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ON THE CHOW RING OF FANO FOURFOLDS OF K3 TYPE

MICHELE BOLOGNESI AND ROBERT LATERVEER

To the memory of Alberto Collino, with friendship and gratitude

ABSTRACT. We show that a wide range of Fano varieties of K3 type, recently constructed by
Bernardara, Fatighenti, Manivel and Tanturri in [6], have a multiplicative Chow-Künneth decom-
position, in the sense of Shen–Vial. It follows that the Chow ring of these Fano varieties behaves
like that of K3 surfaces. As a side result, we obtain some criteria for the Franchetta property of
blown-up projective varieties.

1. INTRODUCTION

Given a smooth projective variety X over C, let CHi(X) := CH i(X)Q denote the Chow
groups of X (i.e. the groups of codimension i algebraic cycles on X with Q-coefficients,
modulo rational equivalence). The intersection product defines a ring structure on CH∗(X) =⊕

i CHi(X), the Chow ring of X [19].
In the special case of K3 surfaces, this ring structure has a remarkable property:

Theorem 1.1 (Beauville–Voisin [2]). Let S be a projective K3 surface. The Q-subalgebra〈
CH1(S), cj(S)

〉
⊂ CH∗(S)

injects into cohomology under the cycle class map.

This remarkable behaviour of K3 surfaces has led to Beauville’s “splitting property conjec-
ture” [1], and to the concept of multiplicative Chow–Künneth decomposition [47]. In short,
a multiplicative Chow–Künneth decomposition (which we will abbreviate to MCK decomposi-
tion) is a graded decomposition of the motive of a variety that is compatible with intersection
product (cf. Section 2.1 below for details). Inspecting the proof of Theorem 1.1, one can deduce
that K3 surfaces have an MCK decomposition, which gives a nice, conceptual explanation for
Theorem 1.1.

The following conjecture has been formulated in [30, Conjecture 1.4] (cf. also [14, Section
1.2]):

Key words and phrases. algebraic cycles, Chow groups, motive, Fano varieties of K3 type, Beauville “splitting
property” conjecture, multiplicative Chow–Künneth decomposition.
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2 M. BOLOGNESI AND R. LATERVEER

Conjecture 1.2. Let X be a Fano variety of K3 type (i.e.1 X has dimension 2d and the Hodge
numbers of X verify hp,q(X) = 0 for all p 6= q except for hd−1,d+1(X) = hd+1,d−1(X) = 1).
Then X has an MCK decomposition.

The raison d’être for this conjecture is that Fano varieties of K3 type are expected to be related
to hyperkähler varieties, and hyperkähler varieties are expected to have an MCK decomposition
[47]. Conjecture 1.2 has been verified in some cases: cubic fourfolds [10], [14], certain Küchle
fourfolds [25], [14], certain varieties on the Fatighenti–Mongardi list [28], [29], [30], [37].

Recently, Bernardara, Fatighenti, Manivel and Tanturri [6] have constructed many new Fano
fourfolds of K3 type, by considering sections of vector bundles on products of homogeneous
varieties. The goal of this paper is to verify Conjecture 1.2 for the Fano fourfolds of [6]. The
following is our main result:

Theorem (=Theorem 4.1). Let X be one of the Fano fourfolds in Table 1. Then X has an MCK
decomposition.

As a concrete consequence of Theorem 4.1, the Chow ring of these Fano varieties shows a
behaviour similar to that of K3 surfaces:

Corollary (=Corollary 5.1). Let X be one of the Fano fourfolds in Table 1. Then the image of
the intersection product map

CH1(X)⊗ CH2(X) → CH3(X)

injects into cohomology. In other words, there are ρ := dimH2(X,Q) distinguished 1-cycles
`1, . . . , `ρ such that

Im
(

CH1(X)⊗ CH2(X) → CH3(X)
)

=

ρ⊕
i=1

Q[`i] .

To prove Theorem 4.1, we apply a general criterion dealing with MCK decompositions and
blow-ups (Proposition 3.2). In order to check that the hypotheses of this general criterion are
verified, it suffices that certain families verify the Franchetta property (this is the content of
Proposition 3.3). To establish the required instances of the Franchetta property, we were led to
develop certain new techniques that might hold some independent interest (cf. Lemma 4.2 and
Proposition 4.4).

