionary learning
and the SVM method [56].

Therefore, techniques based on the use of PSD manifold metrics are re-
ported in PolSAR both with preprocessing (i.e., filtering) and data analysis
applications performed in the space of n× n, n ∈ {3, 4} covariance matrices.

Other manifold metric are introduced, as for example in [44], where Ratha
et al. use for the comparison of Kennaugh and covariance matrices the angular
geodesic distance, which relies on the assumption of a spherical manifold.

1.2.5 Manifold Gradient with Sobel Kernel

For an extended evaluation of Hermitian barycenters, a gradient assess-
ment is performed in the manifold space.

TABLE 1.1: Vertical Sobel kernel.

-1 0 1

-2 0 2

-1 0 1

TABLE 1.2: Horizontal Sobel kernel.

-1 -2 -1

0 0 0

1 2 1

The classical Sobel operator [30, 36], known primarily for edge detection
in digital image processing, proposes a sample computation of the first order
derivative. It operates with two 3 × 3 kernel filters (Tables 1.1, 1.2). Each of
them, used as a sliding window, is convoluted with a spatial neighbourhood
of the same size to produce the vertical and horizontal gradient components.

We propose an adaptation for gradient computation on the Hermitian
manifold. The same weights as in the Sobel kernels multiply barycenter ma-
trices within a 3 × 3 spatial neighbourhood, while an adequate metric is used
for distance dissimilarity (AIRM with Hermitian matrices). Both the vertical
(GV) and the horizontal (GH) manifold gradient components are evaluated.

Considering Pi,j a barycenter matrix located on row i, column j. The
following expressions can be written:

Gi,j
V = d(Pi,j

↑ ,P
i,j
↓ ), (1.11) Gi,j

H = d(Pi,j
→,Pi,j

←), (1.12)

where

Pi,j
↑ = Pi-1,j-1 + 2Pi-1,j +Pi-1,j+1 (1.13)

Pi,j
↓ = Pi+1,j-1 + 2Pi+1,j +Pi+1,j+1 (1.14)

Pi,j
← = Pi-1,j-1 + 2Pi,j-1 +Pi+1,j-1 (1.15)

Pi,j
→ = Pi-1,j+1 + 2Pi,j+1 +Pi+1,j+1. (1.16)

and the magnitude of the gradient is

G =
√

G2
H +G2

V. (1.17)
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(a) (b)

(c)

FIGURE 1.2: Brétigny Dataset. Gradient computation for the Hermitian
barycenters using the Sobel Filter kernels and the AIRM metric. (a) Hori-
zontal component [dB]. (b) Vertical component [dB]. (c) Magnitude [dB].

Fig. 1.2 shows the Hermitian barycenters Sobel gradient estimate (abso-
lute value, [dB]) for the Brétigny dataset. The shape of the three important
structures from the image (horizontal West-Center, left-oblique North-West
and right-oblique North-East) is easily distinguished, as well as the field con-
tours. Bright pixels are clearly isolated. A threshold selection may allow for
an extraction of coherent scatterers positions similar to that obtained by the
98th percentile criterion.

1.2.6 Proposed method

The classical k-means algorithm is an iterative, partitioning clustering
technique which separates the input data X = {xi} , i ∈ [1, N ] into K classes
[29, 8]. The method operates by attributing a sample xi from the dataset to
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class K through the minimization of a cost function
∑K

k=1 d(xi,Ck), with
respect to each cluster centroid Ck, k ∈ [1,K].

We propose a novel algorithm for unsupervised classification which per-
forms k-means clustering on the Riemannian manifold of Hermitian polar
factors. Three different processing stages can be identified:
Step 1: The scattering matrix is decomposed using the left1 polar decompo-
sition (1.1), to obtain the Hermitian and unitary factors.
Step 2: An identification of coherent scatterers based on the 98th percentile
criterion proposed by Lee et al. [32] is performed, at first. As in the original
algorithm, a 3× 3 boxcar neighbourhood is used. The pixels fulfilling the cri-
terion are considered to represent coherent targets.

