Nonlinear Helmholtz equations with sign-changing diffusion coefficient - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Nonlinear Helmholtz equations with sign-changing diffusion coefficient

Résumé

We study nonlinear Helmholtz equations with sign-changing diffusion coefficients on bounded domains. The existence of an orthonormal basis of eigenfunctions is established making use of weak T-coercivity theory. All eigenvalues are proved to be bifurcation points and the bifurcating branches are investigated both theoretically and numerically. In a one-dimensional model example we obtain the existence of infinitely many bifurcating branches that are mutually disjoint, unbounded, and consist of solutions with a fixed nodal pattern. We also extend the numerics to a Drude model.
Fichier principal
Vignette du fichier
2022 Mandel Moitier Verfurth [WAVES proceeding].pdf (328.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03830606 , version 1 (26-10-2022)

Identifiants

  • HAL Id : hal-03830606 , version 1

Citer

Rainer Mandel, Zoïs Moitier, Barbara Verfürth. Nonlinear Helmholtz equations with sign-changing diffusion coefficient. 15th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2022), Jul 2022, Palaiseau, France. ⟨hal-03830606⟩

Collections

TDS-MACS
37 Consultations
33 Téléchargements

Partager

More