Conventions. In this paper, the word variety refers to a reduced irreducible scheme of finite type
over C. A subvariety is a (possibly reducible) reduced subscheme which is equidimensional.
All cycle class groups will be with rational coefficients. We write CHi

hom(X) ⊂ CHi(X) for
the subgroup of homologically trivial cycles. A roman X will indicate one variety over SpecC,
while an italic X will mean a family over a different scheme.

The contravariant category of Chow motives (i.e., pure motives with respect to rational equiv-
alence as in [46], [44]) will be denotedMrat.

1There are other possible definitions that are less restrictive, as in [6] where some Fano fourfolds have
H3(X,Q) 6= 0. However, the Fano fourfolds considered in this paper are of K3 type in the narrow sense of
our definition.
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Fano fourfold: Ambient space M , vector bundle F :

C-1 P1 × P5, O(0, 3)⊕O(0, 1)
C-3 P2 × P5, O(1, 2)⊕QP2(0, 1)
C-6 P4 × P5, QP4(0, 1)⊕O(2, 1)

C-10 P1 × P1 × P5, O(0, 0, 3)⊕O(0, 1, 1)⊕O(1, 0, 1)
C-12 P1 × P2 × P5, O0, 1, 2⊕QP2(0, 0, 1)⊕O(1, 0, 1)
C-15 P2

1 × P2
2 × P5, QP2

1
(0, 0, 1)⊕QP2

2
(0, 0, 1)⊕O(1, 1, 1)

K3-24 P1 ×Gr(2, 5), O(1, 1)⊕ U∗Gr(2,5)(0, 1)

K3-25 P1 ×Gr(2, 6), O(1, 1)⊕O(0, 1)⊕4

K3-26 P1 ×Gr(3, 6), O(1, 1)⊕O(0, 1)⊕2 ⊕
∧
U∗Gr(3,6)

K3-28 P1 ×Gr(2, 7), O(0, 1)⊕O(1, 1)⊕Q∗Gr(2,7)(0, 1)

K3-30 P1 ×Gr(2, 4), O(1, 2)
K3-40 P1

1 × P1
2 × P5, O(0, 0, 2)⊕O(0, 1, 1)⊕O(1, 0, 2)

K3-41 P1 × P1 × P3, O(1, 1, 2)
K3-46 P1 × P3 × P5, QP3(0, 0, 1)⊕O(0, 1, 1)⊕O(1, 1, 1)
K3-47 P1 × P3 × P3, O(0, 1, 1)⊕2 ⊕O(1, 1, 1)
K3-49 P1 × P2 × P4, O(0, 0, 2)⊕O(0, 1, 1)⊕O(1, 1, 1)
K3-55 P1 × P4 × P5, QP4(0, 0, 1)⊕O(0, 2, 0)⊕O(1, 1, 1)
K3-56 P1 × P1 × P2 × P3, QP2(0, 0, 0, 1)⊕O(1, 1, 1, 1)
K3-58 P1 × P1 × P1 × P3, O(0, 0, 1, 1)⊕O(1, 1, 0, 2)
K3-59 P1 × P1 × P2 × P2, O(0, 0, 1, 1)⊕O(1, 1, 1, 1)
K3-60 (P1)5, O(1, 1, 1, 1, 1)

TABLE 1. Fano fourfolds of K3 type, with their labelling as in [6]. The notation
M,F indicates that the Fano fourfoldX is obtained as section of the vector bundle
F on the variety M .

2. PRELIMINARIES

2.1. MCK decomposition.

Definition 2.1 (Murre [43]). Let X be a smooth projective n-dimensional variety.. We say that
X has a CK decomposition if there exists a decomposition of the diagonal

∆X = π0 + π1
X + · · ·+ π2n in CHn(X ×X) ,

such that:
(1) the cycles πi are idempotents and πi ◦ πj = 0 if i 6= j;
(2) (πi)∗H

∗(X,Q) = H i(X,Q).
(NB: “CK decomposition” stands for “Chow–Künneth decomposition”.)

Remark 2.2. According to Murre’s conjectures [43], [20], all smooth projective varieties should
have a CK decomposition.
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Definition 2.3 (Shen–Vial [47]). Let X be a smooth projective variety of dimension n. Let
∆sm
X ∈ CH2n(X ×X ×X) be the class of the small diagonal

∆sm
X :=

{
(x, x, x) | x ∈ X

}
⊂ X ×X ×X .