For the coherent scatterers, no additional steps are needed and the Her-
mitian factors are used directly for clustering (Step 3). With all other pixels,
barycenters are otherwise computed. This is the analogous of a N-look geo-
metrical center of mass estimation in the manifold of Hermitian polar factors.
The barycenters are computed through an iterative method (1.8) applied in
square, local, sliding neighbourhoods of fixed size. The operation of evaluating
the Riemannian barycenters in the manifold of Hermitian factors is designated
henceforth by acronym PolBaRi (POLar decomposition BArycenters estima-
tion on the RI emannian manifold).

Step 3: A modified k-means algorithm is applied to the set of points
containing barycenters and coherent Hermitian factors. The computation is
kept into the native Riemannian manifold of positive-definite matrices using
the AIRM metric to evaluate intercluster separation. Here, the class centers
are randomly initialized using the k-means++ [4] seeding with the AIRM
distance. Progressively, each (barycenter) matrix from the set obtained in Step
2 is allocated to one of the K classes and the cluster centers are updated. The
operation is repeated until the interclass transfer is lower than a predefined
threshold (Fig. 1.1).

The suggested algorithm is distinct from other PolSAR Riemannian man-
ifold methods. The state-of-art review in Section 1.2 has evidenced the ex-
istence of PolSAR studies using Riemannian distances and/or Riemannian
classifiers in the space of covariance/coherency matrices, only. In contrast,
we propose to obtain rotation invariant Hermitian factors from the scatter-
ing matrix and manipulate such matrices through geometrical averaging and
geometric-based clustering techniques.

1Since similar results have been obtained when considering alternatively the left or right
polar decomposition, we refer hereafter exclusively to the use of the left polar factorization.
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(a) (b) (c)

FIGURE 1.3: Simulated data - Dataset 1. (a) 1-look Span [dB]. (b) Wishart
Classifier. (c) Proposed method: PolBaRi+Riemannian k-means.

1.3 Results and discussion

The algorithm introduced in Subsection 1.2.6 is now evaluated on both
simulated and real PolSAR data. Each case is addressed in a different subsec-
tion. The conventional Wishart classifier, applied on the space of covariance
matrices, is used as a benchmark.
In a different subsection we introduce a sample gradient computation tech-
nique based on the Sobel kernels, which evaluates the gradient directly on the
manifold space.

1.3.1 Simulated datasets

Simulated polarimetric data is obtained through two different methods, as
detailed by Subsections 1.3.1.1 and 1.3.1.2.

1.3.1.1 Simulated data with different intensities and covariance
matrices

The first simulation technique is a classical method used in the literature
[53, 2, 24]. It allows one to create synthetic responses of polarimetric channels
with known statistics, i.e., having a known covariance/coherency matrix. In
our example, we model four different Gaussian regions, arranged concentri-
cally, as shown in Fig. 1.3a. The intensity is varied linearly from one region to
another, with the region bounded by the image border and the second annulus
having the highest intensity [2]. The simulated dataset serves as benchmark.
The multivariate Gaussian clutter is still the most used statistical model for
PolSAR data and represents the best-of-fit distribution for the case of homo-
geneous regions. With such a statistical model, the Wishart classifier is known
to provide the optimum solution [31].
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TABLE 1.3: Simulated data - Dataset 1. Per-class accuracy, average class
accuracy and kappa coefficients.

Method
Accuracy

1 2 3 4 Total

Acc. kappa

Wishart classifier 91.45 99.77 99.46 96.7 96.84 0.97

Proposed 99.66 98.81 98.82 98.78 99.02 0.98

Figs.1.3b,c display the results obtained using the Wishart classifier and the
proposed method, respectively. For both algorithms, the number of expected
classes is provided as input parameter. Table 1.3 contains the percentages of
per-class accuracy obtained from the confusion matrices of each classifier. The
results are quite similar. With the proposed method, the identification of pixels
inside a given class has at least a 98% accuracy, the true-positive percentages
being here slightly more homogeneous than with the Wishart classifier. The
kappa coefficient is shown in Table 1.3.

