
HAL Id: hal-03836472
https://hal.science/hal-03836472

Submitted on 2 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing embedded AI-based object detection using
multi-view approach

Zijie Ning, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet

To cite this version:
Zijie Ning, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet. Enhancing embedded AI-based
object detection using multi-view approach. RSP 2022: IEEE International Workshop on Rapid
System Prototyping, part of Embedded Systems Week (ESWEEK), Oct 2022, Shanghai, China.
�10.1109/RSP57251.2022.10039026�. �hal-03836472�

https://hal.science/hal-03836472
https://hal.archives-ouvertes.fr

Enhancing embedded AI-based object detection
using multi-view approach

Z. Ning†, M. Rizk†§, A. Baghdadi† and J-Ph. Diguet‡
†IMT Atlantique, Lab-STICC UMR CNRS 6285, Brest, France

‡CNRS, IRL CROSSING, Adelaide, Australia
§ Lebanese International University, CCE Department, Lebanon

zijie.ning@imt-atlantique.net

Abstract—Object detection based on convolutional neural net-
work (CNN) is widely used in multitude emergent applications.
Yet, the deployment of CNNs on embedded devices at the
edge with reduced resources and power budget poses a real
challenge. In this paper, we address this issue by enhancing the
detection performance without impacting the inference speed. We
investigate the use of multi-view for the same scene to achieve
better detection performance. A novel system of distributed
smart cameras is proposed where each camera integrates a
CNN for detection. Implementation results show that using light
networks on the distributed cameras can lead to better detection
performance and a reduction in the overall consumed power.

Index Terms—Multi-view, Object detection, Embedded edge
device

I. INTRODUCTION

Object detection is widely used in several modern appli-
cation fields such as autonomous vehicles, medical imaging,
crowd detection, exploration, etc. Currently, artificial intelli-
gence (AI) is the key trend to detect objects in images and
videos. CNN architectures allow the detection of multiple
objects in a scene, yet at a cost of high computational resources
and power consumption. This fact creates a challenge when
deploying CNNs on embedded devices with limited resources
and power budget especially for applications that require real-
time inference. Other parameters such as the size and weight of
the computational platform as well as its power consumption
are critical for trendy applications such as wearable devices,
drones and autonomous robots.

Mainly, compared to light neural networks, dense networks
lead to higher detection performance in terms of accuracy and
precision but at the cost of inference speed. Often, systems
integrating CNN-based detection methods have a trade-off
between inference rate and detection performance. Several
techniques have been recently proposed to optimize the trained
networks towards embedded devices. These techniques are
highly dependent on the target hardware, and usually produce
degraded detection performance. In addition, the training cost
in terms of power and utilized resources increases with the
size of the target network.

In this work we address this issue with a totally new
approach that makes use of multi-view of the same scene
to increase the detection accuracy. We propose a system of
distributed nodes, where each node integrates a camera and

an embedded device that performs inference at the edge using
light CNNs. The distributed nodes collaborate in order to
achieve best predictions with reduced overall power consump-
tion. Fig. 1 illustrates the proposed system for the application
of detecting ships. The distributed nodes record the same
object with different angles of view so that each one has
its own prediction. Then, the predictions are all gathered and
the final decision is taken. Note that in this case the nodes
share only the detection information rather than the captured
images. Hence, privacy, security and transmission bandwidth
are conserved.

Fig. 1. Boat detected using a multi-view network

In addition to enhancing the detection, using multi-view
concept during inference helps in avoiding occlusion, which
can deteriorate the predictions. For example, as shown in
Fig. 2, the pedestrian is hidden by a car. This generally
brings a loss in the prediction confidence score. Multi-view
can enhance the training of the network. Training only on one
representation of an object can bring a bias, which damages
the generality of the classifier. For instance, if the classifier
is trained only on images of the front side of an object, it
will be difficult for it to recognize the object from images of
the backside. Therefore, the addition of this multi-view feature
allows the classifier to train on vast various representations of
an object, which brings a true added value.

