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From algebra to analysis: new proofs of
theorems by Ritt and Seidenberg

D. Pavlov1 G. Pogudin2 Yu.P. Razmyslov3

Abstract

Ritt’s theorem of zeroes and Seidenberg’s embedding theorem are clas-
sical results in differential algebra allowing to connect algebraic and model-
theoretic results on nonlinear PDEs to the realm of analysis. However, the
existing proofs of these results use sophisticated tools from constructive al-
gebra (characteristic set theory) and analysis (Riquier’s existence theorem).

In this paper, we give new short proofs for both theorems relying only on
basic facts from differential algebra and the classical Cauchy-Kovalevskaya
theorem for PDEs.

1 Introduction

The algebraic theory of differential equations, also known as differential alge-
bra [19], aims at studying nonlinear differential equations using methods of alge-
bra and algebraic geometry. For doing this, one typically abstracts from functions
(analytic, meromorphic, etc) to elements of differential fields (fields equipped
with a derivation or several commuting derivations). This approach turned out
to be fruitful yielding interesting results from theoretical and applied perspec-
tives (see, e.g., [2, 5, 6, 16, 21]). Furthermore, one can additionally use powerful
tools from model theory to study differential fields (see, e.g., [14, 15]).

In this context, a fundamental question is how to transfer results about dif-
ferential fields back to the realm of analysis. There are two classical theorems in
differential algebra typically used for this purpose:
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• Ritt’s theorem of zeroes [19, p. 176] which can be viewed as an analogue of
Hilbert’s Nullstellensatz. The theorem implies that any system of nonlinear
PDEs having a solution in some differential field has a solution in a field of
meromorphic functions on some domain.

• Seidenberg’s embedding theorem [20] which is often used as a differential ana-
logue of the Lefschetz principle (e.g. [1, 3, 6, 7, 10]). The theorem says that
any countably generated differential field with several commuting deriva-
tions can be embedded into a field of meromorphic functions on some do-
main.

In [20], Seidenberg gave a complete proof of his theorem for the case of a
single derivation (see also [14, Appendix A]). For the PDE case, he gave a sketch
which reuses substantial parts of Ritt’s proof of Ritt’s zero theorem from [19]. The
latter proof concludes the whole monograph and heavily relies on the techniques
developed there. In particular, Ritt’s proof uses the machinery of characteristic
sets [19, Chapter V] which is a fundamental tool in differential algebra but not
so well-known in the broader algebra community and quite technical existence
theorem for PDEs due to Riquier [19, Chapter VIII] (see also [18]) which, to the
best of our knowledge, is not discussed in the standard PDE textbooks.

Due to the importance of the theorems of Ritt and Siedenberg as bridges be-
tween the algebraic and analytic theories of nonlinear PDEs, we think that it is
highly desirable to have short proofs of these theorems accessible to people with
some general knowledge in algebra and PDEs. In the present paper, we give such
proofs. Our proofs rely only on some basic facts from differential algebra and the
classical Cauchy-Kovalevskaya theorem for PDEs.

Our proof strategy is inspired by the argument from [8, Theorem 3.1] for the
case of one derivation. However, the techniques from [8] had to be substantially
developed in order to tackle the PDE case (which is quite subtle [13]) and to prove
both Ritt’s and Seidenberg’s theorem (not only the Ritt’s as in [8]). The key ingre-
dients of the argument are an auxiliary change of derivations (Lemma 1) which
helps us to bring a system of PDEs into the form as in the Cauchy-Kovalevaskaya
theorem, Taylor homomorpishms (Definition 7) allowing to build formal power
series solutions, and a characterization of differentially simple algebras (Lemma 5).

The paper is organized as follows. Section 2 contains the basic definitions
used to state the main results in Section 3. Section 4 contains relevant notions
and facts from algebra and analysis used in the proofs. The proofs are located in
Section 5. Section 6 contains a remark on the special case of algebras over C.

