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Abstract
We present a unifying, tractable approach for studying the spread of viruses causing
complex diseases requiring to bemodeled using a large number of types (e.g., infective
stage, clinical state, risk factor class).We show that recording each infected individual’s
infection age, i.e., the time elapsed since infection, has three benefits. First, regardless
of the number of types, the age distribution of the population can be described by
means of a first-order, one-dimensional partial differential equation (PDE) known as
the McKendrick-von Foerster equation. The frequency of type i is simply obtained by
integrating the probability of being in state i at a given age against the age distribution.
This representation induces a simple methodology based on the additional assumption
of Poisson sampling to infer and forecast the epidemic. We illustrate this technique
using French data from the COVID-19 epidemic. Second, our approach generalizes
and simplifies standard compartmental models using high-dimensional systems of
ordinary differential equations (ODEs) to account for disease complexity. We show
that such models can always be rewritten in our framework, thus, providing a low-
dimensional yet equivalent representation of these complex models. Third, beyond the
simplicity of the approach, we show that our population model naturally appears as
a universal scaling limit of a large class of fully stochastic individual-based epidemic
models, where the initial condition of the PDE emerges as the limiting age structure
of an exponentially growing population starting from a single individual.
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1 Introduction

1.1 Challenges posed by complex diseases such as COVID-19

The transmission of pathogens between species is a global concern (Krauss 2003;
Crawford 2018). As such zoonotic episodes are expected to become increasingly
common in humans, it is critical to develop analytic tools that can quickly transform
epidemiological observations into informed public policy in order to mitigate and
control epidemics.

A novel coronavirus, SARS-CoV-2, has recently crossed the species barrier into
humans and, within months, has rapidly spread to all corners of our planet (Wu et al.
2020). The sheer scale of this pandemic has overburdened our medical infrastruc-
ture, caused fatalities estimated well into millions, and shut down entire economies.
Remarkably, the rapid spread of COVID-19 and its consequences can be attributed
to the unique life cycle of a 30,000 base pair single-stranded virus. SARS-CoV-2 is
an airborne pathogen transmitted by both symptomatic and asymptomatic carriers in
close proximity to non-infected individuals. Milder COVID-19 symptoms include a
dry cough, fever, and/or shortness of breath while more serious cases include respira-
tory failure and possible death. With millions of infections and hundreds of thousands
of documented deaths and recoveries, the COVID-19 pandemic is providing a wealth
of independent estimates of important clinical characteristics that can help predict
health outcomes specific for a country or region.

It quickly became understood that accurate descriptions of the life cycle of this
disease needed to distinguish between several stages of the disease, referred to as
compartments, depending onwhether an infected individual is infectious or not, symp-
tomatic or not, hospitalized, etc. However it remains unclear to what extent making
precise predictions of the dynamics of such a complex disease requires to have a pre-
cise knowledge of clinical features such as incubation period, generation time, and
duration times between infection, symptom establishment, hospitalization, recovery
and death, to know how these durations correlate and what are the exact probabilities
of transition between stages.

In this work, we consider a fully stochastic, generic epidemiological model with
an arbitrary number of compartments, that encompasses life cycles of most complex
diseases and that of COVID-19 in particular. We show how structuring the infected
population by its infection age, i.e., time elapsed since infection, allows us to decouple
dependencies between stages and to time. More specifically, when the population size
is large enough, the joint evolution of all compartment sizes can be described bymeans
of a linear, first-order partial differential equation (PDE) known as the McKendrick-
von Foerster equation describing the number n(t, a) of infecteds of (infection) age
a at time t . The boundary condition at age 0 is driven by the infection rate from
infecteds of age a, averaged over all possible courses of infection, and the number of
individuals of age a in compartment i at time t is obtained by thinning n(t, a) by a
factor p(a, i)which is the probability of being in compartment i conditional on having
age a, averaged over all possible courses of infection.
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In the case of COVID-19, we display a simple procedure to infer these parameters,
some from the biological literature and most from time series of numbers of severe
cases, hospitalized cases, discharged patients and deaths that can be applied easily
to any regional or national dataset. We also allow for time inhomogeneity in the
infection rate to account for temporary mitigation measures such as lockdowns or
social distancing. We apply this procedure to French COVID-19 data from March
to May 2020 and estimate various parameters of interest including the reproduction
number in different phases of the epidemic (before, during, and after lockdown) and
biological parameter values that we compare to empirical estimates.

1.2 Decorated age-structured epidemic models

The large population size limit of our stochastic model is a PDE “decorated” with
compartments. This point of viewextends the usual sets ofODEsused in epidemiology,
and allowsus to represent in the same framework a large class of deterministic epidemic
models. Before describing the stochastic model underlying such decorated PDEs, let
us illustrate this notion by recalling the well-known derivation of the classic SIR set
of ODEs from an age-structured model.

Consider the solution (n(t, a); t, a ≥ 0) to the following partial differential equa-
tion:

∂t n + ∂an = 0

∀t ≥ 0, n(t, 0) = S(t)
∫ ∞

0
n(t, a)τ (a)da

∀a ≥ 0, n(0, a) = x0g(a) (1)

∀t ≥ 0, S(t) = 1 −
∫ ∞

0
n(t, a)da.

where 0 ≤ x0 ≤ 1, and g, τ ≥ 0 fulfill

∫ ∞

0
g(a)da = 1,

∫ ∞

0
τ(a)da < ∞.

Equation (1)was first proposed to describe the dynamics of an epidemicwhere infected
individuals are structured by their age of infection, and is known as the Kermack-
McKendrick model (Kermack and McKendrick 1927). Note that in the original work
of Kermack and McKendrick (1927) the model is formulated as the solution to a con-
volution equation rather than as a PDE, but that the two formulations are equivalent,
see Sect. 2.2. In this context, the age of an individual refers to the time elapsed since
its infection, and not to its actual age. Then, n(t, a) is the density at time t of all indi-
viduals with age (of infection) a, and S(t) the density of individuals still susceptible
to the disease. The differential term describes the aging process: the age of an indi-
vidual increases linearly with time at rate one. The interpretation of the age boundary
condition of (1) is that individuals with age a infect susceptible individuals at a rate
τ(a) that only depends on their age.
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Remark 1 It is important to note that n(t, a) counts all individuals that have been
infected at time t − a, and not only infective individuals with age a. Thus, Eq. (1)
lacks the usual recovery term.Moreover, τ(a) is not the average rate at which infective
individuals with age a yield infections, but the average infection rate of any individual
with age a. (The former is obtained from the latter by discounting all individuals with
age a that are not infectious anymore.)

In order to recover the SIR model, suppose that τ is given by

∀a ≥ 0, τ (a) = βe−γ a,

for some γ, β > 0. Further define

∀t ≥ 0, I (t) =
∫ ∞

0
n(t, a)e−γ ada, R(t) =

∫ ∞

0
n(t, a)(1 − e−γ a)da,

Then a simple calculation shows that (S, I , R) solves the followingwell-known system
of ODEs:

Ṡ = −β I S

İ = β I S − γ I

Ṙ = −γ I .

(2)

The previous expressions have an interesting probabilistic interpretation. Consider a
Markov process (X(a); a ≥ 0) with two states I and R. Suppose that it starts from I
and jumps to R at rate γ . The process (X(a); a ≥ 0) can be interpreted as describing
the sequence of states (infective then recovered) visited by a typical individual in the
microscopic model underlying (2). Then, clearly

p(a, I ) := P(X(a) = I ) = e−γ a, p(a, R) := P(X(a) = R) = 1 − e−γ a,

so that

I (t) =
∫ ∞

0
n(t, a)p(a, I )da, R(t) =

∫ ∞

0
n(t, a)p(a, R)da. (3)

Furthermore, suppose that a typical infected individual yields new infections at con-
stant rate β while it is in state I . Then, the mean number of new infections occurring
in the time interval [a, a + da] is

βe−γ ada = τ(a)da.

Thepicture that emerges from this simple calculation is that, instead of keeping track
of the number of individuals in each compartment, one can consider the age structure
of the population, given by Eq. (1). The dynamics of the age structure is uniquely
prescribed by the average number τ(a) of infections that an individual yields at age
a. The individual counts in each compartment can then be recovered by integrating
against the age structure the one-dimensional marginals of a process (X(a); a ≥ 0)
that describes the sequence of compartments visited by a typical individual in the
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population. We say that the PDE is “decorated” with compartments, as the process
(X(a); a ≥ 0) is used to recover the counts in the compartments, and only influences
the dynamics of the infectionwhich is described by the sole Eq. (1) through the average
infection rate τ(a).

This viewpoint has several advantages compared to the usual ODE setting of (2).
First, we can make sense of (3) for any process (X(a); a ≥ 0). If this process is
not Markovian, the number of individuals in each compartment no longer solves a
system of ODEs similar to (2). Hence, this approach allows to go beyond the usual
ODE framework. This generalization is of great modeling interest since a hypothesis
underlying sets of ODEs is that the sojourn times in each compartment and the time
between successive infections are exponentially distributed. In particular they cannot
account for sojourn time distributions that are peaked around a value, which have been
reported for instance for COVID-19 (Linton et al. 2020, Verity et al. 2020).

Second, regardless of the number of compartments, the age structure of the popula-
tion is described by the same one-dimensional PDE. This is particularly valuable when
models have a large number of compartments, as in the context of COVID-19 (Salje
et al. 2020; Evgeniou et al. 2021; Di Domenico et al. 2020; Djidjou-Demasse et al.
2020), as it avoids the use of high-dimensional systems of ODEs that are cumbersome
to study mathematically. However, this requires to work with the PDE (1) rather than
with ODEs, resulting in a mild computational cost.

Third, Eq. (1) only involves themean number of infections τ(a) induced by individ-
uals at age a averaged over all compartments. In particular, it is unnecessary to assess
to which compartments individuals belong when they yield new infections. This is in
contrast with the usual ODE framework, where for each compartment an infection rate
needs to be prescribed. As we will see, τ(a) relates to well-known epidemiological
quantities that can be assessed directly from the data.

The main contribution of our work is to show that such decorated age-structured
models arise naturally as the law of large numbers limit of a wide class of general
stochastic epidemic models that we now introduce.

1.3 Generic stochastic model assumptions

Weconsider a populationmodel inwhich individuals are either susceptible, if they have
not yet met the disease, or infected. Our definition of infected is broader than usual:
an individual is infected if it has been infected in the past. In particular, individuals
that have recovered or died from the disease are still infected, even if they are not
infective anymore. At any point in time, an infected individual is in one of several
states, that will also be referred to as compartments, types, classes, or stages. The set
of all such states is denoted by S and is assumed to be finite. Depending on the disease
complexity, the number of stages can vary. In the SARS-CoV-2 example, typical stages
are asymptomatic, mild case, severe case, hospitalized, intensive care unit, recovered,
and dead (see Fig. 5).

