From algebra to analysis: new proofs of theorems by Ritt and Seidenberg - Archive ouverte HAL
Article Dans Une Revue Proceedings of the American Mathematical Society Année : 2022

From algebra to analysis: new proofs of theorems by Ritt and Seidenberg

Résumé

Ritt's theorem of zeroes and Seidenberg's embedding theorem are classical results in differential algebra allowing to connect algebraic and model-theoretic results on nonlinear PDEs to the realm of analysis. However, the existing proofs of these results use sophisticated tools from constructive algebra (characteristic set theory) and analysis (Riquier's existence theorem). In this paper, we give new short proofs for both theorems relying only on basic facts from differential algebra and the classical Cauchy-Kovalevskaya theorem for PDEs.
Fichier principal
Vignette du fichier
2107.03012.pdf (182.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03826837 , version 1 (15-02-2024)

Identifiants

Citer

Dmitrii Pavlov, Gleb Pogudin, Yu. Razmyslov. From algebra to analysis: new proofs of theorems by Ritt and Seidenberg. Proceedings of the American Mathematical Society, 2022, 150, ⟨10.1090/proc/16065⟩. ⟨hal-03826837⟩
36 Consultations
14 Téléchargements

Altmetric

Partager

More