2 Preliminaries

2.1 Algebra

Throughout the paper, all algebras are assumed to be unital (that is, with a multi-
plicative identity element).
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Notation 1 (Multi-indices). For every α = (α1, . . . , αm) ∈ Zm>0 and for every tuple
t = (t1, . . . , tm) of elements of a ring, we denote

tα := tα1

1 · . . . · tαm and α! := α1! · . . . · αm!.

Definition 1 (Differential rings and algebras). Let ∆ = {δ1, . . . , δm} be a set of
symbols.

• LetR be a commutative ring. An additive map δ : R → R is called derivation
if δ(ab) = δ(a)b+ aδ(b) for any a, b ∈ R.

• A commutative ring R is called ∆-ring if δ1, . . . , δm act on R as pairwise
commuting derivations. If R is a field, it is called ∆-field.

• Let A be a commutative algebra over ring R. If A and R are ∆-rings and
the action of ∆ on R coincides with the restriction of the action of ∆ on
R · 1A ⊆ A, then A is called ∆-algebra over R.

Definition 2 (Differential generators). Let A be a ∆-algebra over a ∆-ring R. A
set S ⊆ A is called a set of ∆-generators of A over R if the set

{δαs | s ∈ S, α ∈ Zm>0}

of all the derivatives of all the elements of S generates A as R-algebra. A ∆-
algebra is said to be ∆-finitely generated if it has a finite set of ∆-generators.

∆-generators for ∆-fields are defined analogously.

Definition 3 (Differential homomorphisms). Let A and B be ∆-algebras over ∆-
ring R. A map f : A → B is called ∆-homomorphism if f is a homomorphism
of commutative R-algebras and f(δa) = δf(a) for all δ ∈ ∆ and a ∈ A. An
injective ∆-homomorphism is called ∆-embedding.

Definition 4 (Differential algebraicity). Let A be a ∆-algebra over a ∆-ring R. An
element a ∈ A is said to be ∆-algebraic over R if the set {δαa | α ∈ Zm>0} of all the
derivatives of a is algebraically dependent over R.

In other words, a satisfies a nonlinear PDE with coefficients in R.

2.2 Analysis

Definition 5 (Multivariate holomorphic functions). Let U ⊆ Cm be a domain.
A function f : U → C is called a holomorphic function in m variables on U if
it is holomorphic on U with respect to each individual variable. The set of all
holomorphic functions on U will be denoted by Om(U)

Notation 2. Let f be a holomorphic function on U ⊆ Cm. By V (f) we denote the
set of zeroes of f .

Definition 6 (Multivariate meromorphic functions, [4, Chapter IV, Definition 2.1]).
LetU ⊆ Cm be a domain. A meromorphic function on U is a pair (f,M), whereM is
a thin set in U and f ∈ Om(U \M) with the following property: for every z0 ∈ U ,
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there is a neighbourhood U0 of z0 and there are functions g, h ∈ Om(U0), such
that V (h) ⊆M and

f(z) =
g(z)

h(z)
for every z ∈ U0 \M.

The set of meromorphic functions on a domain U is denoted Merm(U). By con-
vention we define Mer0(U) = O0(U) = C.

For every domain U ⊆ Cm, the field Merm(U) has a natural structure of ∆-
field with δi ∈ ∆ acting as ∂

∂zi
, where z1, . . . , zm are the coordinates in Cm. Fur-

thermore, if U ⊆ V , then there is a natural ∆-embedding Merm(V ) ⊆ Merm(U).

3 Main Results

Theorem 1 (Seidenberg’s embedding theorem). Let W ⊆ Cm be a domain and
let K ⊆ Merm(W ) be at most countably ∆-generated ∆-field (over Q). Let L ⊃ K
be a ∆-field finitely ∆-generated over K.

Then there exists a domain U ⊆W and a ∆-embedding f : L→ Merm(U) over K.

Theorem 2 (Ritt’s theorem of zeroes). Let W ⊆ Cm be a domain and let K ⊆
Merm(W ) be a ∆-field. Let A be a finitely generated ∆-algebra over K.