An MCK decomposition is a CK decomposition {πi} of X that is multiplicative. That is, it
satisfies

(2.4) πk ◦∆sm
X ◦ (πi × πj) = 0 in CH2n(X ×X ×X) for all i+ j 6= k,

where πi × πj is by definition (p13)∗(πi) · (p24)∗(πj) ∈ CH2n(X4), and prs : X4 → X2 is the
projection on rth and sth factors.

(NB: “MCK decomposition” stands for “multiplicative Chow–Künneth decomposition”.)

Remark 2.5. It is not hard to see that the vanishing (2.4) is always true modulo homological
equivalence. This is due to the standard fact that the cup product in cohomology respects the
grading.

The small diagonal (considered as a correspondence from X ×X to X) induces the multipli-
cation morphism

∆sm
X : h(X)⊗ h(X) → h(X) inMrat .

Now, suppose that X has a CK decomposition as follows:

h(X) =
2n⊕
i=0

hi(X) inMrat .

This decomposition is by definition multiplicative if for any i, j the composition

hi(X)⊗ hj(X) → h(X)⊗ h(X)
∆sm

X−−→ h(X) inMrat

factors through hi+j(X).
If we assume that X has an MCK decomposition, then, by setting

CHi
(j)(X) := (π2i−j)∗CHi(X) ,

one obtains a bigraded ring structure on the Chow ring. That is, the intersection product sends
CHi

(j)(X)⊗ CHi′

(j′)(X) to CHi+i′

(j+j′)(X).
It is a reasonable expectation that for any X with an MCK decomposition, one has

CHi
(j)(X)

??
= 0 for j < 0 , CHi

(0)(X) ∩ CHi
hom(X)

??
= 0 .

This is strictly related to Murre’s conjectures B and D, that were formulated for any CK decom-
position [43]. While these questions are open in general, here is a partial result:

Lemma 2.6. Let X be a smooth projective variety of dimension n with an MCK decomposition.
Then CHi

(0)(X) injects into cohomology via the cycle class map for i ≥ n− 1.

Proof. This is stated in [50, Introduction]; a proof can be found in [24, Lemma 2.20]. �

Theorem 2.7. [10, 14] All smooth cubic hypersurfaces of any dimension have an MCK decom-
position.
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Remark 2.8. Having an MCK decomposition is a very restrictive property, and it is related to
Beauville’s “splitting property conjecture” [1]. Let us just produce a short list of exemples:
hyperelliptic curves have an MCK decomposition [47, Example 8.16], but the very general curve
of genus ≥ 3 does not [14, Example 2.3]. In dimension two, a smooth quartic surface in P3 has
an MCK decomposition, but a very general surface of degree ≥ 7 in P3 should not have one [14,
Proposition 3.4]. For more details, and other examples of varieties with an MCK decomposition,
the reader may check [47, Section 8], as well as [50], [48], [16], [25], [26], [27], [28], [30], [31],
[32], [33], [34], [14], [35], [37], [38].

2.2. Franchetta property. The Franchetta property is often strictly related to MCK decompo-
sitions (see for example [14]).

Definition 2.9. Let π : Y → B be a smooth projective morphism, where Y ,B are smooth quasi-
projective varieties. For any b ∈ B, we write Yb for the fiber π−1(b). One says that Y → B has
the Franchetta property in codimension j if the following property holds:

for every Γ ∈ CHj(Y) such that the restriction Γ|Yb to the fiber is homologically trivial for all
b ∈ B, the restriction Γ|Yb is zero in CHj(Yb) for all b ∈ B.

We will say that Y → B has the Franchetta property if Y → B has the Franchetta property in
codimension j for all j.

This property has been studied in [3], [12], [14], [13], [5].

Definition 2.10. Given a family Y → B with the properties described above, and given Y := Yb
a fiber, we write

GDCHj
B(Y ) := Im

(
CHj(Y)→ CHj(Y )

)
for the subgroup of generically defined cycles. Whenever it is clear to which family we are
referring, we will often suppress the index B from the notation.

We remark that, with this notation, the Franchetta property is equivalent to saying that GDCH∗B(Y )
injects into cohomology, under the cycle class map.

The Franchetta property for a family X → B does not imply and is not implied by the
Franchetta property for a subfamily X ′ → B′, where B′ is a closed subscheme of B. If B′ → B
is a dominant morphism, the Franchetta property for the base-changed family XB′ → B′ implies
the property for X → B [12, Remark 2.6].