We assume that upon infection a susceptible individual immediately changes state
and never becomes susceptible anymore (ruling out multiple infections, in particular),
and that it will eventually end in one of two states: recovered or dead. The sequence
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of states visited by an individual x is then encoded by a stochastic process Xx :=
(Xx (a); a ≥ 0) valued in S, where the random variable Xx (a) is the state of x at age
of infection a. We call (Xx (a); a ≥ 0) the life-cycle process.

Each individual is further endowed with a random point process Px on [0,∞),
called the infection point process. Each atom of Px gives the age at which x makes an
infectious contact with another individual in the population, and we assume that all
atoms are distinct so that secondary infections cannot occur simultaneously. (By an
infectious contact, we mean a contact that would lead to a new infection if the target
individual is susceptible to the disease. The pair (Px , Xx ) characterizes the course of
the infection of individual x . We assume that these pairs, for all individuals x , are i.i.d.
copies of the same pair (P, X) that describes the infection of a typical individual in
the population.

In order to make the mathematical treatment of the model easier, we make the
simplifying assumption that the number of susceptible individuals is large compared
to the number of infected individuals, so that each infectious contact leads to a new
infection. (We neglect the saturation in the number of infections due to the finiteness
of the population.) The epidemic is then described by a branching process known as
a Crump-Mode-Jagers process (Jagers 1975; Taïb 1992): an individual x infected at
time σx will produce Nx new secondary infections at times σx + A1, . . . , σx + ANx ,
where (A1, . . . , ANx ) are the atoms of Px , that is ,

Px =
Nx∑
i=1

δAi .

(This branching hypothesis is relaxed in a recent work by some of the authors, see
Duchamps et al. (2021)).

Lastly, we superimpose time heterogeneity to this process by means of a contact
rate (c(t); t ≥ 0) valued in [0, 1] thinning the infection process. More precisely,
if t is a potential time of infection for individual x , we ignore the infection with
probability 1− c(t). This contact rate can model the effect of vaccination, or density-
dependence (i.e., relaxing the branching assumption due to an excess of removed or of
deceased individuals), or of governmental mitigation measures (i.e., social distancing,
lockdown).

The infection process is more formally constructed in Sect. 2.1.

Remark 2 Asalreadydiscussed in the previous section, in theSIRexampleS = {I , R},
and (X(a); a ≥ 0) is a Markov process started from I that jumps to R at rate γ .
Moreover, the infection point process is given by

P =
∑
Ai∈P

δAi1{X(Ai )=I }

where P is a homogeneous Poisson point process on [0,∞) with intensity β.

Remark 3 We emphasize that the pairs (Px , Xx ) are assumed to be independent, but
not the variables Px and Xx . In the simple SIR example they are not independent
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since there can be no atoms ofPx after the recovery time. In the same spirit, one could
assume that the infection potential of a given individual is reduced once in the hospital
and that individuals with many atoms in their infection process Px (high infectiosity)
are identified and isolated.

1.4 Statement of themain results

The stochastic epidemic models we consider here are fairly general and can exhibit
quite complex dependencies (i) between states and time, due to the lack of anyMarkov-
type assumption, (ii) between states, due to possibly hidden structuring variables
impacting the life cycle, (iii) between state and infection rate, and (iv) between past
and future infection events. The main result of this work is that despite this appar-
ent complexity, most of this complexity vanishes when the size of the population is
large. More specifically, we show that in the limit of large populations (obtained by
starting from a large initial population or as a consequence of natural exponential
growth), the population of infected individuals structured by age (of the infection)
can be described by means of a one-dimensional PDE, and that the counts in each
compartment are recovered by decorating this PDE with the life-cycle process. The
limiting expression only depends on:

1. The average infection rate

τ(da) := E(P(da)),

formally defined as the intensity measure of P . We make the simplifying assump-
tion that τ has a density w.r.t. the Lebesgue measure and, with a slight abuse of
notation, we still denote it by τ(a).

2. The one-dimensional marginals of the life-cycle process

p(a, i) := P(X(a) = i).

We prove two main theorems that are two laws of large numbers for the age and com-
partment structure in the population: one started from a large number of individuals,
and the other from a single individual.

Large initial population. Let us start the populationwith a large number N of infected
individuals at time t = 0, with i.i.d. initial infection ages with law g. (See Sect. 2.1
for a formal definition of the initial age.) Define the empirical measure of ages and
compartments at time t as

μN
t (da × {i}) :=

∑
σx<t

δ(t−σx ,Xx (t−σx ))(da × {i}), (4)

where σx denotes the infection time of x , and the sum is taken over all individuals x
infected before time t . (This includes the initial individuals infected before time 0.)
The measure μN

t is a random point measure that encodes the ages and compartments
of all individuals that have been infected before time t .
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Let us also introduce nNi (t), the number of individuals in compartment i at time t ,
defined as

nNi (t) :=
∑
σx<t

1{Xx (t−σx )=i} = μN
t

([0,∞) × {i}).

Theorem 1 (N individuals) Start the population with N individuals with i.i.d. initial
ages distributed according to g. Then, for any t > 0, the following convergence holds
in the weak topology

1

N
μN
t (da × {i}) −→

N→∞ n(t, a)p(a, i)da a.s.

where (n(t, a); t, a ≥ 0) is the solution to

∂t n + ∂an = 0

∀t ≥ 0, n(t, 0) = c(t)
∫ ∞

0
n(t, a)τ (a)da

∀a ≥ 0, n(0, a) = g(a).

(5)

As a consequence, for any t > 0,

1

N
nNi (t) −→

N→∞

∫ ∞

0
n(t, a)p(a, i)da a.s. (6)

The limiting age structure of the population is thus described by Eq. (5), which is a
linear version of Eq. (1), known as theMcKendrick-von Foerster equation. Note that it
also has an additional c(t) term accounting for the reduced contact rate, resulting in a
time heterogeneity. As in Sect. 1.2, the number of individuals in each compartment is
recovered by decorating the PDE with the one-dimensional marginals of the life-cycle
process.

After lockdown onset. Our second result displays a similar, but more subtle, con-
vergence in the case when the process is supercritical, where natural growth leads by
itself to large population sizes. We say that the process is supercritical if

∫ ∞

0
τ(a)da > 1,

in which case there exists α > 0 such that

∫ ∞

0
e−αaτ(a)da = 1.

(The parameter α is the Malthusian parameter of the CMJ process when c ≡ 1.) Let
Z(t) denote the total population size at time t and assume that Z(0) = 1, i.e., we start
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from a single individual. Suppose that (tK ; K ≥ 0) is a sequence of stopping times
(with respect to the natural filtration of the process, see Sect. 3) such that tK → ∞ on
the non-extinction event. By a slight abuse of notation, denote by μK

t the empirical
measure of ages and types as in (4), but under the assumption that the contact rate
at time t is equal to c(t − tK ) where c is equal to 1 for negative arguments. We are
motivated by modeling a situation where the infection is separated into two distinct
phases:

1. The epidemic develops until a certain random time tK . For instance, tK could be
the time at which the number of recorded deaths exceeds a large threshold K . We
assume no suppression before tK .

2. We let the contact rate vary after time tK according to the function (c(t − tK ); t ≥
0), e.g., due to mitigation measures and/or behavioral changes (i.e., lockdown
phase).

In this setting, we can derive the following version of the law of large numbers for
ages and compartments.

Theorem 2 (One individual) Suppose that the process is supercritical and that the
population is started from one individual. Conditional on non-extinction:

1. There exists a r.v. W∞ such that W∞ > 0 a.s. and

Z(tK )e−αtK −→
K→∞ W∞ in probability.

2. For any t > 0, we have

e−αtK μK
tK+t (da × {i}) −→

K→∞ W∞n(t, a)p(a, i)da

in probability for the weak topology, where (n(t, a); t, a ≥ 0) is the solution to
(5) with initial condition g(a) = αe−αa.

This result states that, when the large population size is obtained by natural popu-
lation growth, the population has an exponentially distributed initial age profile with
a random size W∞ determined by the early infection events. Moreover, the parameter
of the exponential distribution corresponds to the exponential growth rate of the epi-
demic prior to the enforcement of control measures. This result can prove useful in
applications, as the exponential growth rate can be readily estimated from incidence
data, whereas the age structure of the population can hardly be directly assessed. It is a
quite generic phenomenon that the macroscopic behavior of population models started
from a few individuals is described by a deterministic system, with a random initial
condition resulting from the stochasticity of the initial population growth (Barbour
et al. 2016; Baker et al. 2018).

Summary. The macroscopic behavior of the epidemic is characterized by the sole
intensity measure τ and dictates an explicit age structure of the population. The class
structure is deduced by integrating the life-cycle process against the limiting age pro-
file. This suggests an alternative point of view on epidemic models, as age-structured
models decorated with classes.
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In order to validate our approach, we use those deterministic approximations to
infer epidemiological parameters (reproduction number before and during lockdown)
from recent empirical observations, and show that our findings are in accordance with
the current literature.

1.5 Inference on the French COVID-19 epidemic

We have illustrated the practical interest of our approach by carrying out parameter
inference on data from the early French COVID-19 epidemic. We focus on two impor-
tant inference aspects of this epidemic: providing estimates for key epidemiological
quantities, such as the reproduction number that allows to assess the impact of control
measures; and predicting the number of individuals in ICU and hospital to monitor
the pressure on the healthcare system.

In our framework, the first task only requires a simple and parsimonious model that
can be adjusted on incidence data, whereas fitting the number of individuals in ICU
requires a more complex model that better accounts for the population heterogeneity.

The early COVID-19 epidemic in France. After a rapid increase in the number of
detected cases and deaths, the French government issued a first nation-wide lockdown
from March 17 2020 to May 11 2020. From March 18 2020, it has provided publicly
available daily reports of the number of ICU and hospital admissions, hospital deaths,
as well as the number of occupied ICU and hospital beds, and discharged individuals.
The daily number of detected cases was also reported, but was considered as unreliable
during this period due to the high variation in the number of tests performed. No
additional control measure was enforced during this period.

Estimating epidemiological parameters from incidence data. In order to estimate
the impact of lockdown we consider a parsimonious model that requires to estimate
few parameters. It is illustrated in Fig. 5, and we refer to it as the admission model.
Upon infection, individuals either develop a mild form of COVID-19 from which they
will recover, or a more severe form that will eventually lead to a hospital admission.
Then, hospitalized individuals either recover and are discharged after some amount of
time, or are moved to ICU. Finally, individuals in ICU either die or recover. A more
detailed description of the model and its parameters is given in Sect. 4.3.