Then there exists a non-trivial ∆-homomorphism f : A → Merm(U) for some do-
main U ⊆W ⊆ Cm such that f(a) is ∆-algebraic over K for any a ∈ A.

Corollary 1. Let A be a finitely ∆-generated ∆-algebra over C. Then there exists a
non-trivial ∆-homomorphism f : A→ Om(U) for some domain U ⊆ Cm.

Proof. Ritt’s theorem yields the existence of a∆-homomorphism f : A→ Merm(W ).
Let a1, . . . , an be a set of ∆-generators of A. There is a domain U ⊆ W such that
f(a1), . . . , f(an) are holomorphic in U . Therefore, the restriction of f to U yields a
∆-homomorphism A→ Om(U).

4 Notions and results used in the proofs

4.1 Algebra

Notation 3. Let R be a ∆-ring. By R[[z1, . . . , zm]] we denote the ring of formal
power series over R in variables z1, . . . , zm. It has a natural structure of ∆-algebra
over R with δi ∈ ∆ acting as ∂

∂zi
.

Definition 7 (Taylor homomorphisms). Let A be a ∆-algebra over ∆-field K, L ⊇
K be a ∆-field and the action of ∆ on L be trivial. Let ψ : A → L be a (not
necessarily differential) homomorphism of K-algebras. Let w ∈ Lm. Then we
define a map called Taylor homomorphism Tψ,w : A→ L[[t1, . . . , tm]] by the formula

Tψ,w(a) :=
∑

α∈Zm

>0

ψ(δαa)
(t− w)α

α!
for every a ∈ A.

Direct computation shows [17, §44.3] that that Tψ,w is a ∆-homomorphism.
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Notation 4. Let R be a ∆-ring. For every subset S ⊆ R, by ∆∞S we denote the
set {δαs|α ∈ Zm>0, s ∈ S} of all derivatives of the elements of S.

Definition 8 (Differential polynomials). Let R be a ∆-ring. Consider an algebra
of polynomials

R[∆∞x1, . . . ,∆
∞xn] := R[δαxi|α ∈ Zm>0, i = 1, . . . , n]

in infinitely many variables δαxi. We define the structure of ∆-algebra over R by

δi(δ
αxj) := (δiδ

α)xj for every 1 6 i 6 m, 1 6 j 6 n, α ∈ Zm>0.

The resulting algebra is called the the algebra of ∆-polynomials in x1, . . . , xn over R.

Definition 9 (Separants). Let R be a ∆-ring. Let P (x) ∈ R[∆∞x]. We introduce
an ordering on the derivatives of x as follows:

δαx < δβx ⇐⇒ α <grlex β, (1)

where grlex is the graded lexicographic ordering of Zm>0. Let δµx be the highest
(w.r.t. the introduced ordering) derivative appearing in P . Consider P as a uni-
variate polynomial in δµx over R[δαx|α <grlex µ]. We define the separant of P by

sep∆
x (P ) :=

∂

∂(δµx)
P.

Remark 1. Throughout the rest of the paper, we assume that the ordering of a set
of derivatives of an element of a ∆-algebra is the one defined in (1).

Definition 10 (Differential algebraicity and transcendence). LetR be a ∆-ring and
let A be a ∆-algebra over R.

• A subset S ⊆ A is said to be ∆-dependent over R if ∆∞S is algebraically
dependent over R. Otherwise, S is called ∆-independent over R.

• An element a ∈ A is said to be ∆-algebraic over R if the set {a} is ∆-
dependent over R. Otherwise, a is called ∆-transcendental over R.

Definition 11 (Differential transcendence degree). LetA be a ∆-algebra over fieldK.
Any maximal ∆-independent over K subset of A is called a ∆-transcendence basis
of A over K. The cardinality of a ∆-transcendence basis does not depend on the
choice of the basis [11, II.9, Theorem 4] and is called the ∆-transcendence degree
of A over K (denoted by difftrdeg∆K A).