II. RELATED WORK

Few research works have addressed object detection and
classification in the context of multi-view. Arsalan Mousavian
et al. [1] have proposed a method to construct 3D bounding
boxes based on a single image and geometric relationships of979-8-3503-9851-9/22/$31.00 ©2022 IEEE

Fig. 2. Pedestrian hidden by a car

the object, which can perform 3D object detection and pose
estimation from a single image. Their main contribution is
limited to the prediction of a 3D bounding box from a 2D
one. The method proposed in [2] has been able to accurately
estimate 3D bounding boxes for even small objects, using both
mature 2D object detectors and advanced 3D deep learning
for object localization. The authors in [3] have proposed
a framework for multi-camera 3D object detection called
DETR3D, which extracts 2D features from multiple camera
images and then uses a transformation matrix to relate 3D
positions to multi-view images. Recently, the work proposed in
[4] has used multi-view approach during training on a skier’s
pose segmentation system, to address the lack of large datasets.

To the best of our knowledge, no published work has used
a multi-view approach in the detection phase, and no one has
investigated the enhancement of multi-view approach on the
performance of object detection system.

III. METHODS

A. Available multi-view datasets

In order to apply our proposed idea of using multiple views,
we need a dataset that includes several images for the same
scene, which are captured from different points of view. As a
starting point, we have investigated the published datasets.

The well known COCO (Common Objects in Context) [5] is
a dataset of 80 common objects provided by Microsoft and has
been widely used as a baseline for object detection problems.
The amount of data in this dataset is sufficient for a general
target detection system training task. However, each object in
this dataset usually appears only once per scene and there is
no information about multiple views.

Several research works have already provided multi-
perspective datasets. The multi-view car dataset provided by
EPFL [6] includes 2000 images of 20 cars with different
positions and angles of view. However, all the images have the
same background and constant light intensity. In our context
above, this amount of data is not big enough for the training. In
addition, the stated images’ identical properties tend to cause
overfitting of the model.

Another dataset, ELKI Multi-View Clustering Data Sets [7],
from ALOI (Amsterdam Library of Object Images) contains
1000 objects and 100 photos for each object. The variables
in this dataset contain different angles with different light as

(a) book (b) shoe

Fig. 3. Example of objects

well as the RGB information. However, this dataset uses only
black background which has the same default as the previous
one. They have only one object for each class, so they may
not be capable of making good decisions on other objects of
the same class.

The PASMVS dataset [8] is generated with scripts, which
do not include images, but the code and materials used to
reproduce 18,000 scenes and backgrounds. It has only four
classes, including imaginary animals which are not usable in
real-life detection.

There are also other multi-view datasets that we don’t
mention here as they are not convenient in our case. Therefore,
we decided to create our own dataset.

B. Creation of multi-view dataset

To build a multi-view dataset, we firstly define 7 classes to
be included: mug, shoe, keyboard, wallet, pencil case, book,
and mouse. For each class, we define its coordinate system to
express the object’s orientation by yaw, pitch, and roll. The
mugs have their centers as the origin, the handle as the X-
axis, the Z-axis facing outward, and the left-handed system
to establish the corresponding Y-axis. The origin of the shoe
is defined at the heel, with the X-axis along the body of the
shoe. We define the short side of the keyboard as the Y-axis
and the long side as the X-axis. When the opening of the
wallet is on the right side, the coordinate origin of the wallet
is defined as the vertex in the lower left corner. Along the
bottom edge to the right is the X-axis and up is the Y-axis.
For the pencil case, the origin is defined as the position of the
zipper lock when it is closed, and the Y-axis is along the long
axis. We define the long side of the book as the Y-axis and
the short side as the X-axis. The definition of the mouse axis
is somewhat special, with the scroll wheel as the origin, when
placed forward, pointing to the left for the Y-axis, pointing
forward for the X-axis.

