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Abstract

The paper tackles the problem of clustering multiple networks, that do not share
the same set of vertices, into groups of networks with similar topology. A statistical
model-based approach based on a finite mixture of stochastic block models is pro-
posed. A clustering is obtained by maximizing the integrated classification likelihood
criterion. This is done by a hierarchical agglomerative algorithm, that starts from
singleton clusters and successively merges clusters of networks. As such, a sequence
of nested clusterings is computed that can be represented by a dendrogram providing
valuable insights on the collection of networks. Using a Bayesian framework, model
selection is performed in an automated way since the algorithm stops when the best
number of clusters is attained. The algorithm is computationally efficient, when
carefully implemented. The aggregation of groups of networks requires a means to
overcome the label-switching problem of the stochastic block model and to match the
block labels of the graphs. To address this problem, a new tool is proposed based on a
comparison of the graphons of the associated stochastic block models. The clustering
approach is assessed on synthetic data. An application to a collection of ecological
networks illustrates the interpretability of the obtained results.

Keywords: Graph clustering, multiple networks, stochastic block model, agglomerative
algorithm, graphon distance, integrated classification likelihood.
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1 Introduction

Networks are key objects for describing interactions between individuals or entities in com-

plex systems. Today, entire collections of networks emerge in more and more fields of

application. To list a few examples, in social sciences face-to-face contacts among individ-

uals at different time periods are represented as a set of behavioral networks (Isella et al.,

2011). In medical research, a brain connectome is a network describing a patient’s brain

activity (Donnat and Holmes, 2018). In biology, metabolic networks for hundreds of dif-

ferent bacteria are available (Weber-Zendrera et al., 2021). In ecology, foodwebs represent

the interactions of species in different ecosystems (Poisot et al., 2016).

When analyzing multiple networks, most questions are related to graph comparison. We

may wish to quantify the (dis)similarity between networks, detect outliers or some temporal

evolution of networks. In general, it is informative to reduce the dimension of the data by

finding groups of networks sharing similar characteristics. For instance, we may want to

automatically group together patients with the same brain state, or identify bacteria with

roughly the same metabolism, or in the context of climate change find ecological networks

with similar overall organization. The focus of this work is on clustering of networks that

may not share the same set of vertices and may vary in size, and we seek a method that

partitions the networks according to their topology.

1.1 Graph comparison

The clustering task requires some notion of graph similarity. However, networks have

complex structure, and so graph comparison is not trivial and similarity or graph distances

can be defined in many ways.

A widespread approach is based on graph embeddings. A graph embedding is a low-
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dimensional vector representation of a network encoding structural information about the

network. Traditional embeddings are hand-crafted and composed of local or global network

summary statistics like the edge density, nodes degrees and clustering coefficients. Then,

graph similarity is defined using the distance between the embedding vectors, and graph

clustering is easily performed using off-the-shelf machine learning algorithms as k-means or

spectral clustering. Clearly, the clustering result heavily depends on the chosen embedding.

The machine learning literature proposes many alternative graph embeddings, as for

instance graph kernel methods (Gärtner, 2003; Shervashidze et al., 2009), graph Laplacian

methods (Shimada et al., 2016), extensions of node embeddings (Hamilton et al., 2017),

graph neural networks (Xu et al., 2019; Wu et al., 2021) and data-driven methods based

on graphlets (le Gorrec et al., 2022). However, in practice it is far from evident how to

choose the most suitable embedding (Botella et al., 2022).

An alternative to graph embeddings are model-based approaches. Here a statistical

model is introduced and networks forming a cluster are assumed to be generated inde-

pendently from a common probabilistic model. To put it differently, data are modeled

by a finite mixture model of random graph models and mixture components correspond

to clusters of networks. The problem of graph comparison is thus recast as a problem of

estimating and comparing the probabilistic models that generated the observed networks

(Stanley et al., 2016; Sabanayagam et al., 2022).

A major advantage of model-based approaches over graph embeddings is the possibil-

ity to quantify uncertainty of the results. For instance, one may compute the posterior

probability for a network to belong to a given cluster or compare the likelihood of two

clusterings. Furthermore, it provides a natural framework for model selection, that is, the

automated choice of the best number of clusters.
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For graph comparison, two general settings must be distinguished. In the first case, all

networks are defined on the same set of vertices, as for networks with a temporal dynamic or

connectomes, where a vertex always refers to the same brain region. Then graph distances

can be based on local features comparing structures of node neighborhoods. In the second

case, the sets of vertices are completely different from one network to another, without

any correspondence among the nodes of the different networks. This is the setting we are

interested in. The mangal database (Poisot et al., 2016), for example, provides hundreds

of foodwebs from all over the globe, where each foodweb describes an ecosystem coming

with its own set of species. To compare such networks, local features are useless, and only

the overall topology of the networks is meaningful.

1.2 Mixture models for sets of networks

Using finite mixtures to perform clustering has a long-standing tradition (Titterington

et al., 1985; McLachlan and Peel, 2000), but only recently, this approach has been explored

for graph clustering. To define a mixture model, a random graph model for the mixture

components has to be chosen. For networks with constant node sets, the stochastic block

model and generealized linear models may be used (Stanley et al., 2016; Signorelli and

Wit, 2019), or extensions of measurement error models, where networks are considered to

be perturbations of some ground-truth graph (Mantziou et al., 2021; Young et al., 2022).

Mukherjee et al. (2017) and Sabanayagam et al. (2022) propose nonparametric models,

where the distribution of the mixture components is estimated by a graphon estimate.

Shortcomings of the latter approach include the restriction to undirected graphs and the

lack of interpretation, since analyzing graphons is not convenient.

In this paper, a new mixture model is proposed. As we desire an interpretable model,
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we choose the popular stochastic block model (SBM) (Nowicki and Snijders, 2001) for

the mixture components. The SBM is a highly flexible model, which accommodates a

large variety of heterogeneous graph topologies as often encountered in applications. A

further advantage is the interpretability of the parameters of a SBM. Many model variants

exist (see Matias and Robin (2014) for a review), which underlines the relevance of SBM. In

particular, extensions of the SBM for collections of networks include repeated measurements

of a ground-truth SBM network (Le et al., 2018), a mixture of SBMs with fixed nodes

(Stanley et al., 2016), and networks that are generated by SBMs with varying parameters

(Chabert-Liddell et al., 2022).