We have fitted this model to the following three time series: daily number of admis-
sions in hospital and ICU, and daily deaths. Fitting such “incidence” time series only
requires to estimate the entrance time in each compartment, and not the correspond-
ing sojourn times. The best fitting model is represented in Fig. 1, and the inference
procedure is described in Sect. 4. We see that our simple model reproduces quite well
the shapes of the three incidence time series. The estimated reproduction number after
lockdown is Rpost = 0.745, and that before lockdown is Rpre = 3.25. Thus we esti-
mate that the lockdown yielded a reduction of the reproduction number by a factor
4.36. Moreover, the estimated number of infections having occurred before March 18
2020 is W = 9.85 × 105. All these estimates are in line with that of other studies on
the same dataset (Salje et al. 2020; Sofonea et al. 2021).
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Fig. 1 Best fit of the admission model. Solid lines correspond to the number of hospital admissions, ICU
admissions and deaths predicted by the admission model. The dots are the corresponding observed values.
The dispersion of the observations is mainly due to unreported data during the weekends, that are only
reported at the start of the following week

Fittingprevalence data. Our second objective is to fit three additional time series: the
number of occupied hospital and ICU beds, and the number of discharged individuals.
Using the simple admission model only yields a poor fit of these new times series,
see Fig. 7. We have identified two main causes for this discrepancy. First, we have
made the simplifying assumption that individuals are always admitted to ICU prior
to death. However, it has been reported that a large fraction of deaths do not involve
a preliminary ICU admission (Lefrancq et al. 2021), and our assumption leads to a
fraction of deaths among ICU patients much higher than that previously reported.
Second, there are many heterogeneities in the population, such as the (actual) age, that
are known to play an important role in the severity of the symptoms of COVID-19 and
that are not accounted for.

Thus, we used a more detailed model to reproduce all six time series, which is illus-
trated in Fig. 6 and referred to as the occupancy model. Again, a detailed description
of the model and its parameters is available in Sect. 4.4. The main two differences
with the admission model are that a fraction of individuals die shortly after hospital
admission, and that we distinguish between individuals who recover fast after their
admission and individuals who recover slowly. The best-fitting model is displayed
in Fig. 2. Again, it reproduces quite well the shapes of all the time-series. Under the
occupancymodel, the estimated reproduction number after lockdown is Rpost = 0.734
and the estimated number of infections before March 17 2020 is W = 9.52 × 105.
These estimates are close to those obtained under the admission model, indicating that
the predictions made by the simple admission model are quite robust to the addition
of model details.

Overall, our inference work suggests that a simple model can be used to deter-
mine “global” epidemiological parameters, such as the reproduction number and total
number of infections, whereas obtaining a prediction for the number of individuals
in hospital or ICU requires to use a more detailed model that accounts for population
heterogeneity. Moreover, it demonstrates that decorated age-structured models can be
readily used to carry out parameter inference in the context of COVID-19, even when
the underlying compartment structure is quite complex.

Section 4 contains a detailed description of the inference procedure, as well as a
comparison of the various estimates that we obtain with estimates currently available
in the literature.
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Fig. 2 Best fit of the admission model. The solid lines correspond to the number of deaths, discharges,
occupied ICU and hospital beds and ICU and hospital admissions predicted by the occupancy model. The
dots are the corresponding observed values

1.6 Connection with ODEmodels

Section 1.2 shows that the SIRmodel can be seen as a decorated age-structured model,
with well-chosen Markov life-cycle process and Poisson infection point process. This
section extends this representation to a broader class of ODE models. We will be
interested in solutions to the following set of ODEs:

∀i ∈ S, ṅi (t) = S(t)
∑
j∈S

β j i n j (t) +
∑
j∈S

q ji n j (t)

S(t) = 1 −
∑
j∈S

n j (t).
(7)

The parameter βi j ≥ 0 gives the rate of new infections from individuals in compart-
ment i such that the newly infected individual starts in compartment j . The matrix
T with entries (βi j ) is referred to as the transmission matrix. For i 	= j , qi j ≥ 0
corresponds to transition rate from compartment i to compartment j . The transition
matrix with entries (qi j ) is denoted by Q, and we further impose that

∀i ∈ S, qii = −
∑
j 	=i

qi j .

This class of ODE models encompasses many common epidemic models, including
the SIR and SEIR models, as well as all models described in Chapter 4 Brauer et al.
(2019) for instance.

Proposition 3 1. Suppose that (X(a); a ≥ 0) is a Markov process with jump matrix
Q = (qi j ; i, j ∈ S), and that conditional on the life-cycle process,P is a Poisson
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point process with rate λi when X(a) = i . Then, if (n(t, a); t, a ≥ 0) is a solution
to (1),

ñi (t) =
∫ ∞

0
n(t, a)p(a, i)da (8)

solves (7) with βi j = λi p(0, j).
2. The solution of (7) with transmission and transition matrices T and Q can be

written as (8) if and only if rank(T ) = 1.

Proof By differentiating both sides of (8) w.r.t. time, we obtain

d

dt
ñi (t) =

∫ ∞

0
∂t n(t, a)p(a, i)da = −

∫ ∞

0
∂an(t, a)p(a, i)da

= n(t, 0)p(0, i) +
∫ ∞

0
n(t, a)∂a p(a, i)da.

By conditioning on the process X and using standard properties of Poisson point
processes, we can compute the intensity measure of P as

〈τ, f 〉 = E

[∫ ∞

0
λX(a) f (a)da

]
=

∫ ∞

0
f (a)

∑
i∈S

p(a, i)λida,

so that

∀a ≥ 0, τ (a) =
∑
i∈S

p(a, i)λi .

By using the boundary condition of (1) and the fact that (X(a); a ≥ 0) is a Markov
process with generator Q we get

d

dt
ñi (t) = p(0, i)S(t)

∫ ∞

0
n(t, a)

∑
j∈S

λ j p(a, j)da +
∫ ∞

0
n(t, a)

∑
j∈S

q ji p(a, j)da

= S(t)
∑
j∈S

p(0, i)λ j ñ j (t) +
∑
j∈S

q ji ñ j (t)

from which the first item follows.
It is clear that ifβi j = λi p(0, j) then rank(T ) = 1. Fix some T and Q. If rank(T ) =

1, then it can be decomposed as

∀i, j ∈ S, βi j = λi p j

where (p j ; j ∈ S) is a probability vector and λi ≥ 0. This decomposition can for
instance be recovered from

λi =
∑
j∈S

βi j , p j = βi j

λi
.
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Consider a Markov process (X(a); a ≥ 0) with transition matrix Q and X(0) dis-
tributed as (p j ; j ∈ S). If P is such that infections occur at rate λi when X(a) = i ,
the first item proves that (7) can be written as (8). �


The previous result provides a simple criterion for a system of ODEs to be repre-
sented as a decorated age-structured PDE. This criterion has already been proposed
previously and is referred to as the “separable mixing” assumption (Diekmann et al.
1990; Diekmann et al. 2013). A direct consequence of this result is that not all ODE
models can be represented using a single decorated age-structured PDE. However
many models fulfill the requirement that rank(T ) = 1, including models with a single
infectious state, those where new infected individuals always start in the same state,
and all classical models exposed in (Brauer et al. 2019, Chapter 4). In that sense,
our framework greatly extends the usual systems of ODEs widely used in epidemic
modeling.

An important situation where rank(T ) > 1 is that of heterogeneous contact rates
in the population. For instance, the contact rate could depend heavily on the (actual)
age group to which individuals belong, and more contacts are made within the same
age class than between classes. A second example is that of spatial heterogeneity,
where contacts are more likely to occur between spatially close individuals. It remains
possible to derive a representation of (7) in the case rank(T ) > 1 using an age-
structured model, but this would require to use a multi-dimensional version of (1),
which is a straightforward extension of this model.

1.7 Relation with previous works and outline

Deterministic epidemic models where the infectivity depends on the individuals’ age
of infection were first introduced in (Kermack andMcKendrick 1927), and their math-
ematical properties have been further studied thoroughly (Reddingius 1971;Diekmann
1977); (Thieme 1985), see (Inaba 2017) for a recent account. However, these mod-
els have received surprisingly little attention in applications compared to their ODE
counterpart, which have been widely used for instance in the context of COVID-19
(Roques et al. 2020; Salje et al. 2020; Evgeniou et al. 2021; Di Domenico et al. 2020;
Djidjou-Demasse et al. 2020). In this direction, let us mention (Forien et al. 2021b)
whichmakes use of an epidemicmodel withmemory and (Gaubert et al. 2020) where a
set of transport PDEs similar to (1) is used. Note that, in contrast with our approach, the
PDE in the latter work has two dimensions and is structured according to the time since
the entrance in the compartments rather than by infection age. We hope that our work
illustrates well the practical potential of such general models. The relation between
age-structured and ODE epidemic models exposed in Sect. 1.2 is known since their
very introduction by Kermack and McKendrick (1927), and has been acknowledged
multiple times since then, see Metz (1978); Diekmann et al. (1995); Brauer (2005);
Inaba (2017).

In the most general formulation of a CMJ process, individuals can carry a trait
valued in an abstract measure space that encodes all the information about their infec-
tion (Jagers 1975; Taïb 1992). We have restricted this information to the sequence of
compartments visited by each individual, but we could have included some additional

123



From individual-based epidemic models... Page 15 of 44    43 

details, such as the evolution of the viral load for instance, which could be modeled
as a continuous trait following a diffusion. Our result would carry over to the gen-
eral setting, with a modified limiting equation in Theorem 1 which has already been
proposed in (Metz 1978, Eq. (2.5) and (Metz and Diekmann (1986), Chapter IV, Sec-
tion 1.3). (Note that none of these works is concerned with the underlying stochastic
model.) However, we believe that our current formalism, where the state of an infected
individual can be described by a discrete set of compartments, is flexible enough for
applications, while being easier to grasp than the general case.

Non-Markov epidemic models have already been investigated, see e.g. Sellke
(1983); Pang and Pardoux (2020); Ball (1986); Barbour (1975). In particular our
work shares similarities with a recent series of work in this direction (Pang and Par-
doux 2020; Forien et al. 2021a; Pang and Pardoux 2021). Let us briefly show how to
translate the model in (Forien et al. 2021a) in our framework. Let λ = (λ(a); a ≥ 0)
be some random function giving the infectiousness of a typical individual in the pop-
ulation. Conditional on λ, let P be a time-inhomogeneous Poisson point process with
intensity λ, define

ζ = inf{a : λ(a) > 0}, η + ζ = sup{a : λ(a) > 0}
and set

∀a ≥ 0, X(a) =

⎧⎪⎨
⎪⎩
E if a ∈ [0, ζ )

I if a ∈ [ζ, ζ + η)

R if a ∈ [ζ + η,∞).

Then, up to the choice of the initial condition and the fact that we make a branching
assumption, the model considered in Forien et al. (2021a) coincides with the model
considered here for this specific choice of the pair (P, X). (It coincides exactly with
the extension of our model considered in Duchamps et al. (2021).)