1.3.1.2 Simulated monostatic backscattering response of a dihedral

With the second simulated dataset, the polarimetric signature of a mono-
static right-angle dihedral is modeled. Using an electromagnetic simulation
software (here, CST Microwave Studio), the scattered electric field of the ele-
mentary target can be obtained from a diverse range of monostatic directions.
In the simulations, the object is placed in the center of the coordinate system
and rendered from perfect electric conductor material. A spherical coordinate
system, described by parameters (θ, φ) is used. The simulator returns the es-
timated complex electric field response and, subsequently, which may be then
used to estimate the elements of the scattering matrix (linear polarisation).

Fig. 1.4a displays the absolute value of the backscattered electric field,
for the right-angle dihedral. The maximum value is obtained at the central
point, with coordinates (θ, φ) = (0◦, 0◦). This corresponds to the monostatic
canonical dihedral scattering direction in a plane orthogonal to the dihedral’s
bisector.

In monostatic PolSAR, the response of a dihedral describes the elementary
scattering mechanism known as double bounce. Identifying the mechanism
from PolSAR data is often indirect, by computing descriptive parameters.
One such parameter is the (coherent) αCloude value [14]:

αCloude = cos

(
1√
2

|Shh + Svv|
|S|F

)−1
, (1.18)

which is fixed at 90◦ for the double bounce case.
In Fig. 1.4b the αCloude parameter is estimated for each monostatic di-

rection. It is observed that the deviation from the theoretical value remains
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acceptable (αCloude ∈ [85◦, 90◦]) when θ, φ ∈ [−45◦, 45◦]. In contrast, for very
skewed directions (incidence/scattering predominantly on the exterior edges of
the two plates composing the dihedral), the mechanism changes, as expected.

In order to account for noise variation, the data of estimated scattering ma-
trices is not used directly. Instead, at each pixel, multiple Gaussian estimates
of the monostatic polarimetric channels are generated by the same method
used to obtain the first simulated dataset. After this stage, the PolBaRi es-
timation is performed pixel-based and the Riemannian k-means is applied.
The number of classes is varied between 2-5 (Fig. 1.4c) in order to test the
results. Even with the increase in the total number of classes, the technique
steadily identifies at the same locations the two main scattering mechanisms
shown in Fig. 1.4b. We refer here to the central region of uniform scattering
mechanism (in yellow), which corresponds to the double bounce response (as
confirmed by the αCloude parameter), and the region from the four exterior
corners (second mechanism, i.e., single bounce).

A data profile-cut is extracted along the middle horizontal line in Fig.
1.4b (position marked on left-side with green arrow). This corresponds to
backscattering directions presenting right/left variations in azimuth angle,
with respect to the evaluation position of the dihedral in the simulations.
Considering for this the Hermitian barycenters estimated along the selection
line for the k-mean results with two classes (left-side red arrow and dashed line
in Fig. 1.4c), two intra-class normalized geometric distances are evaluated.

The upper subfigure of Fig. 1.4d displays the αCloude values. The middle
and lower subfigures in Fig. 1.4d contain the normalized AIRM and normalized
angular geodesic distances between each of the selected barycenters and the
final Hermitian k-means centroid of the corresponding class (i.e., yellow class
from Fig. 1.4c).