Definition 12 (Differential ideals). Let R be a ∆-ring. A subset I ⊆ R is called a
differential ideal if it is an ideal of A considered as a commutative algebra and δa ∈
I for any δ ∈ ∆ and a ∈ I .

Notation 5. Throughout the rest of the paper, we use the notation ∆0 := ∆ \ {δ1}.
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4.2 Analysis

The following is a special case of the Cauchy-Kovalevskaya theorem [9, Chapter
V, §94] which is sufficient for our purposes.

Theorem 3 (Cauchy-Kovalevskaya). Consider holomorphic functions in variables z1, . . . , zm.
The operator of differentiation with respect to zi will be denoted by δi for i = 1, . . . , m.
For a positive integer r, we introduce a set of multi-indices Mr := {α ∈ Zm>0 | |α| 6
r, α1 < r}. Consider a PDE in an unknown function u

δr1u = F (z1, . . . , zm; δ
αu | α ∈Mr), (2)

where F is a rational function over C in z1, . . . , zm and derivatives {δαu | α ∈Mr}.
Consider complex numbers a1, . . . , am and functions ϕ0, . . . , ϕr−1 in variables z2, . . . , zm

holomorphic in a neighbourhood of (a2, . . . , am) such that F is well-defined under the
substitution:

1. ai for zi for every 1 6 i 6 m

2. and (δ(α2,...,αm)ϕα1
)(a2, . . . , am) for δαu for every α ∈ Mr.

Then there is a unique function u holomorphic in a neighborhood of (a1, . . . , am) satisfy-
ing (2) and

(δi1u)|z1=a1 = ϕi for every 0 6 i < r.

5 Proofs

This section is structured as follows. In Section 5.1, we introduce the notion of
∆-integral elements which is an algebraic way saying that an element satisfies a
PDE as in the Cauchy-Kovalevskaya theorem. We prove that there always exists
a linear change of derivations making a fixed element ∆-integral (Lemma 1) and
prove Lemma 2 which is a key tool for reducing the problem to the same problem
in fewer derivations.

Section 5.2 contains the proof of Seidenberg’s embedding theorem which pro-
ceeds by induction on the number of derivations using Lemma 2. We deduce
Ritt’s theorem of zeroes in Section 5.3 from Seidenberg’s theorem and Lemma 5
characterizing ∆-simple algebras.

5.1 Differentially integral generators

Definition 13 (∆-integral elements). Let R be a ∆-ring and let A be a ∆-algebra
over R. An element a ∈ A is said to be ∆-integral over R if there exists P (x) ∈
R[∆∞x] such that

• P (a) = 0, sep∆
x (P )(a) 6= 0;

• the highest (w.r.t. the ordering (1)) derivative in P is of the form δr1x.
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Remark 2. If a ∈ A is ∆-integral over R, then the equality δ1(P (a)) = 0 can be
rewritten as

sep∆
x P (a) · δ

r+1
1 a = q(a), where q ∈ R[δαx | α <grlex (r + 1, 0, . . . , 0)].

Therefore, if sep∆
x P (a) is invertible in A, we have δr+1

1 a =
q(a)

sep∆
x (P )(a)

.

Lemma 1. Let R be a ∆-ring and let A be a ∆-algebra over R. Let A be ∆-generated
over R by ∆-algebraic over R elements a1, . . . , an. Then there exists an invertible Z-
linear change of derivations transforming ∆ to ∆∗ such that a1, . . . , an are ∆∗-integral
over R.

Proof. Fix 1 6 i 6 n. Since ai is ∆-algebraic over R, there exists nonzero fi ∈
R[∆∞x] such that fi(ai) = 0. We will choose this fi so that its highest (w.r.t. (1))
derivative is minimal and, among such polynomials, the degree is minimal. We
will call such fi a minimal polynomial for ai.

We introduce variables λ2, . . . , λm algebraically independent over A and ex-
tend the derivations from A to A[λ2, . . . , λm] by δiλj = 0 for all i = 1, . . . , m and
j = 2, . . . , m. Consider a set of derivations D := {d1, d2, . . . , dm} defined by

d1 := δ1, dj := δj + λiδ1 for j = 2, . . . , m.