The main result in Forien et al. (2021a) shows that the fraction of individuals in
each state (S, E , I , and R) converges to the solution of a set of Volterra equations,
see their Theorem 2.1. A straightforward computation shows that the latter equations
are equivalent to the non-linear version our decorated McKendrick-von Foerster PDE
obtained by replacing (5) by (1), with the specific choice of (P, X) described above.

The idea of representing a general branching population by its age structure has
a rich history in probability theory (Jagers 1975; Fan et al. 2020; Jagers and Ner-
man 1984a; Jagers and Klebaner 2011, 2000; Hamza et al. 2013; Tran 2008; Ferrière
and Tran 2009) and the connection with the McKendrick-von Foerster PDE has been
acknowledged several times (Fan et al. 2020; Hamza et al. 2013). In the latter two
works, the authors allow for birth and death rates that may depend not only on abun-
dances of each type, but also on the whole age structure of the population. This
impressive level of generalization comes at the cost of assuming that the process
describing the evolution of the empirical measure on ages and types is Markovian.
In particular, birth and death rates are not allowed to depend on past individual birth
events. The Markov property then allows the use of a generator for the empirical mea-
sure and with some extra finite second moment assumptions on the intensity measure,
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this approach allows the authors to obtain a law of large numbers and a central limit
theorem.

Even if the current work is not as mathematically challenging as that alluded to
above, we believe that our point of view does deserve to be highlighted in the current
sanitary crisis since it provides both a general modeling framework and an efficient
inference methodology. Furthermore, since we ignore finite population effects, our
proofs are quite elementary compared to Fan et al. (2020); Hamza et al. (2013) and
should be accessible to amuchwider audience interested in such amodeling approach.
Finally, as far as we can tell, the duality result exposed in Section 2.4 is new and can
presumably be extended to more general branching processes where birth and death
rates are allowed to be frequency-dependent. In Duchamps et al. (2021), some of the
authors of the present work show that this duality result has a natural counterpart in a
model with a finite but large population.

Outline. The remainder of the paper is organized as follows. Section 2 is devoted to
the study of Eq. (5). After providing a formal construction of the branching process that
we consider in Sect. 2.1, the definition of a weak solution to (5) is given in Sect. 2.2.
Then, we derive two probabilistic representations of this solution: we show in Sect. 2.3
that it corresponds to the first moment of the branching process that we are studying,
when viewed as a random measure on the ages of infection; Section 2.4 provides a
construction of the weak solution using a dual genealogical process. The two laws of
large numbers are proved in Sect. 3. Finally, Sect. 4 describes the inference procedure,
and compares the estimates that we obtain to known estimates from the literature.

2 Two Feynman-Kac formulæ

2.1 Assumptions and notation

CMJ branching process with suppression. Recall that the infection process is mod-
eled by a Crump-Mode-Jagers (CMJ) branching process (Jagers 1975; Nerman 1981)
with no death, starting from one individual called the progenitor (or root of the tree).
It can be briefly constructed as follows.

Using the Ulam-Harris labeling, the population can be indexed by

U := {∅} ∪
∞⋃
n≥1

N
n .

The set U encodes a tree where xi := (x, i) is the i-th child of x . Each individual
x ∈ U is characterized by a pair (Px , Xx ) embodying respectively the processes of
secondary infection events from x and of types carried by x . Each pair (Px , Xx ) is
an i.i.d. copy of the pair (P, X) with law L , except when x is the root, where it is
distributed as (P̃, X̃) with law L̃ (more on that below).

An infection time σx can be assigned to all individuals inductively as follows, with
the convention that σx = ∞ for individuals that are not infected. Suppose that σ∅ is
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Fig. 3 The initial individual (P̃, X̃) is represented by a black segment. In Sect. 2.1, we assume that at
time t = 0, the age of the initial individual (length of the blue segment) is distributed according to a
probability density g. If a branching event is observed at time t (see e.g., black dots), the infection occurs
with probability c(t). In the CMJ, this amounts to prune the corresponding subtree with probability c(t)
(dotted red tree)

known (see below). Then, if σx < ∞ has been defined, let A1, . . . , ANx denote the
atoms of Px in increasing order. That is,

Px =
Nx∑
i=1

δAi

with A1 < · · · < ANx . Set σxi = ∞ for i > Nx , and, independently for each i ≤ Nx ,
set

σxi =
{

σx + Ai with probability c(σx + Ai )

∞ with probability 1 − c(σx + Ai ),

where we recall that (c(t); t ≥ 0) is the contact rate. This amounts to trimming the
tree by pruning the subtree stemming from x with probability 1 − c(σx ), see Fig. 3.

Initial shifted law. In order to connect the distribution of theCMJ to theMcKendrick-
von Foerster equation, we allow the progenitor to have an initial age with an arbitrary
distribution. Let A be a r.v. distributed according to somedensity g. Define the infection
time of ∅ as σ∅ = −A. The secondary infections induced by the progenitor occur at
some times σ∅ + Ã1, …, σ∅ + ÃÑ , where ( Ã1, . . . , ÃÑ ) are the atoms of a point
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process P̃ defined as

P̃ =
∑
Ai∈P

1{Ai>A}δAi ,

where the pair (P, X) has lawL . The point process P̃ is obtained from P by erasing
all atoms that would lead to an infection before t = 0. Define X̃ = X∅, and let L̃
be the distribution of (P̃, X̃). We refer to L̃ as the initial shifted law. The infection
times (σx ; x ∈ U \ {∅}) are then defined recursively as above, from i.i.d. pairs
(Px , Xx ; x ∈ U \ {∅}) with the original law L .

Assumptions. The following assumptions will be made implicitly in the remainder
of our work. For simplicity, we assume that the contact rate (c(t); t ≥ 0) is a piece-
wise continuous function, and that for any a ≥ 0, the process (X(a); a ≥ 0) is a.s.
continuous at a.

Recall that the intensity measure of the point process P is denoted by τ , and
implicitly defined as

〈τ, f 〉 = E
[〈P, f 〉]

for any test function f , where we used the notation 〈μ, f 〉 = ∫
f dμ. We assume that

τ has a density w.r.t. the Lebesgue measure that we still denote by (τ (a); a ≥ 0), and
assume that

R0 :=
∫ ∞

0
τ(a)da < ∞.

We also assume that there exists a unique parameter α ∈ R, the so-called Malthusian
parameter of the (untrimmed) CMJ process, such that

∫ ∞

0
exp(−αa)τ (a)da = 1. (9)

The parameter α can be either positive (supercritical case) or negative (subcritical
case).

2.2 McKendrick-von Foerster PDE:Weak solutions

This section provides the existence and uniqueness of weak solutions to Eq. (5). Even
if similar results are well-known for the time-homogeneous McKendrick-von Foer-
ster equation (Inaba (2017), Chapter 1), we derive them briefly here for the sake of
completeness.

In order to motivate our definition of weak solutions, we start by giving a well-
known formal resolution of the PDE using the method of characteristics. Fix a > 0.
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Let

A(t) = a − t

Then

d

ds
n(t − s, A(s)) = −∂t n(t − s, A(s)) − ∂an(t − s, A(s)) = 0,

so that s �→ n(t − s, a − s) is conserved along the characteristics, i.e.,

∀s < a, n(t, a) = n(t − s, a − s).

It follows that

n(t, a) =
{
g(a − t) when a > t

b(t − a) when a ≤ t
(10)

where

b(t) = c(t)
∫ ∞

0
n(t, a)τ (a)da

is the number of new infections at time t . We now determine the function b. Injecting
the previous expression into the “age” boundary condition of the PDE, we obtain a
convolution equation for b: for every t > 0

b(t) = c(t)
∫ t

0
b(t − a)τ (a)da + c(t)

∫ ∞

t
g(a − t)τ (a)da. (11)

Recall that α denotes the Malthusian parameter defined in (9).

Lemma 4 There exists a unique solutionb to (11)which is locally integrable.Moreover,
for any δ ≥ 0 such that δ > α we have b ∈ L 1,δ , where L 1,δ denotes the set of all
functions f : R+ → R such that ‖ f ‖L1,δ := ∫ ∞

0 e−δt | f (t)|dt < ∞.

Proof Fix δ > α and let L1,δ denote the quotient space of L 1,δ by the relation ∼δ ,
where f ∼δ g if ‖ f − g‖L1,δ = 0. Then define the linear operator � : L1,δ → L1,δ

by

� f : t �→ c(t)
∫ t

0
f (t − u)τ (u)du.

Then we have

‖� f ‖L1,δ =
∫ ∞

0
e−δt� f (t)dt =

∫ ∞

0
e−δt c(t)

∫ t

0
f (t − u)τ (u)dudt
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=
∫ ∞

0
e−δu f (u)

∫ ∞

u
τ(t − u)e−δ(t−u)c(t)dtdu.

Now using that

∫ ∞

u
τ(t − u)e−δ(t−u)c(t)dt ≤

∫ ∞

0
τ(t)e−δtdt < 1

we obtain that ‖�‖ < 1. Define


 := Id−�.

Then 
 is invertible with inverse
∑

k≥0 �k . Note that equation (11) can be written as


(b) = F,

where

F : t �→ c(t)
∫ ∞

t
τ(a)g(a − t)da.

Noting that F ∈ L1,δ as

∫ ∞

0
e−δt F(t)dt ≤

∫ ∞

0

∫ ∞

t
τ(a)g(a − t)dadt < ∞

proves existence and uniqueness of the solution b to (11) in L1,δ . Now for any two
functions b1 and b2 such that b1 ∼δ b2 and b1 and b2 both satisfy (11), we have
b1 = b2 (i.e., there is a single element in the equivalence class of b verifying (11) for
all t). This shows uniqueness of the solution b to (11) inL 1,δ .

Since all elements of L 1,δ are locally integrable, this also shows the existence
of a locally integrable solution to (11). Its uniqueness can be proved following the
exact same reasoning as previously, replacing integrations on [0,∞) by integration
on compact intervals.

Definition 5 We say that (n(t, a); t, a ≥ 0) is the weak solution to the McKendrick-
von Foerster PDE with initial condition g if it satisfies the relation (10) where
(b(t); t ≥ 0) is the unique locally integrable solution to (11) displayed in the previous
lemma.

2.3 A forward Feynman-Kac formula

Consider a CMJ with initial shifted law and define

Z(t) :=
∑
x

1{σx∈(0,t]}, B(t) := E
(
Z(t)

)
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where Z(t) is interpreted as the number of infections between 0 and t . Recall that
R0 = ∫ ∞

0 τ(u)du < ∞ guarantees that B(t) < ∞ for all t ≥ 0. Finally, B is
non-decreasing and we denote by dB the Stieljes measure associated to B.