The angular geodesic between two polar Hermitian factors (H1,H2) pre-
serves the same definition as for Hermitian covariance matrices, [43]:

d(H1,H2) =
2

π
cos−1

 Tr
(
H

H

1H2

)
√

Tr
(
H

H

1H1

)√
Tr

(
H

H

2H2

)
 . (1.19)

While the αCloude green curve is quite deterministic, both geometric dis-
tances (AIRM in red and angular geodesic in magenta) appear random. This is
plausibly influenced by the two distinct methods based on which the data was
obtained. The αCloude parameter is evaluated directly on the scattering ma-
trices estimated from the electromagnetic simulator. The geometric distances
display here similar intra-class separation results.
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(a) (b)

(c)

(d)

FIGURE 1.4: Simulated data - Dataset 2.
(a) Absolute value of the scattered Efield, estimated by the simulation soft-
ware. (b) αCloude angles from estimated scattering matrices. (c) Riemannian
k-means clustering result (variable number of classes between 2-5).
(d) Upper: αCloude profile cut variation;Middle: Riemannian distance between
barycenters along red profile cut in (c) and centroid of the class in yellow.
Lower: Angular geodesic distance between barycenters along red profile cut
in (c) and centroid of the class in yellow.
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1.3.2 Real datasets

This subsection will illustrate the performance of the proposed cluster-
ing algorithm on real monostatic PolSAR data. Foremost, the discussion is
extended for the Hermitian and unitary barycenters assessment, now in the
context of the real dataset. Afterwards, the results for the clustering method
are evaluated.

1.3.2.1 Hermitian barycenters gradient and unitary barycenters
parameter estimation

Firstly, we aim to assess for any contextual information present with the
unitary barycenters. The points for which the barycenters are not convergent
are masked-out and can be observed in white in Figs. 1.5a and 1.5b (≈ 25%
of the image pixels) .

Starting from a complex unitary matrix, U ∈ C2×2, with

U =

(
u11 u12

u21 u22

)
=

(
|u11| · eiφ1 |u12| · eiφ2

|u21| · eiφ3 |u22| · eiφ4

)
. (1.20)

The phase normalized unitary matrixUph− can be written in parametric form
[41]:

Uph− = U

(
e−iφ1 0
0 e−iφ4

)
=

(
|u11| |u12| · ei(φ2−φ4)

|u21| · ei(φ3−φ1) |u22|

)
(1.21)

=

(
cos θ − sin θ · e−iϕ

sin θ · eiϕ cos θ

)
(1.22)

After performing the phase normalization, as in (1.21), the angular θ and
phase ϕ parameters are easily obtained for the unitary barycenters of the
real dataset. The results are in Fig. 1.5a and Fig. 1.5b, respectively, with his-
tograms below the main figures. It is to be mentioned that with the Brétigny
dataset about 25% of the image pixels do not attain unitary barycenter con-
vergence.

The θ angle parameter takes values below 25◦ (Fig. 1.5c), while the phase
absolute values are normally spread in the entire [0◦, 180◦] interval (Fig. 1.5d).
As example, we can observe the zone corresponding to the building located
West-Center, where multiple coherent scatterers are present (red ellipse selec-
tion). Here, the θ values approach zero degrees. The phase values present also
an extreme (i.e. ± 180◦). Such observations indicate that the phase normal-
ized unitary barycenters at those locations are (almost) identity matrices. In
turn, this may also imply that the original unitary polar factors, used in esti-
mating the barycenters, are themselves close to identity. For such a case, the
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Hermitian polar factors are completely descriptive and (almost) equal to the
original scattering matrices. This result confirms the choice from the design
of the PolBaRi algorithm of performing the pre-selection of coherent scat-
terer and attributing to those locations directly the Hermitian factor, without
barycenter estimation.

(a) (b)

(c) (d)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90[deg.]

median notches: [4.99°, 5.04°] [25%, 75%] [9%, 91%] outliers

(e)

0 30 60 90 120 150 180[deg.]

median notches: [90.25°, 90.4°] [25%, 75%] [9%, 91%] outliers

(f)

FIGURE 1.5: Brétigny Dataset. (a) Angles obtained from the normalized uni-
tary barycenter matrices [degrees]. (b) Phase values obtained from the nor-
malized unitary barycenter matrices [degrees].
Following statistics are computed excluding white-masked values: (c) His-
togram of angles from (a). (d) Histogram of absolute phases from (b). (e)
Notches boxplot with mean and median values for angles in (a). (f) Notches
boxplot with mean and median values for absolute phase values in (b).