We choose three different rooms and fix several cameras at
different locations. Different scenes are generated by changing
the types, angles, and positions of the placed objects and
changing the lighting conditions of the rooms. We pre-define
more than ten positions in each room where objects could
be placed, and use a randomized method to generate a table
containing the placement of objects corresponding to the
scenes. Then we manually enter the room to place the items

435

606
503

388 370

687
606

0
100
200
300
400
500
600
700
800

Class

Instances per class

55

1520

640

265

0
200
400
600
800

1000
1200
1400
1600

0 1 2 3

Number of objects per image

Number of images

Fig. 4. Statistic of the constructed dataset

Fig. 5. Heat map of object position (high occurrence in green, lower in blue)

according to the generated table and then use a program to
control all cameras to take pictures at the same time and store
the images as png files. After the shooting has been completed,
we manually annotate them using CVAT [9]. At the same time,
blurring is used to erase parts of the images that might affect
the learning process, such as the shoes worn by the person
taking the picture.

Fig. 4 shows the number of times each class appears in
the dataset and the statistics of the number of objects in each
image. Most of the images (1520) have only one object, others
(640) have two objects, a few (265) have three objects, and
a very few (55) have no objects and are used as background
images for training.

In most cases the objects are placed at different positions
on the ground, whereas sometimes we use objects outside our
defined classes (e.g. cardboard boxes) to increase the height
of the object positions. Fig 5 shows the heat map of the object
positions. Most of the objects are placed in the center of the
view (green area). The blue color corresponds to the area with
less number of objects.

Fig. 6 shows some example images from the dataset.

C. Baseline experiment

YOLO [10] is a state-of-the-art CNN-based model for object
detection, with great advantages in accuracy and speed. It is
the acronym of “You Only Look Once”, which means that you
only need to browse the image once to recognize the class and
location of the objects in the picture. It also offers pre-trained
models on the COCO dataset. YOLOv5 [11] is an extension of
the YOLO series, and we can also consider it as an improved
work based on YOLOv3 [12] and YOLOv4 [13]. Although

there is no corresponding paper description for YOLOv5, the
authors are actively working on this open source project and
have gained a lot of experience and advantages in practice to-
gether with other users. The model uses the PyTorch architec-
ture, which is very extensible and convenient. Five versions are
given in the official YOLOv5 code, namely YOLOv5n(nano),
YOLOv5s(small), YOLOv5m(medium), YOLOv5l(large), and
YOLOv5x(extreme). These different variants represent a good
trade-off between accuracy and speed, making YOLOv5 con-
venient for users to implement.

We select a number of scenes in the approximate ratio of
3:5:4 based on the amount of data in the three rooms, then
choose the images recorded by all cameras in these scenes as
the test set so that the number of images in the test set is about
20% of the total. Another 80 scenes containing 8 cameras are
selected from the total dataset, and these images are taken out
and kept as the test set for the Camera position experiment
that will be presented later. The remaining scenes are divided
into training and validation sets according to the ratio 3:1, and
all images of the same scene always belong to the same set.

In order to improve the training efficiency, we have con-
ducted research on hyperparameters by doing a sweep using
Wandb [14]. For each set of hyperparameters, 5 training
cycles have been conducted to observe the training effect.
Then we have discarded the unreasonable and undesirable
hyperparameter combinations and selected the ones with good
training effects to continue the training for 300 complete
training cycles.

After the training is completed, we select the best-
performing weights for each network size during the training
process and test the model performance on the test set.

All trainings are done with a computer equipped with
NVIDIA GeForce GTX 1060 6GB. All subsequent experi-
ments were performed on the same machine.

D. Multi-view experiment

In this experiment, we want to verify that multiple cameras
from different views working together can improve prediction
accuracy. Unlike the previous experiment, we now ask the
system to give predictions for one scene at a time, instead
of predicting each image individually. In our example, each
scene contains four images seen by four cameras at different
locations. Therefore, we run four programs simultaneously,
each using the model trained in the previous experiment, with
four images of different viewpoint of the same scene as input.
Each program gives all the bounding boxes above the set
threshold and their corresponding prediction categories and
confidence, and then the system considers these predictions
together to give the final prediction.