The next lemma describes the behaviour of the Franchetta property under blow-ups.

Lemma 2.11. Let X → B be a family of smooth projective varieties (with fiber X), and Y → B
a family of smooth subvarieties of X (with fiber Y ⊂ X). Then X and Y have the Franchetta
property with respect toB if and only if the blow-up X̃ ofX along Y has the Franchetta property
with respect to B.

Proof. (IF direction) Let E ⊂ X̃ be the exceptional divisor of Y . Suppose that we have a family
of diagrams over a scheme B:
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E � � //

��

X̃

��
Y � � //

��

X

��
B,

where E is the exceptional divisor over Y . That is, the varieties X, Y, E and X̃ all deform
along the same base scheme.

The blow-up construction gives rise to a ”Mayer-Vietoris” short exact sequence both in coho-
mology and in the Chow ring. If we denote by cl : CH∗(X)→ H∗(X) the cycle class map, then
we have a commutative diagram:

0 // CH∗(X)
tCH
//

cl

��

CH∗(X̃)⊕ CH∗(Y )

cl
��

vCH
// CH∗(E)

cl

��

// 0

0 // H∗(X)
tH // H∗(X̃)⊕ H∗(Y)

vH // H∗(E) // 0,

where the first map is just pull-back, and the second is the difference of pullbacks. There exists
an analogous commutative diagram on the level of the familiesX , Y , X̃ . The Franchetta property
for X̃ is equivalent to GDCH∗B(X̃) injecting in cohomology. Consider now α ∈ GDCH∗B(X)
such that cl(α) = 0, hence tH(cl(α)) = (0, 0) ∈ H∗(X̃) ⊕ H∗(Y ). We observe that tCH(α) is
also generically defined. By Franchetta for X̃ this means that tCH(α) must be of the form (0, ω),
for ω ∈ A∗(Y). But the only cycle of this type in the image of tCH (which is the pullback) is
(0, 0), and by injectivity of tCH , we have α = 0. Hence the Franchetta property holds for X .
Since the above exact sequences are all split, the Franchetta property for E is implied by the
Franchetta property for X̃ . The projective bundle formula then implies the same property for Y .

(ONLY IF direction) We assume that both X and Y have the Franchetta property. First of all
it is not hard to observe that the Franchetta property holds for Y if and only if if holds for its
exceptional divisor E. Now suppose that we have a generically defined cycle γ ∈ A∗(X̃) such
that cl(γ) = 0. The cycle (γ, 0) ∈ A∗(X̃) ⊕ A∗(Y) is sent to (0, 0) by the cycle class map. We
remark that vCH(γ, 0) is also generically defined. Since vH(cl(γ, 0)) = 0, by the Franchetta
property of E, we have that vCH(γ, 0) = 0. By the exactness of the sequence this means that
(γ, 0) = tCH(σ), for some σ ∈ A∗(X), which is certainly generically defined (since the exact
sequences are split). But tH(cl(σ)) = (0, 0) and tH is injective, hence by the Franchetta property
for X we find σ = 0 and γ = 0 as well. �

We stress the fact that in Lemma 2.11, it is essential to consider the Franchetta property with
respect to a common base B for the 3 varieties X̃ , X and Y . This fact makes Lemma 2.11
difficult to apply in practice. For example, in many cases in [6] the variety X̃ is obtained as
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section of some vector bundle F on a product M = M1 ×M2, and the projection M → M1

exhibits X̃ as the blow-up of a cubic fourfold X with center a rational surface Y ⊂ X . In this
setting, the common base B is given by sections of F on M , and it is not a priori clear that the
cubic fourfolds X verify Franchetta with respect to this base B.

To deal with this complication, we were led to develop some technical results (Lemma 4.2 and
Proposition 4.4 below), that are tailor-made to fit the constructions of [6].

2.3. The Franchetta property for K3 surfaces. In this section we collect known results for K3
surfaces, that will be useful in the rest of the paper. Thanks to Pavic-Shen-Yin [45] and Fu and
the second named author [15], we have the following:

Theorem 2.12. The Franchetta property holds for K3 surfaces of genus g with 2 ≤ g ≤ 10 and
for g = 12, 13, 14, 16, 18, 20.

