From individual-based epidemic models to McKendrick-von Foerster PDEs: a guide to modeling and inferring COVID-19 dynamics - Archive ouverte HAL Access content directly
Journal Articles Journal of Mathematical Biology Year : 2022

## From individual-based epidemic models to McKendrick-von Foerster PDEs: a guide to modeling and inferring COVID-19 dynamics

Félix Foutel-Rodier
François Blanquart
Philibert Courau
• Function : Author
Jean-Jil Duchamps
• Function : Author
Jasmine Gamblin
• Function : Author
Rob Kulathinal
• Function : Author
Laura Vuduc
• Function : Author
Emmanuel Schertzer
• Function : Author

#### Abstract

We present a unifying, tractable approach for studying the spread of viruses causing complex diseases requiring to be modeled using a large number of types (e.g., infective stage, clinical state, risk factor class). We show that recording each infected individual’s infection age, i.e., the time elapsed since infection, has three benefits. First, regardless of the number of types, the age distribution of the population can be described by means of a first-order, one-dimensional partial differential equation (PDE) known as the McKendrick-von Foerster equation. The frequency of type i is simply obtained by integrating the probability of being in state i at a given age against the age distribution. This representation induces a simple methodology based on the additional assumption of Poisson sampling to infer and forecast the epidemic. We illustrate this technique using French data from the COVID-19 epidemic. Second, our approach generalizes and simplifies standard compartmental models using high-dimensional systems of ordinary differential equations (ODEs) to account for disease complexity. We show that such models can always be rewritten in our framework, thus, providing a low-dimensional yet equivalent representation of these complex models. Third, beyond the simplicity of the approach, we show that our population model naturally appears as a universal scaling limit of a large class of fully stochastic individual-based epidemic models, where the initial condition of the PDE emerges as the limiting age structure of an exponentially growing population starting from a single individual

### Dates and versions

hal-03835684 , version 1 (08-11-2023)

### Identifiers

• HAL Id : hal-03835684 , version 1
• DOI :
• PUBMED :

### Cite

Félix Foutel-Rodier, François Blanquart, Philibert Courau, Peter Czuppon, Jean-Jil Duchamps, et al.. From individual-based epidemic models to McKendrick-von Foerster PDEs: a guide to modeling and inferring COVID-19 dynamics. Journal of Mathematical Biology, 2022, 85 (4), pp.43. ⟨10.1007/s00285-022-01794-4⟩. ⟨hal-03835684⟩

### Export

BibTeX XML-TEI Dublin Core DC Terms EndNote DataCite

185 View