The SBM is a discrete latent variable model and parameter estimation is challenging due

to its involved dependence structure. Several inference algorithms have been proposed like

variational EM-algorithms (Daudin et al., 2008), MCMC methods (Nowicki and Snijders,

2001; Peixoto, 2014), a pseudo-likelihood approach (Amini et al., 2013), a Bayesian ap-

proach based on the integrated classification likelihood (ICL) (Côme and Latouche, 2015),

spectral clustering (Rohe et al., 2011) and, more recently, a variational autoencoder using

neural networks (Mehta et al., 2019). None of them is perfect, some are time-consuming

and not scalable to large networks, others are fast, but provide unstable results.

1.3 Graph clustering algorithms

A simple clustering approach is based on graph distances. That is, one computes a similarity

matrix for the pairwise comparison of the networks and then a clustering is derived via

spectral clustering (Mukherjee et al., 2017; Sabanayagam et al., 2022). This approach does

not account for the uncertainty of estimates and lacks a natural model selection device.

In a mixture model the clustering task becomes an inference problem, since cluster
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labels correspond to latent variables of the model. In general model-based clustering, EM-

type algorithms (McLachlan and Krishnan, 2008), MCMC (Liu, 2008) and hierarchical

agglomerative algorithms (Fraley and Raftery, 2002) are traditionally used to jointly infer

cluster labels and model parameters. In the case of graph clustering, for mixtures of

networks with a constant node set, EM algorithms are developed (Stanley et al., 2016;

Signorelli and Wit, 2019) as well as Gibbs samplers (Mantziou et al., 2021; Young et al.,

2022). They all have the disadvantage that the number of clusters must be set by the user.

In the present work, we explore the development of a hierarchical agglomerative al-

gorithm. Starting from an oversegmented clustering with singleton clusters, clusters are

successively merged to larger clusters while optimizing some criterion. Interestingly, the

algorithm provides a whole cluster hierarchy that can be visualized by a dendrogram and

intermediate clusterings are easily inspected. If the criterion includes a penalization of the

number of clusters, the algorithm automatically stops when any further merge of groups re-

sults in a deterioration of the objective. Thus, model selection is performed automatically.

Such penalized criterions are naturally obtained by using Bayes factors (Robert, 2007).

For our mixture model of SBMs, we follow the line of research initiated by Côme and

Latouche (2015) that consists in choosing the integrated classification likelihood (ICL) as

the objective for the hierarchical agglomerative algorithm. We show that the algorithm

can be implemented efficiently and assess its performance by numerical experiments.

1.4 Block-label matching

In our algorithm an interesting issue is encountered during the aggregation of two clusters.

Indeed, merging clusters amounts to combine the corresponding SBMs. However, due to

the label-switching problem in the SBM, this is not simple. Using the graphon functions
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(Lovász and Szegedy, 2006) of the SBMs, we propose a new tool to match block labels in

a computationally efficient way. This tool should also be of interest beyond our clustering

algorithm, whenever two SBMs are compared and the problem of label-switching occurs.

1.5 Contributions

The contributions of the paper are as follows.

• A finite mixture model of SBMs is introduced for collections of networks (Section 2).

• A hierarchical agglomerative algorithm to cluster networks and estimate model pa-

rameters is developed (Section 3 and 4).

• We propose a new tool to match block labels of two SBMs (Section 5).

• A numerical study assesses the performance of the algorithm and illustrates its utility

on a collection of foodwebs (Section 6).

• Details for an efficient implementation of the algorithm are provided in the Appendix.

2 Mixture of stochastic block models

In this section we first recall the definition of the classical SBM for a single network. Then

we introduce the mixture of SBMs for a collection of networks without vertex correspon-

dence. Throughout the paper we consider directed binary networks without self-loops, but

extensions to other types of networks are straightforward.

7



2.1 Stochastic block model for a single network

Consider a network with n vertices. Denote (π,γ) the parameters of a SBM with K

blocks, where π = (π1, . . . , πK) ∈ (0, 1)K are the block proportions with
∑

k∈JKK πk = 1

and γ = (γk,l)k,l ∈ (0, 1)K×K the connectivity matrix. Let Z = (Z1, . . . , Zn) ∈ JKKn be

a vector of independent discrete latent variables for the nodes, with P(Zi = k) = πk for

all k ∈ JKK and i ∈ JnK. Conditionally on the node labels Z = (Z)m∈JMK, the observed

adjacency matrix A = (Ai,j)1≤i,j≤n ∈ {0, 1}n×n verifies

A|Z =
⊗
i 6=j

Ai,j|Zi, Zj =
⊗
i 6=j

B
(
γZi,Zj

)
,

where B(γ) is the Bernoulli distribution. Denote SBMn (π,γ) the distribution of A.

2.2 Mixture of SBMs for a collection of networks

Now we consider a collection of networks modeled by a finite mixture model, where each

mixture component is a SBM. That is, networks belonging to the same cluster are inde-

pendent realizations of the same SBM.

Formally, let A = {A(m)),m ∈ JMK} be a collection of M networks, where A(m) =

(A
(m)
i,j )1≤i,j≤n(m) ∈ {0, 1}n(m)×n(m)

denotes the adjacency matrix of the m-th network. Net-

works may have different numbers n(m) of vertices and no correspondence among the nodes

is assumed. We introduce independent discrete latent variables U = (U (1), . . . , U (M)) ∈

JCKM defining a partitioning of the M networks into C ≥ 1 clusters. Denote pc =

P(U (m) = c), c ∈ JCK the cluster proportions and p = (p1, . . . , pC) ∈ (0, 1)C . Now, let

(π(c),γ(c)), c ∈ JCK be parameters of C different SBMs. The associated numbers of blocks,

say Kc, are not constrained to be equal. We assume that all networks in cluster c are in-
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dependent realizations of the SBM with parameter (π(c),γ(c)), that is, conditionally on U ,

A|U =
M⊗
m=1

A(m)|U (m) =
M⊗
m=1

SBMn(m)

(
π(U(m)),γ(U(m))

)
.