Remark 2.13. Let S be a K3 surface considered in [45] (i.e. the genus g of S is in between 2 and
10, or g = 12, 13, 16, 18, 20), embedded in some ambient spaceWg (these are the ambient spaces
of the Mukai model of the K3 surface [39], [40], [41], [42], cf. the list in [45]). Let moreover Fg
be the moduli stack of these K3 surfaces. The idea in [45] consists in a two-step argument. First,
through a projective bundle argument, they show that there is an injection

GDCH2
Fg

(S) ↪→ Im
(
CH2(Wg)→ CH2(S)

)
.

Secondly, they show that there is an injection

(2.14) Im
(
CH2(Wg)→ CH2(S)

)
↪→ H4(S,Q) ,

given by the cycle class map.

2.4. Varieties with trivial Chow groups. The following is well-known; we recall it for conve-
nience:

Lemma 2.15. Let M be a smooth projective variety. The following are equivalent:
(i) The motive of M is of Tate type:

h(M) ∼=
⊕

1(∗) inMrat ;

(ii) The cycle class map induces an isomorphism CH∗(M) ∼= H∗(M,Q) ;
(iii) CH∗hom(M) = 0 ;
(iv) CH∗(M) is a finite-dimensional Q-vector space;
(v) The natural map CH∗(M)⊗ CH∗(M)→ CH∗(M ×M) is an isomorphism.

Proof. The implications (i)⇒(ii)⇒(iii)⇒(iv) are obvious. The implication (iv)⇒(i) is [21] or
[49]. The implication (i)⇒(5) follows readily from the fact that h(M ×M) = h(M) ⊗ h(M)
and 1(`) ⊗ 1(m) = 1(` + m). Finally, to see that (v)⇒(iv), one notes that (v) implies the
decomposition of the diagonal

∆M =
r∑
j=1

αj × βj in CHdimM(M ×M) ,

where αj, βj ∈ CH∗(M). Letting this decomposition act on CH∗(M), one finds that the identity
factors over an r-dimensional Q-vector space, and so (iv) holds. �
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Definition 2.16 (Voisin [51, Section 3.1]). A smooth projective variety M is said to have trivial
Chow groups if M verifies any of the equivalent conditions of Lemma 2.15.

Proposition 2.17. Let X be a smooth projective variety with trivial Chow groups. Then X has
an MCK decomposition, with the property that

CH∗(X) = CH∗(0)(X) .

Proof. As remarked above, the required vanishing (2.4) is always true in cohomology. Since
CH∗hom(X3) = 0, the required vanishing (2.4) also holds in CH2n(X3). As for the second
statement, we observe that

(πjX)∗CHi(X) ⊂ CHi
hom(X) = 0 ∀ j 6= 2i .

�

2.5. Cayley trick. An important tool for our proofs will be the well-known ”Cayley trick”. For
the sake of self-containedness, we prefer to recall it here. For a projective varietyX with a vector
bundle E, we will denote by Z(X,E) the zero locus of any section of E.

Lemma 2.18. LetM2 be a smooth projective variety. Let L and F be a line bundle resp. a vector
bundle on M2, such thatOP1(1)�L⊕OP1 �F is globally generated on P1×M2, and consider

X̃ = Z(P1 ×M2,OP1(1) � L⊕OP1 � F ) .

Then X̃ is isomorphic to the blow-up BlYX , where X = Z(M2, F ) and Y = Z(X,L⊕2).

Proof. This is (a special case of) [6, Lemma 3.1]. �

3. CRITERIA

The goal of this section is to establish some criteria, as broad as possible, to show that certain
families of Fano varieties admit indeed a MCK decomposition. Certainly, one starting point is
given by the following proposition, due to Shen and Vial [47, Proposition 2.4].

Let X be a smooth projective variety and i : Y ↪→ X a smooth subvariety of codimension
r + 1. We will denote by X̃ the blow-up of X along Y . Before starting to prove our results we
need to recall the following definition.

Definition 3.1. LetX and Y be smooth projective varieties. A correspondence L ∈ CHp(X×Y )
is said to be of pure grade j if L ∈ CHp

(j)(X × Y ). In particular, a morphism g : X → Y is of
pure grade 0 if its graph is in CHd

(0)(X × Y ), where d = dim(Y ).

Proposition 3.2. Assume that bothX and Y admit multiplicative Chow-Künneth decompositions
{πiX} and {πiY }, respectively, such that

(i) the Chern classes of the normal bundle NY/X sit in CH∗(0)(Y );
(ii) the morphism i : Y → X is of pure grade 0.