Since each camera observes from a different angles of view,
we first transform all the bounding boxes to the same plane as
shown in Fig. 7(a), using Homography Transformation [15].
This is a matrix transformation that allows us to project images
obtained from cameras into the same coordinate system. This
approach has been widely used in the field of computer vision.

Fig. 6. Examples from the constructed dataset

Algorithm 1 Algorithm for merging bounding boxes and
predictions
Input: Some combinations of bounding box and prediction

from different nodes
1: Remove the bounding boxes with confidence < threshold1

2: repeat
3: B = untreated bounding box with the highest confidence

4: for bounding box B′ in untreated bounding boxes do
5: Calculate IOU of B and B′

6: if IOU > threshold2 then
7: Remove the bounding box of B′

8: Remove B′ from the list of untreated bounding
boxes

9: Add the predictions of B′ to B
10: end if
11: end for
12: until No untreated bounding box left
Output: Merged bounding boxes with its corresponding pre-

dictions

For each object, each camera may provide a bounding box,
so the object will have multiple bounding boxes. We want
to merge the bounding boxes so that all predictions for one
object can be treated together. Inspired by the NMS (non-
maximum suppression) algorithm that has been used in the
YOLO [10], we propose a similar method as described in
Algorithm 1. Each subsystem outputs all bounding boxes
above the threshold, projecting them onto the plane where

(a) Homography transform

0
0.8

1
0.6

0
0.7

2
0.8

0
0.8
1
0.6
0
0.7

2
0.8

(b) Bounding boxes before and after merge

Fig. 7. Pre-processing of node output results

the object is located. Then, the merge algorithm is applied
to these projected bounding boxes together. If some of these
boxes are merged, then their corresponding predictions are also
merged and treated together in later process. Fig. 7(b) shows
the bounding boxes before and after merge.

All the predictions from the nodes are pre-processed to
obtain some bounding boxes, each of which also contains
several predicted categories and corresponding confidence
scores.

Now we can focus on verifying that multi-view can improve
the accuracy of prediction. For that, we consider first a simple
situation, in which there is only one object within each scene
and each camera sees only this one object, i.e., all the predicted
bounding boxes belong to this only object. For each scene,
we first compare the prediction of each node with the true
value to get the accuracy of the prediction for the images.
Then we combine the predictions of all nodes to give the final
prediction and compare this prediction with the true value to
get the accuracy of the prediction for the scene.

We currently propose several methods to give the final

TABLE I
PREDICTION EXAMPLE OF A 7 CAMERAS SYSTEM

cam0 cam1 cam2 cam3 cam4 cam5 cam6
Prediction 0 0 1 1 2 2 2
Confidence 0.8 0.2 0.7 0.5 0.5 0.4 0.4

prediction: the maximum value method, the average method,
and the summation method. The maximum value method
means that the prediction with the highest confidence is
directly selected as the final prediction. The average method
and the summation method average or sum the confidence of
all predictions of the same class, respectively, and then select
the largest one as the final prediction. In practice, these three
methods may yield different final predictions, for example, in
the 7 cameras system example shown in the Table I, using the
three methods will yield 0, 1, 2 as the prediction respectively.

The overall process1 of this multi-view experiment is shown
in Fig. 8.

Scene 𝒊Image 0 Image 1 Image 2 Image 3

Groupes of
bbox & pred

Groupes of
bbox & pred

Groupes of
bbox & pred

Groupes of
bbox & pred

Projection to the same plane

Merge bbox & pred for each object

Calculate
image

accuracy

……

object 0 object 1 object 𝒊
Calculate

scene
accuracy

Fig. 8. Process of multi-view experiment

E. Camera position experiment

This experiment is designed to investigate the effect of
camera placement on accuracy in the multi-view approach.
We want to demonstrate that the camera placement affects the
correct prediction rate. In other words, it is the multiple views
that improve the correct prediction rate, not simply the increase
in the number of cameras that brings the improvement.