Denote θ =
(
p, {(π(c),γ(c)), c ∈ JCK}

)
the parameters of the mixture model, and note that

θ is identifiable only up to label switching. That is, switching cluster labels always results in

the same probability distribution of A. In addition, in every SBM, the node labels are also

identifiable only up to label switching. We adapt the notation of the node labels by adding

superscript (m), that is, Z(m) = (Z
(m)
1 , . . . , Z

(m)

n(m)), and also denote Z = {Z(m)),m ∈ JMK}.

3 Clustering and estimation using the ICL criterion

In a mixture of SBMs, graph clustering becomes the recovery of the latent variables U from

the data A. We develop a clustering algorithm by maximizing the so-called integrated

classification likelihood criterion (ICL), defined as the log-likelihood function of the com-

plete data, that is, the observations and the latent variables. Traditionally, this criterion

has been used for model selection in various latent variable models, often in connection

with the EM algorithm (Biernacki et al., 2000). More recently, Côme and Latouche (2015)

showed that the ICL can also be used for directly estimating the latent variables. Com-

pared to alternative approaches like EM, an unequivocal advantage is that model selection

is performed automatically. Here we adapt the approach to mixtures of SBMs. In this

section, the ICL is first introduced for a single cluster, then defined for our mixture model.

3.1 ICL criterion for a single cluster

In this subsection A is assumed to be a collection of i.i.d. networks of a SBM with K

blocks and parameters (π,γ). Considering a Bayesian framework, let p(π,γ) be a prior
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distribution on the SBM parameters and define the ICL criterion as

ICLsbm(A,Z) = log(p(A,Z)) = log

(∫
p(A,Z|π,γ)p(π,γ)d(π,γ)

)
. (1)

Interestingly, by integrating out the model parameters, the criterion only depends on the

observations A and the latent nodel labels Z. The value of Z optimizing the ICL, that is,

Ẑ = arg max
Z

ICLsbm(A,Z), (2)

corresponds to the node labels maximizing the posterior distribution of Z and hence is a

natural estimate of the latent variables. Using the following prior

p(π,γ) = p(π)×
∏

k,l∈JKK2
p(γk,l) = Dirichlet(π;α1, . . . , αK)×

∏
k,l∈JKK2

Beta(γk,l; ηk,l, ζk,l).

where α1, . . . , αK , ηk,l, ζk,l are hyperparameters, the ICLsbm has closed-form expression,

which is given in the Appendix.

3.2 ICL criterion for a mixture of SBMs

In a mixture of SBMs, there are two types of latent variables, namely the clustering U of

the networks and the node labels Z. The ICL is then defined as

ICLmix(A,U ,Z) = log(p(A,U ,Z)) = log

(∫
p(A,U ,Z|θ)p(θ)dθ

)
, (3)

where p(θ) is a prior on the model parameters. The values (Û , Ẑ) that maximize the ICL

are convenient estimates of the graph clustering and the node labels. They are defined as

(Û , Ẑ) = arg max
U ,Z

ICLmix(A,U ,Z). (4)

Again we consider classical independent conjugate priors given by

p(θ) = p(p)
∏
c∈JCK

p(π(c))p(γ(c))

= Dirichlet(p;λ1, . . . , λC)
∏
c∈JCK

Dirichlet(π(c);α1, . . . , αKc)
∏

(k,l)∈JKcK2
Beta(γ

(c)
k,l ; ηk,l, ζk,l),
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where λc, αk, ηk,l, ζk,l are hyperparameters. Let Ic be the set of indices of networks belonging

to cluster c, that is, Ic = {m ∈ JMK : U (m) = c} for c ∈ JCK, and denote A(c) = {A(m),m ∈

Ic} and Z(c) = {Z(m),m ∈ Ic}. Then, one can show that the ICL can be rewritten as

ICLmix(A,U ,Z) =
∑
c∈JCK

ICLsbm(A(c),Z(c)) + log

(∫
p(U|p)p(p)dp

)
.

The last term on the right-hand side has closed form given by

log

(∫
p(U|p)p(p)dp

)
= log

(
Γ(Cλ)

(Γ(λ))CΓ(Cλ+M)

)
+
∑
c∈JCK

log (Γ(λ+ |Ic|)) .

The ICL criterion is not exactly a similarity measure that compares clusters of networks,

but it is a model-based likelihood criterion that defines which is the best clustering.

4 Hierarchical clustering algorithm

To solve the discrete optimization problem given by (4), we propose a greedy hill-climbing

algorithm. The algorithm is initialized by a mixture of M SBMs by setting U (m) = m for

m ∈ JMK, that is, every network forms a cluster on its own. Then, at every iteration, two

clusters are combined to a single larger cluster. More precisely, for any pair of clusters

(c, c′) ∈ JCK2, the ICL variation ∆c,c′ is evaluated defined as

∆c,c′ = ICLmix(A,Uc∪c′ ,Zc∪c′)− ICLmix(A,U ,Z),

where U and Z are the current latent variables and Uc∪c′ and Zc∪c′ the ones obtained by

merging the clusters c and c′. Finally, the cluster aggregation yielding the largest ICL

increase is actually performed. The algorithm stops automatically when the ICL would

decrease if any further clusters are merged. The granularity of the final clustering Û

depends on the data and on the hyperparameters λc.
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The algorithm also requires initial values for the latent node labels Z. We propose

to adjust a simple SBM to each network A(m) yielding an estimate (π(m),γ(m)) of the

SBM parameters as well as node labels Z(m). Our implementation uses the variational EM

algorithm of the R package blockmodels (Leger, 2016).

The aggregation of two clusters raises an issue related to the the non-identifiability of

the block labels in a SBM. In fact, it occurs that node labels in the two clusters do not

refer to the same type of blocks. However, in our algorithm, for a given cluster, node labels

must designate the same SBM block in every network. If this is not the case, it is necessary

to relabel the nodes before merging the clusters. In Section 5 we develop a new tool to find

the best correspondence of the block labes of two SBMs.

After merging two clusters, the current node labels can be further improved by searching

the maximum of ICLmix in Z, while keeping the clustering U fixed. This amounts to

maximize the term ICLsbm for the newly created cluster. We propose an adaptation of the

procedure by Côme and Latouche (2015) to fit a SBM to a single network. Roughly, for

every node we test if changing its node label increases the ICL or not. This algorithm is

presented in the Appendix.

Algorithm 1 summarizes the entire clustering algorithm. It provides the best cluster-

ing Û , node labels Ẑ and also parameter estimates for the SBM of every cluster.