Lemma 6 There exists a locally integrable function (b(t); t ≥ 0) such that

dB(t) = b(t)dt .

Further, b coincides with the unique locally integrable solution of the convolution
equation (11).

Proof The fact that dB has a density easily follows from the fact that τ has a density.
The fact that B(t) < ∞ ensures that b is locally integrable.

Define P̄x the infection measure obtained from Px after random thinning by the
function (c(t); t ≥ 0). Namely, conditional on σx and the atoms A1 < A2 < · · ·
of Px , we remove independently each of the atoms with respective probabilities 1 −
c(σx + A1), 1 − c(σx + A2), . . . , whereas the other atoms remain unchanged.

Fix t > 0. Let k ≤ n ∈ N. Define Tk,n(Px ) as the measure obtained from Px as
follows. Conditional on the atoms A1 < A2 < · · · of Px , we remove independently
each of the atoms with respective probabilities

1 − max
z∈(t kn ,t k+1

n ]
c(z + A1), 1 − max

z∈(t kn ,t k+1
n ]

c(z + A2), · · ·

and leave other atoms unchanged. Note that the thinning procedure is now indepen-
dent of the starting time σx . Further, if σx ∈ (t kn , t k+1

n ], the point measure Tk,n(Px )

dominates P̄x .
We decompose the births on (0, t] into two parts: individuals stemming from the

root ∅ and a second part from subsequent births. Using the fact that for every individual
x , the (un-suppressed) random measure Px is independent of its birth time σx (see
second equality below), and setting M(t) := ∫ t

0

∫ ∞
0 g(a)τ (a + u)c(u)dadu, we get

B(t) =
n−1∑
k=0

∑
x 	=∅

E

(
1
(
σx ∈

(
t
k

n
, t
k + 1

n

]) ∫ t−σx

0
P̄x (da)

)
+ M(t)

≤
n−1∑
k=0

∑
x 	=∅

E

(
1
(
σx ∈

(
t
k

n
, t
k + 1

n

]) ∫ t−t kn

0
T
k,n(Px )(da)

)
+ M(t)

=
n−1∑
k=0

∑
x 	=∅

E

(
1
(
σx ∈

(
t
k

n
, t
k + 1

n

]))
E

( ∫ t−t kn

0
T
k,n(P)(da)

)
+ M(t)

=
n−1∑
k=0

E

( ∑
x 	=∅

1
(
σx ∈

(
t
k

n
, t
k + 1

n

]))
E

(∫ t−t kn

0
T
k,n(P)(da)

)
+ M(t)

=
n−1∑
k=0

(
B

(
t
k + 1

n

)
− B

(
t
k

n

))
E

( ∫ t−t kn

0
T
k,n(P)(da)

)
+ M(t)
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=
n−1∑
k=0

(
B

(
t
k + 1

n

)
− B

(
t
k

n

)) ∫ t−t kn

0
ck,n(u)τ (u)du + M(t).

with ck,n(y) = max
v∈(t kn ,t k+1

n ] c(y + v). In particular, if tk/n → x , and x + y is

a continuity point of c, we have ck,n(y) → c(x + y). We will pass to the limit
n → ∞ in the latter inequality. Recall that c is bounded (and valued in [0, 1]) and
right-continuous. The first term on the RHS can be written under the form

n−1∑
k=0

(
B

(
t
k + 1

n

)
− B

(
t
k

n

))∫ t−t kn

0
ck,n(u)τ (u)du =

∫ t

0
f (n)(y)dB(y),

where

f (n)(y) =
∫ t−[y]n

0
τ(u) sup

v∈([y]n , [y]n+ t
n ]
c(v + u)du and [y]n = t

n
�ny/t�.

We will now apply twice the Bounded Convergence Theorem. On the one hand, for a
fixed value of y, as n → ∞

1[0,t−[y]n ](u)τ (u) sup
v∈([y]n ,[y]n+ t

n ]
c(v + u) −→ 1[0,t−y](u)τ (u)c(y + u) Lebesgue a.e.

Further, the latter term (i.e., the integrand in the integral defining f (n)) is uniformly
bounded by τ and

∫ ∞
0 τ(u)du < ∞. A first application of the Bounded Convergence

Theorem implies that for every y, as n → ∞

f (n)(y) →
∫ t−y

0
c(y + u)τ (u)du.

On the other hand, the uniform bound, f (n)(y) ≤ R0 = ∫ ∞
0 τ(u)du for all y, n, allows

us to again apply the Bounded Convergence Theorem, so we get

B(t) ≤
∫ t

0
b(y)

∫ t−y

0
c(y + u)τ (u)dudy +

∫ t

0

∫ ∞

0
g(a)τ (a + u)c(u)dadu.

By replacing themax by amin and using a similar argument, one can establish the same
lower bound and strengthen the latter inequality into an equality. A simple change of
variable v = u + y and interchanging the order of integration yields

B(t) =
∫ t

0
c(v)

∫ v

0
τ(v − y)b(y)dydv +

∫ t

0

∫ ∞

0
g(a)τ (a + u)c(u)dadu.

Finally, differentiating with respect to t yields the desired result. �
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Corollary 7 (Forward Feynman-Kac formula) For every t ≥ 0, define

μ̄t (da × {i}) := n(t, a) × P(X(a) = i)da,

where n is the unique weak solution to the McKendrick-von Foerster PDE with initial
condition g. Then

μ̄t (da × {i}) = E

(∑
x

1{σx<t}δ(t−σx ,Xx (t−σx ))(da × {i})
)

(12)

where the expected value is taken with respect to a CMJ process starting with one
individual with infection and life-process distributed according to the shifted law L̃g.

Proof Define

μ̄′
t (da × {i}) := E

(∑
x

1{σx<t}δ(t−σx ,Xx (t−σx ))(da × {i})
)

We need to check that μ̄′
t = μ̄t on the space of finite measures. Let F be a non-

negative, bounded, continuous function on R+ × S and h a non-negative, continuous
function with compact support in R+. As in the previous lemma, we have

∫ ∞
0

h(t)
∫

F(a, i)μ̄′
t (da, di)dt =

∑
x 	=∅

E

( ∫ ∞
0

h(t)F
(
t − σx , Xx (t − σx )

)
1{σx<t}dt

)

+
∫ ∞
0

∫ ∞
0

h(t)E
(
F(t + a, X(t + a)

)
g(a)dadt .

Let (I ) be the first term on the RHS. For every n ∈ N
∗

(I ) =
∑
k≥0

∑
x 	=∅

E

(∫ ∞

σx

h(t)F
(
t − σx , Xx (t − σx )

)
1
(
σx ∈

( k
n
,
k + 1

n

])
dt

)

=
∑
k≥0

∑
x 	=∅

E

(∫ ∞

0
h(t + σx )F

(
t, Xx (t)

)
1
(
σx ∈

( k
n
,
k + 1

n

])
dt

)

≤
∑
k≥0

∑
x 	=∅

E

( ∫ ∞

0
max

u∈( kn , k+1
n ]

h(t + u)F
(
t, Xx (t)

)
1
(
σx ∈

( k
n
,
k + 1

n

])
dt

)

=
∑
k≥0

∑
x 	=∅

∫ ∞

0
max

u∈( kn , k+1
n ]

h(t + u)E

(
F

(
t, X(t)

))
P

(
σx ∈

( k
n
,
k + 1

n

])
dt

=
∑
k≥0

∫ ∞

0
max

u∈( kn , k+1
n ]

h(t + u)E

(
F

(
t, X(t)

))(
B

(k + 1

n

)
− B

( k
n

))
dt .
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By reasoning along the same lines as in Lemma 6 (i.e., applying the Bounded Con-
vergence Theorem several times), one can show that the RHS converges to

∫ ∞

0

∫ ∞

0
h(t + y)E

(
F

(
t, X(t)

))
b(y)dtdy

as n → ∞ and thus
∫ ∞
0

h(t)
∫

F(a, i)μ̄′
t (da, di)dt ≤

∫ ∞
0

∫ ∞
0

h(t + y)E
(
F

(
t, X(t)

))
b(y)dtdy

+
∫ ∞
0

h(t)
∫ ∞
0

E

(
F

(
t + a, X(t + a)

))
g(a)dadt .

By a similar argument, the inequality can be strengthened into an equality. After some
simple changes of variables we get

∫ ∞

0
h(t)

∫
F(a, i)μ̄′

s(da, di)dt =
∫ ∞

0
h(t)

∫ t

0
E

(
F

(
a, X(a)

))
b(t − a)dadt

+
∫ ∞

0
h(t)

∫ ∞

0
E

(
F

(
t + a, X(t + a)

))
g(a)dadt .

Moreover we have
∫ ∞

0
h(t)

∫
F(a, i)μ̄t (da, di)dt =

∑
i∈S

∫ ∞

0
h(t)

∫ ∞

0
F(a, i)n(t, a)p(a, i)dadt

=
∑
i∈S

[ ∫ ∞

0
h(t)

∫ t

0
F(a, i)b(t − a)p(a, i)dadt

+
∫ ∞

0
h(t)

∫ ∞

t
F(a, i)g(a − t)p(a, i)dadt

]

so that
∫ ∞

0
h(t)

∫
F(a, i)μ̄t (da, di)dt =

∫ ∞

0
h(t)

∫
F(a, i)μ̄′

t (da, di)dt .

It is easy to check that the two functions t �→ 〈μ̄t , F〉 and t �→ 〈μ̄′
t , F〉 are both

continuous. As a consequence, we have 〈μ̄t , F〉 = 〈μ̄′
t , F〉 for every test function F ,

concluding the proof. �


2.4 Dual CMJ process and backward Feynman-Kac formula

We end this section by making a connection between a dual process – interpreted
as an ancestral process – and the (PDE) method of characteristics. In addition, this
approach provides a probabilistic proof of uniqueness for the PDE.

LetM be any random point measure with intensity measure τ(du). Fix a, T > 0.
We now construct a dual process using the measure M, which can be seen as a
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generalized Bellman-Harris branching process (individuals have a finite lifetimes,
births only occur upon death). Let us first describe the process with no suppression
(i.e., c ≡ 1).

• Start with a single particle at time t = 0. Assume that the residual lifetime of this
original particle is a, so that this particle dies out at time a.

• As in a Bellman-Harris process, the number of offspring of an individual and their
lifetime durations are independent of the parent’s characteristics.

• Upon death, each individual x is endowed with an independent copy Mx of M:
the number of offspring of x is given by the number of atoms of Mx and their
lifetime durations are given by the positions of the atoms in Mx .

The dual process with suppression c 	≡ 1 can be coupled with the case c ≡ 1.
Given a realization of the process, if a branching occurs at time t , the children are
killed independently with probability c(T − t). (Note that as in the original CMJ
process, suppression translates into trimming the dual tree.)