We use scenes with 8 cameras as the test set for this exper-
iment, which have been selected when segmenting the dataset
before training and have not been used as the training or
validation set. The relative relationship between the 8 cameras
and the zone of objects is shown in Fig. 9. Four of the cameras
are placed on the same table as the objects, and the other four
cameras are placed higher than the table. For each scene, we
select images taken by four of the eight cameras as input,
give the final output using the same method as in the multi-
view experiment, and then repeat the process by replacing
the selected camera combination. Finally, we compare the
prediction accuracy of the different camera combinations.

1Code published at https://github.com/mm0806son/Enhance embedded
object detection system using multi view

Fig. 9. Cameras’ position

IV. RESULTS

A. Baseline experiment

In the baseline experiment, we verify the training and
inference of different size models of YOLOv5 and record their
accuracy on the multi-view dataset we produced. The results
are considered as a reference for subsequent experiments. At
the same time, we confirm that using smaller size models
is more advantageous in terms of energy consumption and
memory requirements, and thus more suitable for embedded
systems.

We have trained 300 epochs on the training set for 5 models
of different sizes and then used the validation set to evaluate
them. The size of the models and their performance on the
validation set are shown in Table II2. In general, the larger is
the model, the better is the performance, yet the training and
inference time is longer. The evaluation metrics are shown in
Fig. 10.

TABLE II
RESULTS OF BASELINE EXPERIMENT

Model Params
(M)

FLOPs
@640 (B)

Speed
(ms) mAP 0.5 mAP 0.5:0.95

YOLOv5x 86.7 205.7 43.7 0.9760 0.7913
YOLOv5l 46.5 109.1 23.7 0.9730 0.7707

YOLOv5m 21.2 49.0 13.9 0.9681 0.7618
YOLOv5s 7.2 16.5 5.6 0.9583 0.7164
YOLOv5n 1.9 4.5 2.6 0.9349 0.6394

The GPU usage during training is shown in Fig. 11. For
the three smaller models (i.e., medium, small, nano) we have
used 16 as the batch size. For the two larger models (i.e.,
extreme, large) we have used 4 as the batch size due to the
GPU memory limitation. The training of the larger models
consumes 1.5× to 2× the energy required to train the smaller
models and takes up a large amount of memory, placing higher
demands on the GPU. Smaller models are also faster to train
and require less computing power from the hardware.

2Visualised results can be found at https://wandb.ai/smart cam/
Enhance embedded object detection system using multi view?workspace=
user-mm0806son

https://github.com/mm0806son/Enhance_embedded_object_detection_system_using_multi_view
https://github.com/mm0806son/Enhance_embedded_object_detection_system_using_multi_view
https://wandb.ai/smart_cam/Enhance_embedded_object_detection_system_using_multi_view?workspace=user-mm0806son
https://wandb.ai/smart_cam/Enhance_embedded_object_detection_system_using_multi_view?workspace=user-mm0806son
https://wandb.ai/smart_cam/Enhance_embedded_object_detection_system_using_multi_view?workspace=user-mm0806son

(a) Precision (b) Recall

(c) mAP 0.5 (d) mAP 0.5:0.95

Fig. 10. Results of baseline experiment

B. Multi-view experiment

In the multi-view experiment, we use each model separately
for image prediction, and then different strategies for scene
prediction. The results of the experiment are shown in Ta-
ble III.

All three methods described in Section III-D to give the
final multi-view prediction have achieved good results, greatly
improving the correctness of inference and enabling small
models to outperform large ones. In the baseline experiment,
we investigate the energy consumption (Fig. 11(a)), GPU
memory requirements (Fig. 11(b)) of different models. We
used 4 nano (YOLOv5n) models for scene prediction, and
their total number of parameters and computation is about the
same as 1 small model, yet they perform better. These 4 nano
models can even outperform 1 extreme (YOLOv5x) model,
while having only one-tenth of its number of parameters and
executes 20× faster. It is also noticed from the Fig. 11(a)
that the larger models (i.e. x,l) consume about twice as much
energy as the smaller models when their batch size is a quarter
of that of the smaller models (i.e. s, n). Therefore, under
our hardware conditions, using 4 small models saves about
half the energy. Using the multi-view system approach allows
to achieve better detection performance while requiring much
less computational power.