Removing the effect of rotations imposed on the line-of-sight backscatter-
ing direction as well as the search of rotation invariant descriptors is of partic-
ular interest in polarimetric radar applications. The topic has a significant line
of work associated for both coherent and incoherent PolSAR decompositions
[13, 48].
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In monostatic PolSAR, the term rotation invariant (roll-invariant) is gen-
erally used to distinguish a result which does not incorporate the target’s
rotation angle around the Line of Sight (LOS). Since in the monostatic case
this rotation around the LOS has the same effect as an antenna rotation
around the same axis, this is equivalent to a rotation of the received signal.
Because of this, the target-measurement equivalence rotation compensations
are very common. This has been applied in PolSAR with scattering matrices
[14], covariance/coherency matrices [34], Kennaugh matrices [44], alike.

Moreover, the rotation invariance is a property used for both targets and
descriptive parameters. The computation technique of some parameters may
inherently eliminates rotations (e.g., the eigen-decomposition applied to the
covariance matrix, which assures that the entropy and average alpha angles
are invariant [14]), while for others, the orientation-compensation is applied
as prerequisite.

With the proposed polar decomposition, we have shown that the unitary
matrices can be described by two random phases and two parametric values
(an angle and a phase). With coherent scatterers, discarding the unitary po-
lar factor does not produce significant changes, while for other scatterers the
removal of unwanted rotations from the original scattering matrix is highly
beneficial. Evidence from both simulated and real data shows that the contex-
tual and spatial information is preserved by the Hermitian polar term. Such
observations legitimize the key role of the Hermitian barycenters with the pro-
posed clustering method.

Figs. 1.6a,b compare the results of two different boxcar ”averaging” oper-
ations. Each image displays the absolute values of the first data channel.

For obtaining Fig. 1.6, the arithmetic mean of scattering matrices
(Brétigny dataset) has been computed inside a 7× 7 (pixels) moving window.
Otherwise, Fig. 1.6 contains absolute values (log scale) of the first element of
the estimated Hermitian barycenters.

In Fig. 1.6a, the amplitude levels of the different zones are quite simi-
lar, which determines that most zones appear mixed up. Coherent scattering
points, having a higher amplitude, remain clearly visible. On the contrary, a
larger dynamic range is evident for the barycenter image in Fig. 1.6b. Along-
side the scatterers of high intensity, the shape and structure of other parts
from the original image are clearly distinguishable, for example with vegeta-
tion parcels and roads.

The visual inspection proposed between a spatial arithmetic average of
scattering matrices and a spatial geometric estimation of a Hermitian centroids
shows superior results for the second approach. In light of this comparison, a
similarity may be drawn with the results from [26]. The reference compares
the difference between arithmetic and geometric averages of single channel
multi-temporal SAR series. Improved results in terms of speckle variation and
signal to noise ratio are reported for the geometric mean computation, as
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(a) (b)

(c) (d)

FIGURE 1.6: Brétigny Dataset. (a) S11 boxcar average (amplitude, [dB]).
(b) Hermitian barycenters (h11, amplitude, [dB]). (c) Wishart result. (d) Pol-
BaRi+Riemannian k-means result.

long as the SAR images from the acquisitions stack remain similar, with no
significant permanent changes.

1.3.2.2 Clustering results

In the following, the clustering results obtained by the proposed and the
benchmark algorithms are compared. The Riemannian barycenter estimation
requires a spatially moving window averaging, while the Wishart implementa-
tion performs the boxcar moving averaging to compute the sample coherency
matrices. The same size of the moving window, 7 × 7, is used with both im-
plementations. The first dataset is full-polarimetric, obtained by the French
Aerospace Lab RAMSES airborne X-Band radar instrument, over a test site in
Brétigny-sur-Orge (France). It is characterized by a resolution of approximate
1.5 m, in both azimuth and range [52].

