On the Chow ring of Fano fourfolds of K3 type
Résumé
We show that a wide range of Fano varieties of K3 type, recently constructed by Bernardara, Fatighenti, Manivel and Tanturri in [6], have a multiplicative Chow-Künneth decomposition, in the sense of Shen-Vial. It follows that the Chow ring of these Fano varieties behaves like that of K3 surfaces. As a side result, we obtain some criteria for the Franchetta property of blown-up projective varieties.
Domaines
Géométrie algébrique [math.AG]Origine | Fichiers produits par l'(les) auteur(s) |
---|