TABLE III
RESULTS OF MULTI-VIEW EXPERIMENT

Model Prediction
by image

Prediction by scene
Max Average Sum

YOLOv5x 0.821 0.917 0.917 0.933
YOLOv5l 0.835 0.933 0.917 0.933

YOLOv5m 0.798 0.917 0.908 0.925
YOLOv5s 0.792 0.908 0.900 0.833
YOLOv5n 0.767 0.925 0.933 0.900

TABLE IV
SYSTEM ACCURACY OF CAMERA POSITION EXPERIMENT

Model Cams Prediction
by image

Prediction by scene
Max Average Sum

YOLOv5x 0,1,3,7 0.635 0.763 0.775 0.763
1,2,4,5 0.763 0.775 0.763

YOLOv5l 0,1,3,7 0.641 0.813 0.788 0.763
1,2,4,5 0.813 0.813 0.800

YOLOv5m 0,1,3,7 0.598 0.733 0.725 0.750
1,2,4,5 0.763 0.763 0.763

YOLOv5s 0,1,3,7 0.575 0.688 0.675 0.663
1,2,4,5 0.725 0.713 0.700

YOLOv5n 0,1,3,7 0.528 0.713 0.713 0.738
1,2,4,5 0.588 0.575 0.600

C. Camera position experiment

Regarding this third experiment, we choose the cameras
0,1,3,7 as the first group and the cameras 1,2,4,5 as the second
group. The first group of cameras is able to observe around the
object, while that of the second group gather on one side of
the object. The accuracy of each model for detection alone on
images and for detection using multi-view approach on scenes
is shown in Table IV.

When using the smallest nano network, we find that camera
placement has a significant impact on performance. Regardless
of which of the three strategies is used, the accuracy of the two
groups of cameras differs by about 0.13. When using the other
larger networks, the performance of the two groups of cameras
fluctuates, with no one group being able to significantly
outperform the other, but both outperforming the predictions
made for each image individually.

It can also be noted from the results that until the YOLOv5l
model, using a more complex model helps significantly for
the second group of cameras, as the large model has a 30%
improvement in accuracy over the nano model. This is very
likely due to the fact that the images observed by these
cameras did not have enough details to enable a very small
network to perform accurate decisions.

The results show that the improvement in performance by
changing the position can be comparable to the improvement
by using a larger network. If the cameras can be placed
in the right position to capture more details at the time of
observation, its prediction results will be better. This makes a
lot of sense for saving energy and computational power.

V. CONCLUSION

In this paper, we present the idea of using multiple sub-
systems with different views to work together to improve
the overall accuracy of an object detection system. To that
end, we have designed and collected a multi-viewpoint dataset
on our own, containing several common objects in an office
environment. For each scene in this dataset, we have multiple
images from different angles of view to validate multi-view
related experiments.

Using this dataset, we have conducted three experiments:
baseline, multi-view, and camera position. The performance,
energy consumption, and computational power requirements
of different models of YOLOv5 have been measured. Smaller

(a) GPU power usage (b) GPU memory usage

Fig. 11. Results of baseline experiment

YOLOv5 models have less demand and faster training and
inference, yet perform relatively worse. In the multi-view
experiments, we have presented the complete flow of how the
multi-view object detection system works. The predictions of
the nodes are first preprocessed, and then the final prediction
of the scene is obtained using three simple strategies: max,
average, and sum. We found that a distributed system using
several small models has been able to greatly improve detec-
tion performance, outperforming large models. This approach
requires less computational power and is much faster. In
the camera placement experiments, we have found that the
location of the cameras can have a significant impact on
system performance, especially for small networks. A good
placement of the cameras can achieve an enhancement effect
similar to the use of large models.

