Model-based clustering of multiple networks with a hierarchical algorithm
Résumé
The paper tackles the problem of clustering multiple networks, that do not share the same set of vertices, into groups of networks with similar topology. A statistical model-based approach based on a finite mixture of stochastic block models is proposed. A clustering is obtained by maximizing the integrated classification likelihood criterion. This is done by a hierarchical agglomerative algorithm, that starts from singleton clusters and successively merges clusters of networks. As such, a sequence of nested clusterings is computed that can be represented by a dendrogram providing valuable insights on the collection of networks. Using a Bayesian framework, model selection is performed in an automated way since the algorithm stops when the best number of clusters is attained. The algorithm is computationally efficient, when carefully implemented. The aggregation of groups of networks requires a means to overcome the label-switching problem of the stochastic block model and to match the block labels of the graphs. To address this problem, a new tool is proposed based on a comparison of the graphons of the associated stochastic block models. The clustering approach is assessed on synthetic data. An application to a collection of ecological networks illustrates the interpretability of the obtained results.