In view of the computing time, it is important that the evaluation of ICL variations

∆c,c′ is fast. The Appendix provides explicit and fast formulae for the computation of ∆c,c′ .

5 Matching of SBM node labels

Given the node labels, say Z(c) and Z(c′), and the SBM parameters of two clusters of

networks, the goal is to find the best match of the block labels of the two SBMs. A
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Algorithm 1: Agglomerative algorithm for graph clustering

Input: Collection of networks A.

Set U (m) = m for m ∈ JMK and set C = M .

for m ∈ JMK do

Fit a SBM to A(m) yielding parameters (π(m),γ(m)) and node labels Z(m).

end

Set Z = {Z(m),m ∈ JMK} and θ = {(π(c),γ(c)), c ∈ JCK}.

while C > 0 do

for (c, c′) ∈ JCK2 do

Compute ∆c,c′ according to Section 8.2.

end

Choose (c1, c2) such that ∆c1,c2 = maxc,c′ ∆c,c′ .

if ∆c1,c2 > 0 then

Set U (m) = min{c1, c2} for all m ∈ Ic ∪ Ic′ .

Update Z and θ according to Algorithm 3.

Set C = C − 1.

end

else

exit while

end

end

Output: Clustering U = {U (m),m ∈ JMK}, node labels Z, SBM parameters

{(π(c),γ(c)), c ∈ JCK}.

naive strategy consists in ordering one part of the SBM parameters, for instance, the block

proportions π1, . . . , πK or the diagonal elements of the connectivity matrix γ in a monotone

order. However, as none of the parts of the parameter contains all relevant information,
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Figure 1: Graphons of a SBM with two different orders of the block labels.

there are always cases where such an approach fails. To take into account both parts of

the parameter (π,γ), we propose to use the graphon of the SBM as shown in this section.

5.1 Graphon of a SBM parameter

The graphon, introduced by Lovász and Szegedy (2006), is a function g : [0, 1]2 → [0, 1]

that can be used as a generative model for exchangeable random graphs including SBM.

First, generate independent random variables Ui ∼ U [0, 1] for the vertices i ∈ JnK. Then,

conditionally on Ui and Uj, draw an edge Ai,j ∼ B(g(Ui, Uj)). The graphon of a SBM

SBM (π,γ) is given by

g(π,γ)(u, v) = γk,l for every (u, v) ∈ Rk,l = (qk−1, qk]× (ql−1, ql] , (5)

where qk =
∑

s∈JkK πs, k ∈ JKK, q0 = 0. Indeed, when Ui ∈ (qk−1, qk], then Zi = k. The

graphon g(π,γ) is a piecewise constant function depending on the entire SBM parameter.

Clearly, it also depends on the order of the block labels. Changing the block labels implies

the permutation of the piecewise constant parts of the graphon as illustrated in Figure 1.
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5.2 Label-dependent distance measure for two SBM parameters

To compare SBMs with parameters (π(c),γ(c)) and (π(c′),γ(c′)), consider the L2-distance of

their graphons. By the piecewise constant character, the distance is a finite sum given by

‖g(π(c),γ(c)) − g(π(c′),γ(c′))‖2 =

(∫
[0,1]2

(g(π(c),γ(c))(u, v)− g(π(c′),γ(c′))(u, v))2d(u, v)

) 1
2

=
∑
k,l,k′,l′

(
γ

(c)
k,l − γ

(c′)
k′,l′

)2

|Rk,l,k′,l′ |, (6)

where |Rk,l,k′,l′ | denotes the area of Rk,l,k′,l′ defined as

Rk,l,k′,l′ =
{(
π

(c)
k−1, π

(c)
k

]
∩
(
π

(c′)
k′−1, π

(c′)
k′

]}
×
{(
π

(c)
l−1, π

(c)
l

]
∩
(
π

(c′)
l′−1, π

(c′)
l′

]}
,

This distance is zero if and only if parameter values are identical ((π(c),γ(c)) = (π(c′),γ(c′)))

as well as the order of the blocks. Thus, it is a label-dependent distance measure. Fur-

thermore, the graphon distance is well-defined even when the number of blocks of the two

models differ.

5.3 Matching SBM blocks

Our tool to match block labels of two SBM parameters consists in finding the permutations

yielding the smallest graphon distance. More precisely, let Kc and Kc′ be the number of

blocks in (π(c),γ(c)) and (π(c′),γ(c′)), resp. Denote by SK the set of all permutations of

JKK and a parameter with permuted blocks by

σ(π,γ) =
(
(πσ(1), . . . , πσ(K)), (γσ(k),σ(l))k,l

)
.

We define permutations σ̂c and σ̂c′ as

(σ̂c, σ̂c′) ∈ arg min
σ1∈SK(c) ,σ2∈SK(c′)

‖gσ1(π(c),γ(c)) − gσ2(π(c′),γ(c′))‖2. (7)
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The solution is not unique, as for any τ ∈ SK(c) the minimum is also attained with the

permutations τ ◦ σ̂c and τ ◦ σ̂c′ . But for our purpose, any solution is convenient for matching

block labels.

For the practical computation of σ̂c and σ̂c′ , an exhaustive exploration of all permu-

tations SK(c) and SK(c′) is feasible when the number of blocks Kc and Kc′ are not too

large. However, we propose a general simplification based on an identifiability property

of graphons (Bickel and Chen, 2009). Defining the marginal of graphon g as ḡ(u) =∫
g(u, v)dv, one can show for undirected networks that there exists a unique graphon gcan

which defines the same distribution as g and whose marginal ḡcan is monotone decreasing.

Graphon gcan is called the canonical representation of g. Hence, instead of exploring all

possible permutations of the block labels, we choose as σ̂c and σ̂c′ the permutations provid-

ing the canonical representation of the graphons. This is justified for undirected networks.

In the directed case, where the marginals ḡ(u) =
∫
g(u, v)dv and ¯̄g(v) =

∫
g(u, v)du are

not the same, a reasonable adaptation is to first order blocks according one marginal, say

ḡ. Then, if ḡ is constant over two SBM blocks, order these two blocks such that the other

marginal ¯̄g is decreasing over these two blocks.

5.4 Relabeling nodes during cluster aggregation

Let us summarize all steps to relabel nodes when merging two clusters. First, estimate the

SBM parameters for both clusters by the maximum a posterior estimator defined by

(π̂(c), γ̂(c)) = arg max
(π,γ)

p((π,γ)|A(c),Z(c)).