Remark 4 We note that there are as many dual processes as there are point processes
with intensity measure τ . Here are a few natural choices:

1. Take M = P .
2. LetM be a Poisson Point Process with intensity measure τ(du). In this particular

case, the dual process is a Bellman-Harris branching process (i.e., the offspring
lifetime durations are independent conditional on offspring number). We note that
τ(du) appears naturally when considering the ancestral spine of a critical CMJ, see
e.g. Schertzer and Simatos (2018). The measure τ can be obtained by size-biasing
P (i.e. biasing by the total mass of P) and then recording the age of the individual
at a uniformly chosen birth event.

Let (Yt ; t ≤ T ) be the stochastic process valued in ∪n∈NRn+ recording the residual

life-times at time t listed in increasing order, i.e. if Yt = (Y (1)
t , · · · ,Y (n)

t ) there are n
particles alive at time t and Y (k)

t is the residual life-time of the k-th individual with
Y (1)
t < · · · < Y (n)

t . (We assumed that τ has a density so that the residual lifetimes are
distinct a.s.) In particular, the particle labelled 1 at any given time t will be the first
to expire, and at death time t + Y (1)

t a random number of children is produced. We
let dim(Yt ) denote the number of particules alive at time t , i.e., the dimension of the
vector Yt .

Proposition 8 (Backward Feynman-Kac formula) For any probability density g, we
have

n(T , a) = Êa

( ∑
i≤dim(YT )

g(Y (i)
T )

)
(13)

where (n(t, a); t, a ≥ 0) is the unique solution to the McKendrick-von Foerster equa-
tion started from g, and Êa is the distribution of the process (Yt ; t ≤ T ) starting with
an individual with residual lifetime a.
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Proof Let t1 < · · · < tk < · · · be the successive branching times of the dual branching
process. Since τ has a density, there is a single branching particle at the successive
branching times t1, . . . Define the process

Zs :=
∑

i≤dim(Ys )

n(T − s,Y (i)
s )

See also Fig. 4 for a pictorial representation of the process. It is plain from the definition
that n is preserved along the characteristics of the PDE, i.e., that for every x the function
s → n(T−s, x−s) remains constant on [0, x).As a consequence, (Zs; s ≥ 0) remains
constant on every interval [tn, tn+1), with the convention t0 = 0. Define zn := Ztn the
value of the process (Zt ; t ≥ 0) at the n-th branching time. Let (Fn; n ∈ N) be the
filtration induced by the process (zn; n ∈ N). By definition of the dual process, we
have

Y (i)
tn− = Y (i)

tn−1
− (tn − tn−1) = Y (i)

tn−1
− Y (1)

tn−1
.

For every n > 1

Êa (zn | Fn−1) =
∑

2≤i≤dim(zn−1)

n(T − tn,Y
(i)
tn−) + c(T − tn)E

[〈M, n(T − tn, ·)〉
]

=
∑

2≤i≤dim(zn−1)

n(T − tn,Y
(i)
tn−) + c(T − tn)

∫ ∞

0
n(T − tn, a)τ (da)

=
∑

2≤i≤dim(zn−1)

n(T − tn,Y
(i)
tn−) + n(T − tn, 0)

= zn−1,

where the third equality follows from the age boundary of the McKendrick-von Foer-
ster equation, and the last equality from the identity n(t − s, a − s) = n(t, a). As
already mentioned, the process (Zs; s ≥ 0) is constant between two branching times.
As a consequence, (Zs; s ≥ 0) is a martingale (w.r.t. its natural fltration) so for every
s ≥ 0,

n(T , a) = Êa

( ∑
i≤dim(Ys )

n(T − s,Y (i)
s )

)
.

Relation (13) follows by taking s = T in the latter expression. �


3 Proofs of themain results

In this section, we provide the proofs of the two laws of large numbers stated in
Sect. 1.4. The proof of Theorem 1 is a direct consequence of the results of the previous
section.
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Fig. 4 Graphical representation of the process (Zs ; s ≤ T ), where s = T − t . We start with a single
individual with residual lifetime a. In this picture, time flows downwards for the branching process. The
residual lifetime of the initial individual decreases linearly at speed one until reaching 0 (this corresponds
to time T − t1 in our representation). At this time, the particle dies and produces 2 red particules. Residual
lifetimes travel along the characteristics of the McKendrick-von Foerster PDE until reaching the spatial
boundary condition {a = 0} where a new branching occurs

Proof of Theorem 1 Recall the definition of the empiricalmeasureμN
t . It can bewritten

as

μN
t (da × {i}) = 1

N

N∑
k=1

μ
1,(k)
t (da × {i}) (14)

where (μ
1,(k)
t ; k ≥ 1) are independent copies of μ1

t . Let f be an arbitrary continuous
and bounded function onR+×S. The law of large numbers combinedwith Corollary 7
implies that

< 1/NμN
t , f >−→ 〈μ̄t , f 〉 a.s.

which ends the proof.

We now turn our attention to the proof of Theorem 2, the law of large number
started from a single individual. Let us briefly recall the setting of this result.

We consider a sequence (tK ; K ≥ 0) of random times with tK → ∞ a.s. on
the non-extinction event. We assume that the process starts from a single individual
infected at time t = 0 and that the contact rate cK of the CMJ depends on K in the
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following way: cK (t) := C(t − tK ), where (C(t); t ∈ R) is a piecewise continuous
function in [0, 1] such that C(t) = 1 for all t < 0.

Proof of Theorem 2 The result will follow by viewing the population at time tK + t
as an adequate random characteristic of the population at time tK . Let us recall some
basic facts about random characteristics of CMJ processes in our context. We refer to
Jagers and Nerman (1984a); Taïb (1992) for a more thorough account on this notion.

We consider a plain CMJwith no contact rate or initial shifted law. Every individual
is characterized by an independent pair of random variables (Px , Xx ). A random
characteristic is a real-valued stochastic process (χ(a); a ≥ 0) that can be constructed
from the collection (Px , Xx ; x ∈ U ). (More formally it is a cádlág processmeasurable
w.r.t. the σ -field induced by these variables.) By convention, it is extended to a process
defined on the whole real line by setting χ(a) := 0 for a < 0.

For an individual x ∈ U let us write χx for the random characteristic constructed
from the collection (Pxy, Xxy; y ∈ U ). It is the characteristic constructed from the
tree rooted at x of all descendants of x . The branching process counted by the random
characteristic χ is then defined as

Zχ (t) =
∑
x∈U

χx (t − σx ).

We now recall one of the main results of Jagers and Nerman (1984b), namely Theo-
rem 5.8 (see also Theorem 4, Appendix A in Taïb (1992)). Recall that α denotes the
Malthusian parameter defined in (9). On top of all the assumptions above, we make
the two following extra assumptions

(a) The characteristic fulfills

∑
n≥0

sup
n≤u≤n+1

e−αu
E(χ(u)) < ∞.

(b) The map a �→ E(χ(a)) is continuous a.e. with respect to the Lebesgue measure.

Then there exists a positive r.v. W∞ (independent of the choice of χ ) such that condi-
tional on non-extinction

Zχ (t) exp(−αt) → W∞
∫ ∞

0
αe−αa

E(χ(a))da in probability as t → ∞.

To illustrate the method, we recall that if we take χ(a) = 1R+(a) then Zχ (t)
coincides with Z(t), the total number of births before time t . For this particular choice
of (deterministic) characteristic, the two properties above are immediately satisfied
(recall that α > 0), so that conditional on non-extinction

∑
x

1{σx<t} exp(−αt) → W∞ in probability.

This convergence ensures that the first item of our theorem is satisfied.
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To prove the second item, let us set

P∅ =
N∅∑
i=1

δAi ,

for the atoms of the infection point process of the ancestor P∅. Further denote by μ
(i)
t

the empirical measure of ages and compartments at time t of the progeny of the i-th
child of the ancestor, thinned by the contact rate (c(t); t ≥ 0), i.e.,

∀t ≥ 0, μ
(i)
t =

∑
x∈U

1{̃σi x<t}δ(t−σ̃i x ,Xix (t−σ̃i x )),

where σ̃x refers to the infection time of x once the tree has been thinned. (That is, σ̃x =
σx if x remains infected after the thinning, or σ̃ = ∞ otherwise.) Our characteristic
of interest can now be defined as

χ(t, f )(a) = f (a + t, X∅(a + t)) +
N∅∑
i=1

1{Ai∈[a,a+t]}〈μ(i)
a+t , f 〉.

for a fixed time t ≥ 0 and a fixed bounded continuous function f . On the one hand,
it should be clear that

Zχ(t, f )
(tK )

(d)= 〈μK
tK+t , f 〉. (15)

To see this, note that the process Zχ(t, f )
is obtained from a plain CMJwith no thinning,

so that only infections after time tK are removed due to the contact rate.
On the other hand, χ(t, f )(a) can be obtained by starting from an initial individual

with age −a, removing all atoms from its infection point process before time 0, and
integrating the empirical measure of the resulting CMJ at time t against f . This is the
description of the CMJ with initial shifted law L̃ conditional on A = a, so that

E

( ∫ ∞

0
g(a)χ(t, f )(a)da

)
= 〈μ̄t , f 〉, (16)

where in μ̄t the age of the initial ancestor is distributed according to g.
Therefore, up to checking (a) and (b), Theorem 5.8 in Jagers and Nerman (1984a)

shows that, as K → ∞,

〈μK
tK+t , f 〉 −→ W∞E

( ∫ ∞

0
αe−αaχ(t, f )(a)da

)

in probability, which in combination with (16) proves the result.
All what remains to be shown is that (a) and (b) are fulfilled. That a �→ E(χ(t, f )(a))

is continuous a.e. follows directly from the fact that τ has a density. Condition (b) is
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a consequence of the following stochastic domination

χ(t, f )(a) ≤ ‖ f ‖∞
(
1 +

N∅∑
i=1

Z (i)(t)

)

where (Z (i)(t); t ≥ 0) are i.i.d. copies of the CMJ without thinning, independent of
P∅.

4 Inference procedure

In this section, we illustrate how to use our framework to make inferences from
macroscopic observables of the epidemic, e.g., incidence of positively tested patients,
hospital or ICU (intensive care unit) admissions, deaths, etc. We show how to use
those observables to extract the underlying age structure of the population, estimate
model parameters, and forecast the future of the epidemic.

We focused on a longitudinal case study in France. FromMarch 18 2020, the French
government has provided daily reports of the numbers of ICU and hospital admissions,
of deaths, of discharged patients, and of occupied ICU and hospital beds. Moreover,
several theoretical studies have already been conducted on the same dataset. This
allowed us to fix the values of some crucial biological parameters that had already been
estimated and to carry out a comparison with our method. We want to emphasize that
the aim of this section is to provide a mathematical framework in which convergence
results canbe rigorously provedwhile remainingflexible enough for other applications.
Our goal is not to provide new estimates of epidemiological parameters for France, as
many robust estimates are already available. For instancewe do not provide confidence
intervals for our estimates, and neither do we conduct a sensibility analysis.

