Enhancing embedded AI-based object detection using multi-view approach
Résumé
Object detection based on convolutional neural network (CNN) is widely used in multitude emergent applications. Yet, the deployment of CNNs on embedded devices at the edge with reduced resources and power budget poses a real challenge. In this paper, we address this issue by enhancing the detection performance without impacting the inference speed. We investigate the use of multi-view for the same scene to achieve better detection performance. A novel system of distributed smart cameras is proposed where each camera integrates a CNN for detection. Implementation results show that using light networks on the distributed cameras can lead to better detection performance and a reduction in the overall consumed power.
Fichier principal
Enhancing_embedded_AI_based_object_detection_using_multi_view_approach_Final.pdf (3.37 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|