Consider any 1 6 i 6 n. We rewrite fi in terms of D replacing δ1 with d1 and
δj with dj −λi d1 for j = 2, . . . , m. We denote the order of the highest derivative
appearing in fi by ri and the partial derivative ∂

∂(d
ri

1
x)
fi by si. We will show that

si(ai) 6= 0. We write

si(x) =
∂fi

∂(dri1 x)
=

∑

q1+...+qm=ri

λq22 . . . λ
qm
m

∂fi
∂(δq11 . . . δqmm x)

.

Due to the minimality of fi as a vanishing polynomial of a and the algebraic
independence of λj , the latter expression does not vanish at x = ai. So, si(ai) 6= 0.

Since, for every 1 6 i 6 n, si(ai) is a nonzero polynomial in λ2, . . . , λm over
A, it is possible to choose the values λ∗2, . . . , λ

∗
m ∈ Z ⊂ R so that neither of si(ai)

vanishes at (λ∗2, . . . , λ
∗
m). Let ∆∗ = {δ∗1, . . . , δ

∗
m} be the result of plugging these

values to D. Then we have sep∆∗

x f(ai) =
∂fi

∂((δ∗1)
rix)

(ai) 6= 0 for every i = 1, . . . , n,

so a1, . . . , an are ∆∗-integral over R.

Lemma 2. Let R be a ∆-ring and let A be a ∆-algebra over R. Assume that A is a
domain and is ∆-generated by a1, . . . , an over R which are ∆-integral over R.

Then there exists a ∈ A such that A[1/a] is finitely ∆0-generated over R.

Proof. We will prove the lemma by induction on the number n of ∆-generators
of A. If n = 0, then A = R and A is clearly finitely ∆0-generated.

Assume that the lemma is proved for all extensions ∆-generated by less than n
elements. Applying the induction hypothesis to ∆-algebraA0 := R[∆∞a1, . . . ,∆

∞an−1],
we obtain b0 ∈ A0 such that A0[1/b0] is a finitely ∆0-generated R-algebra.
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Since an is ∆-integral over R, there exists P (x) ∈ R[∆∞x] such that P (an) = 0,
the highest derivative in P is δr1x, and b2 := sep∆

x (P )(an) 6= 0. We claim that

A

[
1

b1b2

]
= A0

[
1

b1
,∆∞

0

(
1

b2

)
,∆∞

0 (δ6r1 an)

]
, (3)

where δ6r1 an := {an, δ1an, . . . , δ
r
nan}. SinceA0[1/b1] is finitely ∆0-generated overR,

this would imply that A[1/(b1b2)] is finitely ∆0-generated over R as well.
In order to prove (3), it is sufficient to show that the images of {δ6r1 an, 1/b2}

under δ1 belong to B := A0[1/b1,∆
∞
0 (1/b2),∆

∞
0 (δ6r1 an)]. This is clear for δ<r1 an, so

it remains to show that δr+1
1 an, δ1(1/b2) ∈ B:

• For δr+1
1 an we use Remark 2 to write

δr+1
1 an =

−q(an)

sep∆
x (P )(an)

=
−q(an)

b2
∈ B, where q ∈ R[∆∞

0 (δ6r1 x)].

• For δ1(1/b2), we observe that

δ1

(
1

b2

)
∈

1

b22
A0[∆

∞
0 (δ6r1 an)] ⊆ B.

5.2 Proof of Seidenberg’s Theorem

Lemma 3. Let W ⊆ Cm be a domain and K be a countably ∆-generated subfield
of Merm(W ). Then there exist c ∈ C and a domain V ⊆ W ∩ {z1 = c} such that,
for every f ∈ K, f |{z1=c} is a well-defined element of Merm−1(V ) and, therefore, the
restriction to {z1 = c} defines a ∆0-embedding K → Merm−1(V ).