The remainder of the section is laid out as follows. In Sect. 4.1 we identify the
mathematical quantities that impact the dynamics of the epidemic for large population
sizes, and show how to turn them into a likelihood. Section 4.2 then presents the
choice of distribution we made for these quantities and the parameters that need to be
estimated. Finally, estimation of these parameters from the French incidence data is
performed in Sects. 4.3 and 4.4. We start by fitting a simple model in Sect. 4.3 and
then show how this model can be made more complex to account for more complex
data in Sect. 4.4.

4.1 Deriving the likelihood

Under the assumptions of Theorem 2, the number of individuals in a given state i at
time t converges to

ni (t) =
∫ ∞

0
n(t, a)p(a, i)da, (17)

where (n(t, a); t, a ≥ 0) is the solution to (5). The required assumptions are in essence
that the epidemic has been ongoing for a long enough time at the lockdown onset for
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the infected population to be large, which we assume to hold true for France as the
number of cases on March 16 2020 was on the order of thousands of individuals.

Therefore, we take (17) as the predicted number of individuals in state i in our
model. In order to turn (17) into a likelihood, we assume that the observed number of
individuals in state i at time t is distributed according to some discrete law centered on
the predicted value, whichwe take to be a Poisson distribution. Then, the likelihood for
the whole time period is obtained by assuming that the observations are independent
across states and time. The explicit expression for the likelihood is provided in Sect. 3.

Remark 5 The assumption that observations are independent is obviously not met.
For instance, the number of occupied hospital beds is cumulative, so that any error is
propagated from one day to the other. Moreover, there is a clear weekly effect in data
that is not accounted for here. As deriving robust estimates is not the main purpose
of this work, we prefer to keep this independence assumption that leads to simple
expressions for the likelihood, while being aware of its limitation. This assumption
could be relaxed bymodeling explicitly the observation process and its potential errors.

Remark 6 We have decided to use an expression for the likelihood similar to that in
Salje et al. (2020); Sofonea et al. (2021). Such an expression only poorly accounts for
the deviation of the stochastic model from its deterministic limit. Better accounting for
this effect would require to use the likelihood of the stochastic model, or a Gaussian
approximation of it obtained by deriving a functional central limit theorem. In our
context the covariance structure of the population could be obtained by adapting the
expressions in Section 3 of Jagers and Nerman (1984b) to incorporate the contact rate
(c(t); t ≥ 0). However the resulting expressions would be quite cumbersome and
computationally costly so that we prefer to use our simpler Poisson likelihood.

Under our assumptions, the likelihood only depends on (17), which is in turn deter-
mined by four quantities that need to be parametrized:

1. The intensity measure of the infection point process (τ (a); a ≥ 0).
2. The initial number of infected individuals and their age profile.
3. The contact rate after lockdown (c(t); t ≥ 0).
4. The one-dimensional marginals of the life-cycle process (p(a, i); a ≥ 0) for

i ∈ S.

4.2 Parametrization of themodel

Average infection measure. Recall the definition of τ and R0 from Sect. 2.1 and
further define

∀a ≥ 0, τ̂ (a) = τ(a)

R0
.

The total mass of τ , R0, corresponds to the mean number of secondary infections
induced by a single infected individual if c ≡ 1. Thus R0 is the basic reproduction
number at the start of the epidemic, when no control measure is enforced. In order to
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Table 1 Parameter values common to bothmodels. In the “Source” column, “E” indicates that the parameter
has been estimated in the present work

Notation Description Value Source

α Pre-lockdown exponential growth rate 0.315 E

Rpre Basic reproduction number before lockdown 3.25 E

k Shape parameter of the generation time 2.83 Ferretti et al. (2020)

λ Scale parameter of the generation time 5.67 Ferretti et al. (2020)

distinguish it from the reproduction number during lockdown, it will be denoted by
Rpre. We leave it as a parameter to infer.

The function (τ̂ (a); a ≥ 0) is the density of a probability measure known as the
generation time distribution (Wallinga and Lipsitch 2007; Britton and ScaliaTomba
2019). This distribution has been estimated shortly after the epidemic onset by several
studies see Ferretti et al. (2020); Ganyani et al. (2020); Cereda et al. (2021). We use
the estimation of Ferretti et al. (2020), and assume that τ̂ is a Weibull distribution, that
is

∀a ≥ 0, τ̂ (a) = k

λ

(
a

λ

)k−1

e−(a/λ)k , (18)

where the values of the shape parameter k and scale parameter λ are recalled in Table 1.
Initial condition. According to Theorem 2, the initial age structure of the population
is

∀a ≥ 0, n(0, a) = Wαe−αa,

whereα is theMalthusian parameter of the epidemic prior to implementation of control
measures, andW is the number of infected individuals at t = 0, that is, at the lockdown
onset. The parameter α corresponds to the exponential growth rate of any observable
of the epidemic during this period.We chose to estimate it from the cumulative number
of deaths, which appeared to be more reliable than the number of detected cases as the
number of tests conducted in the early phase of the epidemic in France varied greatly.
It was estimated using a linear regression on the logarithm of the number of deaths
from March 7 to March 20 2020, and the corresponding basic reproduction number
before lockdown, Rpre, was computed using the Euler-Lotka equation (9) assuming
that the generation time distribution is given by (18). Both estimates are shown in
Table 1.
Contact rate. The contact rate (c(t); t ≥ 0) accounts for the temporal variations
in transmissions after the lockdown onset. As we focus on the period from March to
May 2020 where no additional control measure has been enforced in France, we will
assume that (c(t); t ≥ 0) is constant and denote by c0 its value, that is, c ≡ c0. The
reproduction number after the lockdown is denoted by Rpost := c0Rpre.
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Life-cycle. The last quantities that need to be defined are the one-dimensional
marginals of the life-cycle process (X(a); a ≥ 0). These could be directly estimated
from hospital patient pathways as in Linton et al. (2020); Verity et al. (2020); Lefrancq
et al. (2021). However, when such data is not available they need to be estimated
from individual counts in each compartment. In this case, we propose the following
parametrization of the process (X(a); a ≥ 0) based on Gamma-distributed sojourn
times.

Let us denote by (Xn; n ≥ 0) the sequence of states visited by (X(a); a ≥ 0). We
assume that (Xn; n ≥ 0) is a Markov chain on S, and that it ends either in a “dead”
or “recovered” state, that are assumed to be absorbing.

For i ∈ S, the sojourn time in i is supposed to be Gamma-distributed with mean
mi and variance mi/γ , for some global dispersion parameter γ shared across all
states. More precisely, let (Dn; n ≥ 0) denote the sequence of sojourn times of
(X(a); a ≥ 0), that is, Dn is the sojourn time in state Xn . We assume that conditional
on (Xn; n ≥ 0), the variables (Dn; n ≥ 0) are independent. Moreover, if Xn = in ,
then Dn follows a Gamma distribution with mean min and variance min/γ , that is,

Dn ∼ γ γmin

�(γmin )
uγmin−1e−γ udu.

Thus, the one-dimensional marginals are parametrized by the transitions of a
Markov chain (Xn; n ≥ 0) on S, as well as by one parameter mi for each i ∈ S, and
a global parameter γ . Under this parametrization the one-dimensional marginals can
be efficiently computed, while only requiring one parameter for the sojourn time in
each state. Two concrete examples of Markov chains (Xn; n ≥ 0) are discussed in
the next sections.

4.3 Inference with the admissionmodel

The first model that we consider, the admission model, is a parsimonious model
designed to obtain estimates of the reproduction number during lockdown, and of
the number of infections in France in early March. It is illustrated in Fig. 5. We fit it
to the three “incidence” time series: the daily number of admissions in hospital and
ICU, and the daily number of deaths.

Description of themodel. Upon infection, with probability 1− phosp, an individual
develops a mild form of COVID-19 and is placed in state I , which encompasses
all cases that do not require a hospitalization. With probability phosp the individual
has a severe infection and is placed in state C . Individuals in state C are eventually
hospitalized and moved to state H . Then, with probability pICU individuals in state
H are admitted in ICU and moved to state U . Otherwise they eventually recover and
are discharged. Finally, individuals in state U die with probability pdeath, or recover
with probability 1 − pdeath. In this model, only individuals in ICU may die.

As we are fitting the number of individuals that enter a state, and not the number
of individuals that are currently in that state, we only need to track the times TH , TU ,
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Fig. 5 Illustration of the admission model

and TD elapsed between infection and hospital admission, ICU admission, and death,
respectively.

Inference results. Estimations of phosp, pICU and of the death probability conditional
on hospitalization (equal in our setting to pICU × pdeath) in France have already been
conducted in Salje et al. (2020). We used these estimates and considered the values of
phosp, pICU, and pdeath as fixed. All other parameters were estimated using amaximum
likelihood procedure described in Sect. 3. The parameter estimations are provided in
Table 2, and the corresponding predicted values for the time series under consideration
are displayed in Fig. 1. Overall, our simple model seems to match the observed data.
Note however that the model overestimates the number of ICU admissions in the
second part of the lockdown. This is likely due to a temporal reduction in the ICU
admission probability which has been reported in Salje et al. (2020).

Our estimation of the basic reproduction number during the lockdown period is
Rpost = 0.745.This suggests that lockdownhas reduced the basic reproductionnumber
by a factor c0 = 0.23 compared to the beginning of the epidemic. Moreover, we
estimated that W = 9.85 × 105 infections have occurred in France before March 17.
Both these values are in line with previous estimates for France (Sofonea et al. 2021;
Salje et al. 2020).

We did not impose that TH < TU in the inference procedure. Interestingly we
found that the data are best explained by assuming that the mean of TH is 14.4 days,
whereas the mean of TU is 11.4 days. This indicates that the delay between infection
and hospital admission is shorter for individuals that end up in ICU, compared to
the average time between infection and hospitalization. Therefore it would be more
appropriate to allow individuals to have an admission to hospital delay that is different
depending on whether they will end up in ICU or not, modeling the fact that they have
a more severe form of the disease. We estimated the mean of TD , the time between
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Table 2 Inferred parameter set for the admission model. The values indicated for the durations correspond
to the means of the Gamma distributions. In the “Source” column, “E” indicates that the parameter has been
estimated in the current work

Notation Description Value Source

Rpost Reproduction number during
lockdown

0.745 E

W Total number of infections
before March 17 2020

9.85 × 105 E

phosp Probability of being
hospitalized

0.036 Salje et al. (2020)

pICU Probability of entering ICU
conditional on being at the
hospital

0.19 Salje et al. (2020)

pICU · pdeath Death probability conditional
on being hospitalized

0.181 Salje et al. (2020)

TH Delay between infection and
hospital admission

14.4 days E

TU Delay between infection and
ICU admission

11.4 days E

TD Delay between infection and
death

18.6 days E

γ Scale parameter common to
all Gamma distributions

0.463 E

infection and death, to be 18.6 days. This estimate is lower than but consistent with
previous estimates based on the study of individual-case data (Wu et al. 2020; Linton
et al. 2020; Verity et al. 2020).