Figs. 1.6c,d display the classification results for the classical Wishart and
the proposed method, respectively. The Wishart estimation operates with 8
classes. The same number has been considered for the PolBaRi+Riemannian
k-means implementation. The classes are sorted in an ascending order (blue
to yellow).
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The global positioning of classes in the two images is similar. One ma-
jor visual difference concerns the bow-shaped field in the North of Fig. 1.6c,
which is assigned to a distinct class. This is the case with other small zones,
attributed by the Wishart classification to the 8th, yellow class.

Considering, as examples, the horizontal West-Center oriented building
and the oblique North-East parking space, the classes identified by the pro-
posed method at the location are in close proximity, while the Wishart classi-
fier brings more distant ones together. However, as the final scattering mecha-
nism interpretation may not be quite the same for the two classifiers and in the
absence of a ground truth for the dataset acquisition, there is no categorical
validation for the classes.

Without doubt, the most striking difference in the interpretation offered
by the two classifiers, is textural. The Wishart result is smooth, largely homo-
geneous, while the proposed algorithm provides a more heterogeneous result,
conserving some of the texture and details of the original image. For example,
in the left-side of the parking space (North-East), near the road border, there
is an area covered by trees. The Wishart classifier identifies a small group
of trees to the south of the parking lot and where some pixels of higher in-
tensity are present, while identification is minimum in the area left to the
parking lot. The proposed method better represents the information from the
area, even if the pixels are of lower intensity. As second example, one can ob-
serve that the roads (contours in Fig. 1.2) blend with the background yellow
class in the Wishart classification, whereas they are clearly distinguishable in
the PolBaRi+Riemannian k-means result. In the original image they too are
represented by pixels of lower intensity.

For completeness, a second real dataset is presented, the well-known Pol-
SAR EMISAR Foulum. This is a C-Band observation over a vegetation-
dominated area, with crop fields, forests, a lake and some small urban set-
tlements.

Fig. 1.7a shows the h1,1 data channel from the Hermitian barycenter es-
timates. The PolBaRi+Riemannian k-means clustering result is presented in
Fig. 1.7b and the Wishart k-means clustering is illustrated in Fig. 1.7c. An
additional geometric metric has been used for qualitative evaluation, the an-
gular geodesic [43]. The results are displayed in Fig. 1.7d. For comparison
purposes, this latter implementation is based on the same k-means frame-
work/initialization, as in the case of Wishart. For display aesthetic, classes
are sorted here in descending order (blue to yellow).

With respect to the Wishart classification, the texture information is
better preserved when using both geometrical distances. However, the Pol-
BaRi+Riemannian k-means exhibits the best accuracy as it is able to dis-
criminate crop fields which are not retrieved by the other two methods, using
the same number of clusters. For example, the L-shaped areas near the image
center are correctly separated by the yellow and dark blue classes [17]. In pro-
posed ground-truths of the dataset, the two fields have distinct type of crops,
beet and winter wheat. This is in accordance with the results obtained using
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FIGURE 1.7: Foulum Dataset. (a) Hermitian barycenters (h1,1, amplitude,
[dB]). (b) PolBaRi+Riemannian k-means result. (c) Wishart result. (d) k-
means with distance metric the angular geodesic distance.
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FIGURE 1.8: Foulum Dataset - Region selection. Results of Riemannian k-
mean clustering with: (a) 4 classes, (b) 7 classes, (c) 16 classes.

the compound Gaussian mixtures classification model [20], which nonetheless
has a higher decrease in spatial resolution.