The estimator has simple closed-form expressions detailed in the Appendix. Next, the

permutations σ̂c and σ̂c′ to obtain the canonical representations of the associated graphons
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Figure 2: Proportion of collections of networks on which the number of SBM blocks is

estimated to be 3 (blue) and 2 (yellow). The ARI (red) of the node labels and the graphon

distance (black) of the estimated SBM compared to the true one.

are determined and the node labels Z(c) and Z(c′) are updated accordingly by

Z(`)
update = (σ̂`(Z

(j)), j ∈ I`), with σ̂`(Z
(j)) = (Z

(j)
σ̂`(1), . . . ,Z

(j)

σ̂(`)(n)
), ` ∈ {c, c′}.

6 Numerical Study

We conduct numerical experiments to assess the performance of our clustering algorithm.

The algorithm will be very soon available on CRAN as the R package grupchclust.

6.1 Estimation accuracy

In the single network setting it is well known that parameter estimates converge to the true

SBM parameter when the number of nodes increases. In the multiple network framework

a different question is the accuracy of the estimators as a function of the number M

of networks, when the network size is bounded. To study this question we consider a

mixture with a single component. Concretely, we simulate multiple networks with only
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10 vertices from a SBM with 3 blocks. Fitting a SBM to a single small network by a

standard estimation algorithm, as done at the initialisation step of our algorithm, yields

SBM estimates with 2 blocks only, since data do not provide enough evidence to estimate

the parameters of a more complex model. We apply to these synthetic data a variant of

our hierarchical agglomerative algorithm with no stopping criterion, merging all networks

to a single cluster. Contrary to a one-by-one analysis of the networks, we observe that our

approach that jointly analyzes all networks, allows to discover the richer true SBM with 3

blocks, even when all networks are small. More precisely, Figure 2 displays the proportion

of 100 simulated data sets on which the procedure correctly selects a SBM with 3 blocks

(blue). Obviously, this proportion increases with M , and for 500 networks and more, no

errors are made. We also compare the estimated node labels Ẑ to the true ones by the

adjusted Rand index (ARI) (Hubert and Arabie, 1985). The ARI (red line) is strictly

increasing in the sample size M indicating that the fit gets better and better. Finally, we

evaluate the quality of the estimated SBM by comparing the associated graphon with the

one of the true SBM as described in Section 5.4. This is a valid comparison even when the

number of blocks are not the same, which is the case for small sample sizes. We see from

Figure 2 that the graphon distance (black line) steadily decreases when providing more an

more data to the algorithm, meaning that the estimation accuracy improves.

6.2 Graph clustering

To study the impact of both the number M of networks and the sizes n(m) of the individual

networks on the performance of the clustering algorithm, data from a mixture of four SBMs

with equal block proportions are simulated. We consider two sample sizes M ∈ {20, 100}

and networks with two different mean numbers of vertices, say nmean. For nmean = 30, the

18



(a) Estimated number of clusters (b) ARI

Figure 3: Estimated number of clusters for our hierarchical algorithm, and ARI for both

our hierarchical algorithm and GCS. 100 datasets in each of the four settings.

numbers of nodes n(m) vary from 15 to 100. For nmean = 100, all n(m) are chosen in [20, 200].

For each of the four settings, Figure 3 a) displays the estimated number of clusters on 100

simulated collections of networks. When networks are small (nmean = 30), the cluster

number is often underestimated (for both, M ∈ {20, 100}). Increasing the network size

to nmean = 100 should increase the accuracy of the estimation of the underlying SBMs

as seen in the previous section, and indeed we observe in Figure 3 a) that the number of

clusters is significantly more often correctly estimated. Moreover, Figure 3 b) illustrates the

ARI of the obtained graph clusterings (in red) compared to the truth. Again, we see that

increasing the number of vertices nmean per network has not the same effect as increasing

the number of networks M . This confirms that a good clustering result goes in hand with

high estimation accuracy of the model parameters.

We can also compare our clustering algorithm to alternative methods. Most clustering

procedures in the literature based on a graph distance consist in constructing a similarity
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matrix with the graph distance for all pairs of networks to which a spectral clustering algo-

rithm is applied to derive a clustering. Here we propose to consider the graphon distance

defined in this work as a graph distance evaluated on the SBM parameter estimated on

a single network. For the spectral clustering algorithm we specify the correct number of

clusters to be found. We refer to this method as the graphon spectral clustering (GSC)

approach. The procedure is applied to the same data as our model-based algorithm and

the corresponding ARIs are also represented in Figure 3 b) (in blue). Obviously, in all

settings our graph clustering approach has much better performance although we provided

the correct number of clusters to the GCS method. Moreover, no substantial improvement

of GSC is observed when more data are available. This is in accordance with our under-

standing of such approaches, where the estimation uncertainty is not taken into account

and networks are only analyzed separately. We conclude that model-based approaches as

ours, where a common descriptor of each cluster is computed using all data associated with

one cluster, have a real advantage over graph distance methods.

6.3 Robustness to model assumption

In practice, model assumptions are never satisfied. To test robustness, we consider data

containing a substantial part of outliers or noisy observations. Here we simulate an outlier

network by first generating a SBM parameter at random and then drawing one network

from this SBM. In other words, every outlier has an individual SBM parameter. The rest of

the data are drawn from a SBM mixture with 3 components. More precisely, the simulated

collection of 100 networks (each with 50 nodes) is composed of a dominant cluster (66

networks) and two intermediate clusters (6 and 9 networks) and the remaining 19 networks

are outliers.
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Figure 4: Dendrogram of clustering obtained by the algorithm. In the bar below spurious

networks are represented in purple.

Figure 4 shows the dendrogram of the clustering obtained with our procedure. The

hierarchical algorithm detects 16 clusters. The largest cluster (65 networks) contains only

networks generated from the dominant mixture component. Furthermore, 88% of the

networks generated by the three-component the SBM mixture (i.e.71 networks) belong to

clusters that are almost pure (more than 90% of the networks from one mixture component).

Furthermore, 68% of the outliers (13 networks) are in clusters that do not contain any data

from the three-component mixture model. Thus, the algorithm is able to make a distinction

between data from the mixture model and most of the noisy observations.