4.4 Inference with the occupancymodel

Wenowconsider amodel aimed at providing predictions for the number of hospitalized
individuals and ICU patients. The model is fitted to the three “incidence” time-series,
and to three additional “prevalence” time-series: the number of occupied hospital and
ICU beds, and the number of discharged hospital patients.

A first attempt to fit the prevalence curves could be to keep the admission model
of Fig. 5 and to estimate the time between hospital admission and discharge using the
observed number of occupied ICU, hospital beds, and discharged patients. However
this only yields a poorfit of the data (seeSect. 4).We identified twomain reasons for this
discrepancy. First, we assumed that all individuals are admitted to ICU prior to death.
Using the probability estimated in Salje et al. (2020) then yields that the probability
of dying conditional on being in ICU is 0.953. This value is unrealistically high, and
we need to assume that a fraction of hospital deaths occur without going through the
ICU. Second, under the admission model, the delay between hospital admission and
discharge is almost unimodal. However, the observed number of occupied hospital
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beds rises fast but falls slowly. Such a shape cannot be easily accounted for by a
unimodal distribution for the time spent in hospital.

Description of the model. Taking into account the previous two points required us
to make the model more complex. The resulting model, referred to as the occupancy
model, is illustrated in Fig. 6. We now consider that upon infection, individuals go to
one of three states depending on the severity of their infection:

• The state Cu which gathers critical infections that lead to death or ICU admission.
The probability of having a critical infection is denoted by pcrit .

• The state Ch which corresponds to severe infections that require a hospitalization
but are not critical. Such infections occur with probability psev.

• The I state which consists of all mild infections that do not lead to a hospital
admission, and occur with probability 1 − pcrit − psev.

Individuals in state Ch are admitted to hospital after a duration DCh . Then, with
probability pshort they are discharged after a duration Dshort, while with probability
1 − pshort they are discharged after a duration Dlong.

Critically infected individuals are admitted to hospital after a duration DCu . Upon
arrival at hospital, they die immediately with probability dhosp, or go to ICU after a
duration DHu . Individuals in ICUdiewith probabilitydICU after a delay DD . Otherwise
they are discharged after a stay of length DU .

Inference results. In our model, the probability of hospital admission is pcrit + psev,
the probability of ICU admission is pcrit(1 − dhosp) and that of death is pcrit(dhosp +
(1 − dhosp)dICU). We have fixed these three values to those estimated in Salje et al.
(2020), and we only had one remaining parameter out of 4 (pcrit, psev, dshort, dICU) to

Fig. 6 Illustration of the occupancy model
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estimate from the data. We have fixed the time DU to 1.5 days as estimated in Salje
et al. (2020). All other parameters were estimated using amaximum likelihoodmethod
described in Sect. 3. The estimated parameter set is shown in Table 3, while Fig. 2
shows the best-fitting model.

The estimated parameters provide a good fit of the six observed time series. Again,
the model has a tendency to overestimate the ICU admissions in the second part of the
lockdown, which has the same interpretation as for the admission model.

Under the occupancymodel, we estimated that Rpost = 0.734, andW = 9.52×105.
These estimates are extremely close to those made with the admission model. The
estimated mean time between infection and death or hospital, ICU admission are
respectively 19.5 days, 13.7 days and 12.5 days. Again we see that these estimates
in the more complex model are consistent with those of the simple model. The mean
recovery time from hospital is 19.4 days for severe infections, and 28.2 days for
critical infections. This yields an overall mean recovery time of 20.0 days. Finally, we
estimated that the death probability conditional on being in ICU is 0.709. This yields
that in our model a fraction 0.256 of all deaths occur shortly after hospital admission.
This result is consistent with Salje et al. (2020) that estimated that a fraction 0.15
of all deaths occurred within the first day after hospital admission. However, it has
been reported in France (2020) that the death probability of ICU patients is 0.23. Our
estimated value is thus unrealistically high. This indicates that there is a fraction of
hospital deaths that occur without any ICU admission, and not quickly after hospital
admission, that our model is not accounting for.

Our estimates, though they are not the key message of the present paper, can nev-
ertheless draw attention to potential heterogeneities in the infected population. We
estimated that the mean time between infection and ICU admission is shorter than
that between infection and hospital admission. This suggests that the time between
infection and severe symptom onset is shorter for critical infection, that lead to ICU
admission, than for milder ones. Moreover, fitting the prevalence time series required
to divide the hospital and death compartments in two subcompartments, indicating
that the data are not well explained by a simple homogeneous model, as seen in Fig. 7.
Such heterogeneity could originate from underlying structuring variables, such as
comorbidity or (actual) age, that we are not accounting for. Many estimates of clinical
features, such as the incubation period, are obtained from a pooled dataset that does
not take heterogeneity in the population into account (Backer et al. 2020; Linton et al.
2020; Lauer et al. 2019; Tindale et al. 2020; Bi et al. 2020; Massonnaud et al. 2020;
Djidjou-Demasse et al. 2020). When estimating the total number of infected individ-
uals using only a fraction of the detected cases, e.g., using the hospital admissions or
deaths, it is interesting to keep in mind that the time periods estimated from pooled
studies could be inaccurate for the fraction of infected individuals under consideration.

Acknowledgements The authors thank the Center for Interdisciplinary Research in Biology (CIRB) for
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Appendix

Numerical simulation of the PDE

Computing the likelihood of ourmodel requires to obtain an expression for the solution
(n(t, a); t, a ≥ 0) of the PDE (5). This equation was solved numerically using a
backward difference scheme based on the method of characteristics (Kim 2006).

For h > 0, we approximate the value of (n(t, a); t, a ≥ 0) on the lattice
{(ih, kh); i ≤ T ∗, k ≤ A∗} by the array (u(k, i); k, i) defined as follows:

∀k ≤ T ∗ − 1, i ≤ A∗ − 1, u(k + 1, i + 1) = u(k, i)

∀i ≤ A∗, u(0, i) = x0g(ih)

∀k ≤ T ∗ − 1, u(k + 1, 0) = h
A∗∑
i=1

τ(ih)u(k + 1, i).

Note that individuals with age larger than hA∗ are discarded. This maximal age was
chosen so that individuals with age greater than hA∗ have negligible infection rate,
and belong to the dead or recovered compartment with high probability.

Expected number of entrances in a state

Theorem 2 provides an expression for the number of individuals ni (t) in compartment
i at time t . As we want to fit “incidence” data, that is, the number of individuals that
enter a given compartment, we need to derive an expression for this quantity. To this
aim, for two compartments i, j ∈ S, let us write i � j if an individual must visit i
before it gets to j . For instance, in the admission model we have C � H � I � D.
Then, the number of entrances ei (t, t + s) in i between t and t + s is given by

ei (t, t + s) = ni (t + s) − ni (t) +
∑
j�i
j 	=i

n j (t + s) − n j (t). (19)

The last term in the previous sum corresponds to the number of individuals who leave
compartment i during [t, t + s]. Expression (19) can be readily used to derive the
expected number of entrance in i from (n(t, a); t, a ≥ 0) and (p(a, j); a ≥ 0).

It is interesting to note that (19) only depends on the distribution of the entrance
time Ti of (X(a); a ≥ 0) in i , defined as:

Ti := inf{a ≥ 0 : X(a) = i}

with the convention inf ∅ = ∞. To see this, one can write

ei (t, t + s) =
∫ ∞

0

(
n(t + s, a) − n(t, a)

)( ∑
j�i

p j (a)

)
da
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=
∫ ∞

0

(
n(t + s, a) − n(t, a)

)
P(Ti ≤ a)da.

From an inference perspective, this is quite convenient since computing ei (t, t + s)
only requires to infer the distribution of Ti .

Likelihood computation

The daily incidence and prevalence data for France between March 18 and May 11
were taken from France (2020). The days during this time period are indexed by
{1, 2, . . . , tmax}, where day 1 is March 18 and day tmax is May 11.

For i ∈ {H ,U , D}, we denote by eobsi (t) the reported number of admissions to
hospital, ICU, or the number of deaths on day t , respectively. Moreover, for i ∈
{H ,U , R}, we denote by nobsi (t) the reported number of occupied beds in hospital,
ICU, or the number of discharged patients on day t , respectively. Let us further denote
by

π(k; λ) = e−λ λk

k!
the probability mass function of a Poisson distribution with parameter λ.

Then, the likelihood of a parameter set θ under the admission model is given by

Lad(θ) =
∏

i∈{H ,U ,D}

tmax∏
k=1

π
(
eobsi (tk); ei (tk−1, tk)

)
.

The expected number of entrances in state i , ei (tk−1, tk), is computed using (19) with
the one-dimensional marginals of the admission model and the numerical approxima-
tion of (5) described in Sect. 1.

For the occupancy model, the likelihood of the parameter set θ is given by

Loc(θ) =
∏

i∈{H ,U ,D}

tmax∏
k=1

π
(
eobsi (tk); ei (tk−1, tk)

) ×
∏

i∈{H ,U ,R}

tmax∏
k=1

π
(
nobsi (tk); ni (tk)

)
.

(20)
Again, the value of ei (tk−1, tk) is computed using (19) and that of ni (tk) using (17),
but using the one-dimensional marginals of the occupancy model. Note that under this
more complex model, there are two pathways to hospital (critical and severe infec-
tion), two pathways to death (with or without hospital admission), and three pathways
to hospital discharge (fast discharge, slow discharge, or discharge of ICU patients).
The predicted values for the number of individuals in each of these compartments is
obtained by summing over all pathways leading to the corresponding state.

For both models, we looked for the parameter set θ maximizing the likelihood.
It was obtained using the minimize function of the Python scipy.optimize
module, using aNelder-Meadalgorithm.Weselected as initial point of the optimization
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Fig. 7 Best fit of the admission model for prevalence data

algorithm a set of parameters that were close to the existing estimates in the literature,
or which seemed realistic if such estimates did not exist.

Best fitting prevalence curves under admissionmodel

Recall the admission model from Sect. 4.3. By adding two parameters to the model,
one for the mean time between hospital admission and discharge, the other for the
mean time between ICU admission and discharge, we can derive an expression for
the likelihood of the prevalence and incidence time series under the admission model,
similar to (20). The best-fitting values for these two parameters were obtained by
maximizing the likelihood with all other parameters values fixed to those estimated in
Table 2. The corresponding model is displayed in Fig. 7.
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