Then also X̃ admits a MCK decomposition.
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Proof. This is [48, Proposition 2.4]. Note that in loc. cit., it is required that the MCK decomposi-
tions of X and Y are self-dual; however, this condition is actually always fulfilled [17, Footnote
24].

�

We will now make use of Proposition 3.2 in order to craft a criterion more specific to the cases
we are going to inspect.

Proposition 3.3. Let X → B, Y → B, X̃ → B and X , Y , X̃ be as in Lemma 2.11. Assume
that both X and Y admit MCK decompositions πiX resp. πiY that are generically defined (with
respect to the base B), and that

(1) either X has the Franchetta property and Y has trivial Chow groups,
(2) or X has trivial Chow groups and Y has the Franchetta property;

Then the blown-up variety X̃ also admits an MCK decomposition (that is generically defined).

Proof. As in the proof of Lemma 2.11, the varieties Y,X and X̃ are part of the families Y , X , X̃
over the common base B. Let n := dimX . The proofs for (1) and (2) are similar, since in both
cases we want to apply Proposition 3.2. Let us start with (1).

(1) The fact that Y has trivial Chow groups implies that the Chern classes are injected into
cohomology, and the condition (i) of Proposition 3.2 holds true.

In order to prove condition (ii) of Proposition 3.2 we observe that, since Y has trivial Chow
groups, then the Chow ring of the product X × Y decomposes as a finite direct sum of copies of
the Chow ring of X , as follows:

CH∗(X × Y ) = ⊕iCH∗(X).

The upshot is that the Franchetta property also holds for the product X × Y .
To prove that the graph of the inclusion ι : Y → X is of pure grade 0, we need to prove the

vanishing

Λ := (πiX × π
j
Y )∗(Γι) = 0 in CHn(X × Y ) ∀i+ j 6= 2n .

To this end, we remark that the cycle Λ is generically defined (with respect to B), and homolog-
ically trivial. The Franchetta property for X × Y then implies that Λ is rationally equivalent to
0. This completes the proof of condition (ii) of Proposition 3.2 in case (1).

(2) Let us first check condition (i) of Proposition 3.2. We need to ascertain the vanishing

(πiY )∗ck(NY/X) = 0 in CHk(Y ) ∀i 6= 2k .

To this end, we remark that the cycle (πiY )∗ck(NY/X) is generically defined (with respect to B)
and homologically trivial. The Franchetta property for Y then gives the required vanishing.

The argument for checking condition (ii) is exactly the same as in (1). �

Now that we have proven Proposition 3.3, in the next section we will see that it can be applied
to a lot of examples of Fano fourfolds that were introduced in [6].
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4. FANOS

In this section we will consider the examples from the Bernardara–Fatighenti–Mongardi–
Tanturri list for which one can apply Proposition 3.3. We will be applying either part 1 or 2
of the proposition. The goal of course is to exhibit new classes of Fano varieties of K3 type, that
have an MCK decomposition. The following is the main result of this paper:

Theorem 4.1. Let X be one of the Fano fourfolds in Table 1. Then X has an MCK decomposi-
tion.

To prove Theorem 4.1, we separately treat each family of Table 1.

4.1. MCK decomposition for six families of Fano fourfolds coming from cubic fourfolds.
In this section we introduce six families of smooth Fano fourfolds from [6], that are obtained
as blow-ups of cubic fourfolds, or of fourfolds strictly related to cubic fourfolds. For more
information on the motive of a cubic fourfold and its relation with K3 surfaces see [7] [9].

To treat these families, we are going to use the following result:

Lemma 4.2. Let M = M1 ×M2, and F →M a globally generated vector bundle.
Let

X̃ → B ⊂ B̄ := PH0(M,F )

be the family obtained as smooth dimensionally transverse sections of F . Assume that the pro-
jection M →M1 induces a morphism

p : X̃ → X ,

where X is a family of smooth fourfolds in M1, and p is the blow-up of some subfamily Y ⊂ X
of smooth surfaces, whose fibers have trivial Chow groups. Assume moreover the following:

(1) CH∗(Mi) is generated by intersections of divisors, for i = 1, 2;
(2) the family X → B has a generically defined MCK decomposition;
(3)

ι∗c1(NY/X) ∈ CH1(X) · CH2(X) ⊂ CH3(X) ,

for every fiber X with subvariety Y ⊂ X , where ι : Y → X denotes the inclusion.
Then X̃ → B and X → B have the Franchetta property.