In terms of the ARI, our algorithm attains a value of 0.95, which is considerably larger

than the ARI of 0.065 obtained with the GSC procedure with the same number of clusters,

that is 16. Varying the number of clusters, the highest ARI for GSC is achieved with 4
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Figure 5: Graphon of SBM parameter of the dominant cluster with in-coming and out-

coming probabilities on the sidebars.

clusters and reaches the value 0.72, which is still far below the ARI of the model-based

approach. We conclude that our approach gives also very satisfying results when the data

contains outliers or noisy observations.

6.4 Application to ecological networks

The mangal database (Poisot et al., 2016) provides a huge collection of ecological networks

available via the R package rmangal. We extract the 187 networks, where interactions

among different taxa (vertices) are of the type predation. The median number of vertices

per foodweb is 19 (ranging from 5 to 708) and the median number of edges 32 (ranging

from 4 to 27, 745). Our goal is the identification of foodwebs that have the same network

structure regardless of the taxa or the size of the foodwebs. Is there any kind of universal

topology of foodwebs? How many different organization forms of an ecosystem exist, and

how can they be described and compared?

Our agglomerative cluster algorithm applied to these foodwebs discovers 17 clusters.
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Figure 6: Geographical representation of the clustering of the foodwebs.

There is a dominant cluster containing 115 networks (61%), 5 clusters of intermediate size

(6 to 14 networks) and none of the remaining 11 clusters contains more than 4 networks.

Figure 6 represents the SBM parameter associated with the dominant cluster. It con-

tains six blocks, block proportions are in the range [0.06, 0.28], half of the connectivity

parameters γk,l are lower than 0.01 and the largest connectivity parameters is 0.87. To in-

terpret the different blocks, we consider the probabilities of in-coming and out-going edges

for a node in block k ∈ JKK defined as

din
k =

K∑
l=1

πlγl,k, dout
k =

K∑
l=1

πlγk,l.

A large values of din
k indicates that the species in block k are often eaten by other species,

while a large dout
k represents species that often eat other species. We define a vegetarian

behavior by a low probability to eat others (say dout
k ≤ 0.05) and a significant probability

of being victim (din
k ≥ 0.05). Our model contains two vegetarian blocks representing 43%

of the species. Likewise, we define predators by a significant probability to eat others
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(dout
k ≥ 0.05) and few chance to be eaten (din

k ≤ 0.05). Then 18% of the species (two blocks)

are predators. The remaining 39% are somewhere in the middle of the food pyramid with

both good chances to be eaten and to eat others (din
k ≥ 0.05, dout

k ≥ 0.05). So this is the

typical structure of most foodwebs in the database.

To compare this topology with others, consider, for instance, the cluster containing the

largest network with 708 nodes. The adjusted SBM has 29 blocks, which is explained by

the very large network size. The question is whether this SBM is a kind of finer version of

the SBM of the dominant cluster or whether there is a significant difference. Here block

proportions lie in [0.004, 0.14], two third of the connectivity parameters γk,l are lower than

0.01 and the maximal value is 0.91. Furthermore, 53% of the species are vegetarians,

24% are predators and 7% are in-between. The remaining 16% are networks with very few

interactions (din
k ≤ 0.015, dout

k ≤ 0.015) and such inactive species are absent in the dominant

cluster. It is clear that this network structure is very different from the dominant cluster.

It is instructive to represent the clustering in connecection with the geographic location

of the foodwebs (Figure 6). Foodwebs of the dominant cluster (lightblue circles) are present

all over the globe and correspond indeed to some global or universal structure of ecosystems.

Interestingly, also the intermediate clusters are all spread over several continents. This

means that different types of graph topology are not related to a particular geographic

region. We conclude that the results of our algorithm provide many insights on the structure

of foodwebs and raise new questions in ecology.

7 Conclusion

We have developed an approach to cluster networks according to their graph topologies. We

illustrated that a model-based approach, where a description of each cluster is computed,
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outperforms methods based only on pairwise distances between networks, as we inherently

take into account the estimation uncertainty. Another advantage of our hierarchical algo-

rithm is the automated selection of the number of clusters, which is done in a single run of

the algorithm contrary to EM-type algorithms, where different numbers of clusters must

be explored separately. Moreover, a finite mixture of SBMs is a highly interpretable model,

which is important in practical applications. Finally, we propose a new tool to match the

block labels of two SBMs, which may be useful in other contexts.

8 Appendix

8.1 Expression of ICLsbm

For simplicity, hyperparameters for all priors are set to identical values, that is, α = αk,

η = ηk,l and ζ = ζk,l for (k, l) ∈ JKK2. Using the one-hot encoding for node labels

Z
(m)
i = (Z

(m)
i,1 , . . . , Z

(m)
i,K ) ∈ {0, 1}K , useful count statistics for the m-th network are

s
(m)
k =

∑
i∈JnK

Z
(m)
i,k , a

(m)
k,l =

∑
i 6=j

Z
(m)
i,k Z

(m)
j,l A

(m)
i,j , b

(m)
k,l =

∑
i 6=j

Z
(m)
i,k Z

(m)
j,l (1− A(m)

i,j ), (8)

where s
(m)
k is the number of vertices assigned to block k, a

(m)
k,l the number of edges that link

a vertex of block k with a vertex in block l and b
(m)
k,l is the number of pairs with a vertex

of block k and a vertex in block l that are not connected. Moreover, denote

sk =
∑

m∈JMK

s
(m)
k , ak,l =

∑
m∈JMK

a
(m)
k,l , bk,l =

∑
m∈JMK

b
(m)
k,l .