Proof. Let K be ∆-generated by {bi}
∞
i=1. For every i > 0, denote by Si the set of

singularities of bi. By definition, Si is a nowhere dense subset of Cm. Therefore,

the union S =
∞⋃
i=1

Si is a meagre set. AsW is a domain in Cm, the difference W \S

is non-empty. Choose any point (w1, . . . , wm) ∈ W \ S. Then all the restrictions
of bi to {z1 = w1} are holomorphic at (w2, . . . , wm) and meromorphic in some
vicinity V ⊆ W ∩ {t1 = w1} of (w2, . . . , wm). Since every element f ∈ K is a
rational function in bi’s and their partial derivatives, its restriction to {z1 = w1} is
also a well-defined meromorphic function on V .

Lemma 4. Let U ⊆ Cm be a domain. For every countably ∆-generated ∆-field K ⊆
Merm(U), difftrdeg

∆
K Merm(U) is infinite.

Proof. Suppose difftrdeg∆K Merm(U) = l < ∞. Let τ1, . . . , τl be a ∆-transcendence
basis of Merm(U) over K. Let L be a field ∆-generated by K and τ1, . . . , τl. Note
that L is still at most countably ∆-generated and Merm(U) is ∆-algebraic over L.
Choose an arbitrary point c ∈ U and denote by F a subfield of C generated by the
values at c of those elements of L that are holomorphic at c. Clearly F is at most
countably generated and the transcendence degree of C over F is infinite. Now
any function in Merm(U) that is holomorphic at c and such that the set of values
of its derivatives at c is transcendental over F is ∆-transcendental over L, which
contradicts to the assumption that Merm(U) is ∆-algebraic over L.
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Notation 6. Let A be a ∆-algebra without zero divisors. By Frac(A) we denote
the field of fractions of A.

We are now ready to prove Seidenberg’s theorem.

Theorem 1 (Seidenberg’s embedding theorem). Let W ⊆ Cm be a domain and
let K ⊆ Merm(W ) be at most countably ∆-generated ∆-field (over Q). Let L ⊃ K
be a ∆-field finitely ∆-generated over K.

Then there exists a domain U ⊆W and a ∆-embedding f : L→ Merm(U) over K.

Proof. We will first reduce the theorem to the case when L is ∆-algebraic over
K. Assume that it is not, and let u1, . . . , uℓ be a ∆-transcendence basis of L
over K. Lemma 4 implies that there exist functions f1, . . . , fℓ ∈ Merm(W ) ∆-
transcendental over K. Let K̃ be a ∆-field generated by K and f1, . . . , fℓ. The
embedding K → L can be extended to an embedding K̃ → L by sending fi to
ui for every 1 6 i 6 ℓ. Therefore, by replacing K with K̃ we will further assume
that L is ∆-algebraic over K.

We will prove the theorem by induction on the number m of derivations.
If m = 0, then L can be embedded into C by [12, Chapter V, Theorem 2.8].

Suppose m > 0. Let a1, . . . , an be a set of ∆-generators of L over K. Let
A := K[∆∞a1, . . . ,∆

∞an]. Since A is ∆-algebraic over K, by Lemma 1, there exist
and invertible m×m matrix M over Q such that, for a new set of derivations

∆∗ = {δ∗1 , . . . , δ
∗
m} :=M∆,

a1, . . . , an are ∆∗-integral overK. Due to the invertibility ofM , every∆∗-embedding
L→ Merm(U) over K yields a ∆-embedding. Therefore, by changing the coordi-
nates in the space Cm from (z1, . . . , zm) to M−1(z1, . . . , zm), we can further assume
that ∆ = ∆∗, so a1, . . . , an are ∆-integral over K.