Overall, our work demonstrates that using multi-view nodes
to form a global object detection system can save computa-
tional power and increase speed. This has great interest for
models deployed on edge and embedded systems. Sometimes
people also want to build prototypes first with few hardware
resources. This approach can help them get reliable predictions
before committing more resources. In future work, we can also
take the orientation of the object into consideration to pursue
further performance enhancement, since the observed images
from different views have a correspondence of orientation.

ACKNOWLEDGMENT

This work was supported in part by the Regional Council
of Bretagne through the ODESSA FEDER project. The multi-
view dataset3 used in this paper was built by Aziz Sellami,
Yuming Wang, Sebastian Heyer and Zijie Ning. They worked
together to design the collection scheme and completed the
tasks of item placement, photography, and labeling.

3https://www.kaggle.com/datasets/zijiening/smart-cam-multiview

REFERENCES

[1] A. Mousavian, D. Anguelov, J. Flynn, and J. Kosecka, “3d bounding
box estimation using deep learning and geometry,” 2016. [Online].
Available: https://arxiv.org/abs/1612.00496

[2] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” 2017. [Online]. Available:
https://arxiv.org/abs/1711.08488

[3] Y. Wang, V. Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. Solomon,
“Detr3d: 3d object detection from multi-view images via 3d-to-2d
queries,” 2021. [Online]. Available: https://arxiv.org/abs/2110.06922

[4] I. Katircioglu, H. Rhodin, J. Spörri, M. Salzmann, and P. Fua, “Human
detection and segmentation via multi-view consensus,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2021, pp. 2855–2864.

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie et al., “Microsoft
coco: Common objects in context,” 2014. [Online]. Available:
https://arxiv.org/abs/1405.0312

[6] M. Ozuysal, V. Lepetit, and P. Fua, “Pose estimation for category specific
multiview object localization,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 2009, pp. 778–785.

[7] E. Schubert and A. Zimek, “ELKI Multi-View Clustering Data Sets
Based on the Amsterdam Library of Object Images (ALOI),” Jun.
2010. [Online]. Available: https://doi.org/10.5281/zenodo.6355684

[8] P. J. Broekman, André; Gräbe, “Pasmvs: a dataset for multi-view
stereopsis training and reconstruction applications,” 2020.

[9] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov et al., “Opencv/cvat:
v1.1.0,” Aug. 2020. [Online]. Available: https://doi.org/10.5281/zenodo.
4009388

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2015. [Online]. Available:
https://arxiv.org/abs/1506.02640

[11] Glenn Jocher, Alex Stoken, Jirka Borovec et al., “Ultralytics/yolov5:
v3.1 - Bug Fixes and Performance Improvements,” Oct. 2020. [Online].
Available: https://doi.org/10.5281/zenodo.4154370

[12] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

[13] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.10934

[14] L. Biewald, “Experiment tracking with weights and biases,” 2020,
software available from wandb.com. [Online]. Available: https:
//www.wandb.com/

[15] E. Dubrofsky, “Homography estimation,” 2009.

https://www.kaggle.com/datasets/zijiening/smart-cam-multiview
https://arxiv.org/abs/1612.00496
https://arxiv.org/abs/1711.08488
https://arxiv.org/abs/2110.06922
https://arxiv.org/abs/1405.0312
https://doi.org/10.5281/zenodo.6355684
https://doi.org/10.5281/zenodo.4009388
https://doi.org/10.5281/zenodo.4009388
https://arxiv.org/abs/1506.02640
https://doi.org/10.5281/zenodo.4154370
https://arxiv.org/abs/2004.10934
https://www.wandb.com/
https://www.wandb.com/

	Introduction
	Related Work
	Methods
	Available multi-view datasets
	Creation of multi-view dataset
	Baseline experiment
	Multi-view experiment
	Camera position experiment

	Results
	Baseline experiment
	Multi-view experiment
	Camera position experiment

	Conclusion
	References