With these notations at hand, the ICL is given by

ICLsbm(A,Z) =
∑

(k,l)∈∈JKK2
log

(
Γ(η + ak,l)Γ(ζ + bk,l)

Γ(η + ζ + ak,l + bk,l)

)
+
∑
k∈JKK

log (Γ(α + sk)) (9)

+K2 log

(
Γ(η + ζ)

Γ(η)Γ(ζ)

)
+ log

(
Γ(Kα)

Γ (Kα +
∑

m n
(m))

)
−K log (Γ(α)) .
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8.2 Computation of ∆c,c′

In this section it is shown how to evaluate ∆c,c′ efficiently. Denote Uc∪c′ the cluster labels

afte merging clusters c and c′, that is, U
(m)
c∪c′ = min{c, c′} if m ∈ Ic ∪ Ic′ and U

(m)
c∪c′ = U (m)

otherwise. Likewise, denote Zc∪c′ the node labels after aggregation and relabeling with

Z(`)
c∪c′ = {σ̂`(Z(j)), j ∈ I`} for ` ∈ {c, c′}, where σ̂` are the permutations that match the

block labels. For convenience, denote by β(x, y) = log
(

Γ(x)Γ(y)
Γ(x+y)

)
the logarithm of the Beta

function of x and y. Moreover, for any c ∈ JCK, (k, l) ∈ JKcK, denote

s
(c)
k =

∑
m∈Ic

s
(m)
k , a

(c)
k,l =

∑
m∈Ic

a
(m)
k,l , b

(c)
k,l =

∑
m∈Ic

b
(m)
k,l .

Then ∆c,c′ = ICLmix(A,Uc∪c′ ,Zc∪c′)− ICLmix(A,U ,Z) is given by

∆c,c′ =
∑
(k,`)

β
(
η + a

(c)

σ̂−1
c (k),σ̂−1

c (l)
+ a

(c′)

σ̂−1
c′ (k),σ̂−1

c′ (l)
+ b

(c)

σ̂−1
c (k),σ̂−1

c (l)
+ b

(c′)

σ̂−1
c′ (k),σ̂−1

c′ (l)

)
−
∑
(k,`)

β
(
η + a

(c)
k,l , ζ + b

(c)
k,l

)
−
∑
(k,`)

β
(
η + a

(c′)
k,l , ζ + b

(c′)
k,l

)
(10)

+
∑
k

log
(

Γ(α + s
(c)

σ̂−1
c (k)

+ s
(c′)

σ̂−1
c′ (k)

)
)
− log

(
Γ(α + s

(c)
k )
)
− log

(
Γ(α + s

(c′)
k )
)

+ log

Γ(Kcα +
∑

m∈Ic n
(m))Γ(Kc′α +

∑
m∈Ic′

n(m))

Γ
(
Kmaxα +

∑
m∈Ic∪Ic′

n(m)
)

+ log

(
Γ(λ+ |Ic|+ |Ic′|)

Γ(λ+ |Ic|)Γ(λ+ |Ic′|)

)

+K2
minβ(η, ζ) +Kmin log (Γ(α))

+ β ((C − 1)λ, λ) + log

(
Γ(Cλ+M)

Γ((C − 1)λ+M)

)
,

where Kmax = max{Kc, Kc′} and Kmin = min{Kc, Kc′} are the maximal and minimal

number of blocks in the clusters c and c′. An inspection of the above expression reveals

that only the last two terms depend on the current number of clusters C. In addition, the

other terms do not change from one iteration to another if both c and c′ have not been

changed in the previous iteration, that is, if none of them is the result of the latest cluster

aggregation. Hence, for those clusters the new value of ∆c,c′ is the previous value plus
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constant κC defined as

κC = −β (Cλ, λ)− log

(
Γ((C + 1)λ+M)

Γ(Cλ+M)

)
+ β ((C − 1)λ, λ) + log

(
Γ(Cλ+M)

Γ((C − 1)λ+M)

)
,

where we use that the number C of clusters has diminished by 1 compared to the previ-

ous iteration. In short, for all pairs of clusters (c, c′) where both clusters have remained

unchanged in the previous iteration, the update is simply

∆new
c,c′ = ∆old

c,c′ + κC .

For all pairs (c, c′), where one of the clusters has been obtained by the last cluster

aggregation, ∆c,c′ is computed according to (10). Moreover, we can avoid the computation

of the statistics s
(m)
k , a

(m)
k,l , b

(m)
k,l for all m at every iteration by storing them during the entire

algorithm and only performing local updates when necessary.

8.3 Parameter estimates

The MAP estimate of the SBM parameters associated with cluster c is given by

π̂
(c)
k =

∑
m∈Ic s

(m)
k + α− 1∑

m∈Ic n
(m)
k +K(α− 1)

, γ̂
(c)
k,` =

∑
m∈Ic a

(m)
k,` + η − 1∑

m∈Ic(a
(m)
k,` + b

(m)
k,` ) + η + ζ − 2

, k, ` ∈ JKcK. (11)

8.4 Update of nodes labels

After the aggregation of two clusters and relabeling the node, we can further improve node

labels Z(c) of the new cluster c by maximizing the associated ICL criterion ICLsbm. We

propose an adaptation of the algorithm by Côme and Latouche (2015), that fits a SBM to

a single network, to multiple networks. Indeed, the proposed procedure is an algorithm to

adjust one SBM to a collection of i.i.d. networks. The idea is to randomly choose a vertex

and search its best block assignment in terms of the ICL. So, one by one, node labels

are changed until no other swap would further improve the ICL. In the context of graph
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clustering, the convergence of this procedure is fast, since the current node labels are very

good initial points.

For notational convenience, we drop superscript (c) of A(c) and Z(c) and simply write A

and Z. All computations in this section only involve quantities related to the cluster under

consideration. Now, an iteration of the procedure consists of the following steps. First,

select a network indice, say m∗ ∈ JMK, and one of its vertices, say i∗ ∈ Jn(m)K. Denote

g = Z
(m∗)
i∗ the current block assignment of i∗. For any block h ∈ JKK compute the impact

on the ICL of moving node i∗ to block h, that is,

∆→hm∗,i∗ = ICLsbm(A,Z→hm∗,i∗)− ICLsbm(A,Z),

where Z denotes the current node labels with Z
(m∗)
i∗ = g, and Z→hm∗,i∗ the labels after moving

node i∗ to block h, that is, Z
(m∗)
i∗ = h. Finally, we choose the best block assignment as

h∗ = arg max
h∈JKK

∆→hm∗,i∗ ,

and set Z
(m∗)
i∗ = h∗.

For the efficient computation of the ICL changes ∆→hm∗,i∗ , two cases have to be distin-

guished: moving node i∗ to block h (i) does not empty block g; (ii) does empty block g

and so the number of blocks K diminishes. But first, let us have a look on the evolution

of the count statistics s
(m∗)
k , a

(m∗)
k,l and b

(m∗)
k,l induced by the swap.