Proof. It will suffice to establish Franchetta forX → B; Lemma 2.11 then implies Franchetta for
X̃ → B. Let X be a fiber and f : X̃ → X the blow-up morphism. Because X is a Fano fourfold,
we only need to check the Franchetta property in codimension 3. We observe that f∗f ∗ = id and
p∗p
∗ = id and so the generically defined cycles on X come from generically defined cycles on

X̃ , i.e.
GDCH3

B(X) = f∗GDCH3
B(X̃) .

Since the family X is obtained as smooth zero locus of sections of the vector bundle F on
M = P5 × ΠiPni , in the same spirit as in [45], we have the equality

GDCH∗B(X̃) = Im
(

CH∗(P5 × ΠiPni)→ CH∗(X̃)
)
.
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Since clearly CH∗(P5 × ΠiPni) is generated by divisors, it follows that

GDCH3
B(X̃) ⊂ GDCH1

B(X̃) ·GDCH1
B(X̃) ·GDCH1

B(X̃) .

But the blow-up formula tells us that CH1(X̃) = f ∗CH1(X) ⊕ Q[E], where E ⊂ X̃ is the
exceptional divisor, and so

GDCH3
B(X̃) ⊂ CH2(X̃) · f ∗CH1(X) + Q[E3] .

Pushing forward to X and applying the projection formula, we thus find that

GDCH3
B(X) = f∗GDCH3

B(X̃) ⊂ CH2(X) · CH1(X) + Q[f∗(E
3)] .

Applying Sublemma 4.3 below, the first summand is contained in CH3
(0)(X). As for the second

summand, we have equality

f∗(E
3) = −ι∗c1(NY/X) in CH3(X)

[19, Example 3.3.4], and so the hypothesis plus Sublemma 4.3 implies that the second summand
is also contained in CH3

(0)(X). It thus follows that

GDCH3
B(X) ⊂ CH3

(0)(X) .

Since CH3
(0)(X) is known to inject into cohomology (Lemma 2.6), this shows the Franchetta

property for X → B, and closes the proof.

Sublemma 4.3. Let X be a smooth Fano fourfold with an MCK decomposition. Then

CH2(X) · CH1(X) ⊂ CH3
(0)(X) .

To prove the sublemma, it suffices to observe that CHi(X) = CHi
(0)(X) for i = 1, 2.

(NB: when X is a cubic fourfold, the sublemma also follows more directly from the excess
intersection formula: CH1(X) is generated by the hyperplane class h, and

CH2(X) · h ⊂ ι∗ι∗CH2(X) ⊂ ι∗CH3(P5) = Q[h3] = CH3
(0)(X) .)

�

In the rest of this section, B will denote the basis as defined in Lemma 4.2.

4.2. C-1. The first family, dubbed C-1 in [6], is given by zero loci of a section of O(0, 3) ⊕
O(1, 1) on P1 × P5. These fourfolds are indeed described as the blow-up of a general cubic
fourfold along a cubic surface.

In order to show the Franchetta property for the family C-1, it is enough to remark that each
cubic surface Y inside a cubic fourfold X is a linear section given by a P3 ⊂ P5. In fact the
normal bundle of Y is the restriction to Y of the normal bundle of P3 in P5. This in turn implies
that c1(NY/X) = h|Y . It follows that ι∗c1(NY/X) = h3 ∈ CH3(X), and the hypotheses of Lemma
4.2 are verified (we recall that cubic fourfolds have an MCK decomposition by Theorem 2.7).
Since the Franchetta property holds, Proposition 3.3 gives us the claimed MCK decomposition
for the family C-1.
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4.3. C-3. The second family, dubbed C-3 in [6], is given by zero loci of a section of O(1, 2) ⊕
QP2(0, 1) on P2 × P5. These fourfolds are also described as the blow-up of a cubic fourfold in
C8 along a plane.

Since Fano fourfolds from family C-3 are blow-ups of cubic fourfolds X along a plane Y , and
CH1(Y ) = Q, we clearly have that

ι∗CH1(Y ) = [Y ] · h ⊂ CH2(X) · CH1(X) .

We can thus apply Lemma 4.2 and obtain the Franchetta property for X . The rest of the proof is
the same as for family C-1.