Given the geometrical nature of the proposed k-means clustering, it is
straightforward to define a simple objective criterion for data-driven evalua-
tion of the classification result. By modifying the Calinski-Harabasz (variance
ratio) criterion [9] with the AIRM metric, we obtain:

CHk =
varB
varW

· N −K

K − 1
, (1.23)

varB =

K∑
i=1

ni · dgeod,P(n)(Ci,Htot)
2, (1.24)

varW =

K∑
i=1

∑
Hj∈Ci

dgeod,P(n)(Hj,Ci)
2, (1.25)

where N is the total number of pixels in the PolSAR image, K is the number
of clusters, Htot is the overall barycenter of the sample PolSAR data and ni

refers to the number of observations in cluster i, of centroid Ci.
In order to find the correct number of classes, different Riemannian k-

mean clustering runs are operated on a 300×300 sub-image from the Foulum
dataset. Fig. 1.8 shows the results obtained with K ∈ {4, 7, 16}. For each
K, 2×K trials have been performed and the maximum CHk value has been
computed in each case. Fig. 1.9a illustrates the normalized index CHk as
function of K. The optimal number of classes with respect to this sub-dataset
corresponds to argmaxK(CHk) and equals 7 (Fig. 1.8b). In Fig. 1.9b, the
normalized CHk for K ∈ {8, 16} is computed over the full EMISAR Foulum
dataset. In this case, the K = 8 provides a much better match.

In conclusion, different data-driven clustering evaluation strategies can be
adopted for the positive definite manifold geometry. One of the benefits of
the proposed geometrical clustering is that conventional criteria, such as the
Calinski-Harabasz can be used rigorously to optimize the k-means parameters
as the AIRM is a true distance.
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FIGURE 1.9: Foulum Dataset - AIRM Calinski-Harabasz index (normalized
display) evaluation. (a) For the data selection in Fig. 1.8. (b) For the entire
Foulum image, if K = 8 and K = 16.

1.4 General Remarks and Conclusions

The proposed method, PolBaRi+Riemannian k-means, is unique in several
respects. It incorporates a coherent technique operating on the original scat-
tering matrix (i.e, the polar decomposition) which preserves the matrix format
(contrary to the incoherent decomposition methods where data is firstly vec-
torized). It is to be emphasized that the polar decomposition can be applied
to both symmetric and asymmetric scattering matrices and the Hermitian
factor is always unique. The data processing resembles also the incoherent
techniques, as it proposes a spatial averaging processing on the Riemannian
manifold for calculating centroids of Hermitian factors. This allows the appli-
cability of the proposed method even with distributed targets inside a scene.
The AIRM Riemannian geodesic metric is used to evaluate matrix dissimi-
larity both for Hermitian polar factor centroids and in the modified k-means
algorithm.

In a distinct contribution of the chapter, the AIRM metric is applied in
the development of: a) a sample gradient algorithm based on the Sobel kernels
and b) an objective criterion, based on the Calinski-Harabasz variance ratio,
for evaluating the number of clusters. Such implementations may prove useful
in other applications which involve computations with data embedded in the
Riemannian manifold of positive/Hermitian definite matrices.

The proposed clustering algorithm has been compared against two different
k-means implementations: the well-known stochastic Wishart and the newer
geometric-based angle geodesic clustering. The performance was shown to
be competitive with simulated Gaussian clutter data - a case for which the
Wishart classifier is known to offer optimum results.

Supplementary experiments are anticipated for better understanding the
geometric properties of the two factors from the PolSAR data polar decom-
position. As the method can be applied with both symmetric and asymmetric
scattering matrices, an envisioned extension is for testing the results with
data from quasi-monostatic and bistatic systems. Finally, future work will ad-
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dress enhancing the clustering algorithm using Gaussian and non-Gaussian
statistics on the manifold of positive definite matrices.

1.5 Glossary

AIRM: Affine Invariant Riemannian Metric

PolSAR: Polarimetric Synthetic Aperture Radar

PSD: Positive Semi Definite

SVD: Singular Value Decomposition
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