Lemma 2 implies that there exists a ∈ A such that B := A[a−1] is finitely ∆0-
generated. By ∆-integrality of a1, . . . , an and Remark 2, for every 1 6 i 6 n,
there exists a positive integer ri and a rational function gi ∈ K(δαy | α <grlex

(r, 0, . . . , 0)) such that ai satisfies

δriai = gi(ai). (4)

Since K is at most countably ∆-generated, Lemma 3 implies that there ex-
ist w1 ∈ C and V ⊆ W ∩ {z1 = w1} ⊆ Cm−1 such that the restriction to {z1 = w1}
induces a ∆0-embedding ρ : K → Merm−1(V ). We apply the induction hypoth-
esis to ∆0-fields ρ(K) and Frac(B) = L. This yields ∆0-embedding h : L →

Merm−1(Ṽ ) for some Ṽ ⊆ V .

Choose a point v = (w2, . . . , wm) ∈ Ṽ such that all the h(ai) are holomorphic
at v and all the gi(ai) are holomorphic at w = (w1, w2, . . . , wm) ∈ W . Consider

the Taylor homomorphism Th,w : A → Merm−1(Ṽ )[[z1]] defined as follows (see
Definition 7):

Th,w(a) :=
∞∑

k=0

h(δk1a)
(z1 − w1)

k

k!
for every a ∈ A.
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Note that Th,w is a ∆-homomorphism.
Fix 1 6 i 6 n. Since a1 is a solution of (4) and Th,w is a ∆-homomorphism, Th,w

is a formal power series solution of δri1 y = gi(y) corresponding to holomorphic
initial conditions

y|z1=w1
= h(ai), (δ1y)|z1=w1

= h(δ1ai), . . . , (δ
ri−1
1 y)|z1=w1

= h(δri−1
1 ai).

By the Cauchy-Kovalevskaya theorem, this solution is holomorphic in some vicin-
ityUi ofw. We setU :=

⋂n

i=1 Ui. Thus, Th,w induces a non-trivial ∆-homomorphism
fromA to Merm(U). Since h is injective, Th,w is also injective, so it can be extended
to a ∆-embedding L→ Merm(U) over K.

5.3 Proof of Ritt’s theorem

Definition 14 (Differentially simple rings). A ∆-ring R is called ∆-simple if it con-
tains no proper ∆-ideals.

Lemma 5. Let A be a ∆-simple ∆-algebra ∆-generated by a1, . . . , an over a ∆-field K.
Then A does not contain zero divisors.

Furthermore, assume that there exists an integer ℓ such that

• a1, . . . , aℓ form a ∆-transcendence basis of A over K;

• aℓ+1, . . . , an are ∆-integral over K[∆∞a1, . . . ,∆
∞aℓ].

Then A has finite ∆0-transcendence degree over K. In particular, ℓ = 0.

Proof. Consider any non-zero (not necessarily differential) homomorphism ψ :
A→ F (F ⊇ K is a field) and the corresponding Taylor homomorphism Tψ,0 : A→
F [[z1, . . . , zm]], which is a ∆-homomorphism. Since A is ∆-simple, the kernel
of Tψ,0 is zero. Therefore, Tψ,0 is a ∆-embedding of A into F [[z1, . . . , zm]]. Since the
latter does not contain zero divisors, the same is true for A.

Assume that A has infinite ∆0-transcendence degree, that is, ℓ > 0. Since
aℓ+1, . . . , an are ∆-integral over R := K[∆∞a1, . . . ,∆

∞aℓ], Lemma 2 implies that
there exists an element b ∈ A such that A0 := A[1/b] is a finitely ∆0-generated
algebra over R. Note that A0 is also ∆-simple. Let A0 = R[∆∞

0 b1, . . . ,∆
∞
0 bs]. For

every j > 0, consider ∆0-algebra

Bj := K[∆∞
0 (δ

(<j)
1 a1), . . . ,∆

∞
0 (δ

(<j)
1 al),∆

∞
0 b1, . . . ,∆

∞
0 bs].

For every j > 0, we have

jl 6 difftrdeg∆0

K Bj 6 jl + s.