Changes in the statistics. Let s
(m∗)
k be the count statistic before the swap and ~s

(m∗)
k

its value after the swap. We apply the same notation for all other statistics. Clearly,

~s
(m∗)
g = s

(m∗)
g − 1 and ~s

(m∗)
h = s

(m∗)
h + 1, while the other terms remain unchanged. Define

δk,·i∗ =
∑
i 6=i∗

Z
(m∗)
i,k A

(m∗)
i,i∗ , δ`,i∗· =

∑
j 6=i∗

Z
(m∗)
j,` A

(m∗)
i∗,j .
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Algorithm 2: ICL maximization algorithm for fitting one SBM to multiple net-

works
Input: Set of networks A, initial node labels Z.

while not converged do

Select a network m∗ ∈ JMK and one of its vertices i∗ ∈ Jn(m∗)K.

for h ∈ JKK do

Compute the impact ∆→hm∗,i∗ on the ICL of moving node i∗ to block h.

end

Determine the best block assignment h∗ = arg maxh∈JKK ∆→hm∗,i∗ .

Set Z
(m∗)
i∗ = h∗.

end

Output: Updated node labels Z.

Then, for any k, ` ∈ JKK,

~a
(m∗)
k,` = a

(m∗)
k,` − 1k=gδ`,i∗· + 1k=hδ`,i∗· − 1`=gδk,·i∗ + 1`=hδk,·i∗ .

When considering the matrix (a
(m∗)
k,` )k,`, only the g-th and h-th row and the g-th and h-th

column change when moving i∗ from g to h. We introduce the number of possible dyads

from nodes in block k to nodes in block ` in graph m defined as

r
(m)
k,` =

∑
i 6=j

Z
(m)
i,k Z

(m)
j,` =


s

(m)
k s

(m)
` if k 6= `

s
(m)
k (s

(m)
k − 1) if k = `

Then b
(m)
k,` = r

(m)
k,` − a

(m)
k,` and

~r
(m∗)
k,` = r

(m∗)
k,` − s

(m∗)
` 1k=g + s

(m∗)
` 1k=h − s(m∗)

k 1`=g + s
(m∗)
k 1`=h + 21k=g,`=g − 1k=g,`=h − 1k=h,`=g.

and ~b
(m∗)
k,l = ~r

(m∗)
k,l − ~a

(m∗)
k,l . For any m 6= m∗, the statistics remain unchanged, that is,

~a
(m)
k,l = a

(m)
k,l , ~b

(m)
k,l = b

(m)
k,l and ~r

(m)
k,l = r

(m)
k,l . Finally, we define function Ψ : R+ × Z→ R as

Ψ(a, z) = log

(
Γ(a+ z)

Γ(a)

)
1{a+ z > 0}.
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Algorithm 3: Graph cluster aggregation

Input: Two sets of networks A(c) and A(c′) with associated node labels Z(c) and

Z(c′) and SBM parameters (π(c),γ(c)) and (π(c′),γ(c′)).

Step 1 Find the permutations σ̂c and σ̂c′ as described in Section 5.4 giving the

best match of blocks of (π(c),γ(c)) and (π(c′),γ(c′)).

Step 2 Reorder node labels: Z(c) ← σ̂c(Z(c)) and Z(c′) ← σ̂c′(Z(c′)).

Step 3 Update the node labels Zc∪c′ by the ICL maximization Algorithm 2.

Step 4 Compute the SBM parameter (π(c∪c′),γ(c∪c′)) associated with Ac∪c′ and

Zc∪c′ according to (11).

Output: Node labels Zc∪c′ and parameter (π(c∪c′),γ(c∪c′)) for the new cluster.

First case: K does not change. Suppose that i∗ is not the last vertex in block g, that

is,
∑

m

∑
i Z

(m)
i,g > 1. Then, moving node i∗ to another block h does not empty block g and

the number of blocks K remains unchanged. In this case, the ICL variation is given by

∆→hm∗,i∗ =
∑

(k,`)∈Ig,h

{
log

(
Γ(η +

∑
m~a

(m)
k,l )Γ(ζ +

∑
m
~b

(m)
k,l )

Γ(η + ζ +
∑

m ~r
(m)
k,l )

)

− log

(
Γ(η +

∑
m a

(m)
k,l )Γ(ζ +

∑
m b

(m)
k,l )

Γ(η + ζ +
∑

m r
(m)
k,l )

)}

+
∑

k∈{g,h}

{
log

(
Γ(α +

∑
m

~s
(m)
k )

)
− log

(
Γ(α +

∑
m

s
(m)
k )

)}

=
∑

(k,`)∈Ig,h

{
Ψ

(
η +

∑
m

a
(m)
k,l ,~a

(m∗)
k,l − a

(m∗)
k,l

)
+ Ψ

(
ζ +

∑
m

b
(m)
k,l ,

~b
(m∗)
k,l − b

(m∗)
k,l

)

−Ψ

(
η + ζ +

∑
m

r
(m)
k,l , ~r

(m∗)
k,l − r

(m∗)
k,l

)}
+ log

(
α +

∑
m s

(m)
h

α +
∑

m s
(m)
g − 1

)
, (12)

where Ig,h = {(k, `) ∈ JKK2, k ∈ {g, h} or ` ∈ {g, h}} .

Second case: K changes. Moving the last vertex i∗ to another block, diminishes the

number K of blocks by one. Before giving the formula of ∆→hm∗,i∗ in this case, we have a
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closer look on the ICL criterion to better understand its dependency on the model size K.

Let us compare the value of the ICL for a SBM with K blocks containing an empty block

to the ICL value of the same data, but with the SBM where the empty block is deleted,

that is, a SBM with K − 1 blocks. The relation is given by

ICLsbm(K) = ICLsbm(K − 1) + log
Γ(Kα)

Γ((K − 1)α)
+ log

Γ((K − 1)α +
∑

m n
(m))

Γ(Kα +
∑

m n
(m))

. (13)

The second and third term on the right-hand side are a penalty or the price to pay for using

a larger model containing an empty block. Thus, by maximizing the ICL, parsimonious

models are automatically favored. Now, the change of the ICL ∆→hm∗,i∗ is exactly the same

term as in (12) plus the penalty term given in (13).

The whole procedure to update node labels is summarized in Algorithm 2. Moreover,

Algorithm 3 presents all steps of the aggregation of two clusters.
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