This inequality implies that there existsN such that, for every j > N , δj1a1, . . . , δ
j
1al

are ∆0-independent over Bj . Consider any non-zero ∆0-homomorphism

ϕ̃ : BN → L,

10



where L ⊇ K is a ∆0-field. Due to the ∆0-independence of the rest of the ele-
ments δj1ai for 1 6 i 6 l and j > N , ϕ̃ can be extended to a homomorphism ϕ : A0 →
L so that ϕ(δj1ai) = 0 for every 1 6 i 6 l and j > N .

Consider a Taylor homomorphism Tϕ,0 : A0 → L[[z]] with respect to δ1. Since
ϕ was a ∆0-homomorphism, Tϕ,0 is a ∆-homomorphism. It remains to observe
that the kernel of Tϕ,0 contains δN+1

1 a1, . . . , δ
N+1
1 al contradicting to the fact that A0

is ∆-simple.

Theorem 2 (Ritt’s theorem of zeroes). Let W ⊆ Cm be a domain and let K ⊆
Merm(W ) be a ∆-field. Let A be a finitely generated ∆-algebra over K.

Then there exists a non-trivial ∆-homomorphism f : A → Merm(U) for some do-
main U ⊆W ⊆ Cm such that f(a) is ∆-algebraic over K for any a ∈ A.

Proof. We can represent A as A = R/J , where R := K[∆∞x1, . . . ,∆
∞xn] and

J ⊆ R is a differential ideal. Since R is a countable-dimensional K-space, J
can be generated by at most countable set of generators. Pick any such set and
denote the ∆-field generated by the coefficients of the generators by K0. Then K0

is countably ∆-generated. LetR0 := K0[∆
∞x1, . . . ,∆

∞xn]. Since J is defined over
K0, for A0 := R0/(J ∩ R0), we have A = K ⊗K0

A0.
Let I be a maximal differential ideal of A0, and consider the canonical projec-

tion π : A0 → A0/I . Let a1, . . . , an be a set of ∆-generators of A0/I . Since A0/I
is differentially simple, by Lemma 5, A0/I does not have zero divisors and is ∆-
algebraic over K0. We apply Theorem 1 to the ∆-fields K0 ⊆ Frac(A0/I) and
obtain a ∆-embedding h : A0/I → Merm(U) over K. Since A0/I is ∆-algebraic
over K0, h(a) is also ∆-algebraic over K0 for any a ∈ A0/I . Let f0 := h ◦ π,
then f0(a) is ∆-algebraic over K0 for any a ∈ A0. Since K ⊆ Merm(U), we can
construct a nontrivial ∆-homomorphism f : K ⊗K0

A0 → Merm(U) as the tensor
product of the embedding K → Merm(U) and f . The ∆-algebraicity of the im-
age of f0 over K0 implies the ∆-algebraicity of the image of the image of f over
K.

6 Remarks on the analytic spectrum

Definition 15 (Analytic spectrum). Consider C as a ∆-field with the zero deriva-
tions. Let A be a finitely ∆-generated ∆-algebra over C. A homomorphism (not
necessarily differential) ψ : A → C of C-algebras is called analytic if, for every
a ∈ A, the formal power series Tψ,0(a) has a positive radius of convergence. The
set of the kernels of analytic C-homomorphisms is called the analytic spectrum
of A.

Corollary 1 implies the following.

Corollary 2. Let A be a finitely generated ∆-algebra with identity over C. Then the
analytic spectrum of A is a Zarisky-dense subset of its maximal spectrum.

Proof. Assume that analytic spectrum of A is not Zarisky-dense in specA. Then it
is contained in some maximal proper closed subset F = {M ∈ specA|a ∈ M} for
some non-nilpotent a ∈ A.

11



Consider the localizationA[a−1] and a non-trivial ∆-homomorphism f : A[a−1] →
Om(U) given by Corollary 1. Then f(a) 6= 0. We fix u ∈ U such that f(a)(u) 6= 0
and consider a homomorphism g : A → C defined by g(b) := f(b)(u) for ev-
ery b ∈ A. Note that I := Ker(g) is an analytic ideal such that a 6∈ I , so we have
arrived at the contradiction.
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