4.4. C-10. As explained in [6], Fano fourfolds in the family C-10 can be described as blow-ups
X̃ of X with center Y , where X is a Fano variety in the family C-1 and Y is the blow-up of a
cubic surface in 3 points (obtained by intersecting the cubic surface in P5 with a general P3).

It is readily seen that the normal bundle of Y in X is the restriction of the normal bundle of a
blown-up P3 in a blown-up P5, and so

c1(NY/X) ∈ Im
(
CH1(X)→ CH1(Y )

)
.

The hypotheses of Lemma 4.2 are then satisfied, and so the family X → B has the Franchetta
property. Proposition 3.3 now gives us the claimed MCK decomposition for the family C-10.

4.5. C-12. The family C-12 is treated in a similar fashion: as shown in [6], Fano fourfolds in
the family C-12 can be obtained as blow-ups X̃ of X with center Y , where X is a special Fano
variety in the family C-1 and Y is the strict transform of a plane.

Since the normal bundle of Y in X can be described as a restriction, the same reasoning as
above readily gives that

c1(NY/X) ∈ Im
(
CH1(X)→ CH1(Y )

)
.

The hypotheses of Lemma 4.2 are thus again satisfied, and so the family X → B has the
Franchetta property. Proposition 3.3 then gives us an MCK decomposition for the family C-
12.

4.6. C-15. Fano fourfolds in the family C-15 can be obtained as blow-ups X̃ of X with center
Y , where X is a special Fano variety in the family C-3 and Y is a plane.

Since CH1(Y ) = Q the conditions of Lemma 4.2 are once more satisfied, and the family
X → B has the Franchetta property. Proposition 3.3 then gives an MCK decomposition for the
family C-15.

4.7. C-6. Fano fourfolds from family C-6 of [6] have a description as one-nodal cubic fourfolds,
blown-up in the node. By [34, Corollary 5.6], the blow-up of a one-nodal cubic hypersurface (in
any even dimension) with center the node has an MCK decomposition.
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4.8. Families of type K3-n. In the following subsections we will show the existence of MCK
decompositions for certain families of Fano fourfolds of type K3-n. These Fano fourfolds are
obtained as blow-ups of Fano varieties with trivial Chow groups, with centers birational to K3
surfaces. First of all, we need a technical result.

Proposition 4.4. Let X ,Y and X̃ families (respectively of dimension 4,2 and 4) of projective
varieties obtained by proceding as in Lemma 2.18 over the base

B ⊂ B := PH0(P1 ×M2,OP1(1) � L⊕OP1 � F ).

Assume that we have an injection

Im
(
CH2(M2)→ CH2(Yb)

)
↪→ H4(Yb,Q) ,

for any fiber Yb. Then Y → B has the Franchetta property.

Proof. We will denote as usual by Y the surface contained in X and by X̃] → X the blow-up
with center Y . The natural map E → Y will be denoted by g, and ξ will be the class of the
tautological bundle E → Y .

We need to show that

(4.5) GDCH2
B(Y ) = Im

(
CH2(M2)→ CH2(Y )

)
.

Since our vector bundle is globally generated, we have that

GDCH∗B(X̃) = Im
(
CH∗(P1 ×M2)→ CH∗(X̃)

)
,

and, in particular

Im
(
GDCH∗B(X̃)→ GDCH∗B(E)

)
= Im

(
CH∗(P1 ×M2)→ CH∗(E)

)
.

Then one sees that

g∗GDCH2(Y ) · ξ ⊂ Im
(
CH3(P1 ×M2)→ CH3(E)

)
.

Moreover CH3(P1×M2) = CH3(M2)⊕CH2(M2) ·h, where h is the class of the tautological
bundle of the projective bundle P1 × M2 → M2. 2 On the other hand, we have CH3(E) =
CH2(Y ) · ξ. We want to show that g∗GDCH2(Y ) · ξ is indeed contained in Im(CH2(M2) · h→
CH3(E)). It is straightforward to see that

Im
(
CH3(M2)→ CH3(E)

)
= 0 ,

since CH3(Y ) = 0 and the map factors through CH3(Y ). Consider now an element g∗(a) · h ∈
GDCH2(Y ) · ξ. Let p2 : P1 ×M2 →M2 be the natural projection. Then we have that

g∗(a) · h ∈ Im
(
p∗2 CH2(M2) · h→ g∗CH2(Y ) · ξ

)
,

and functoriality of pull-back gives the equality

2Remark that the class ξ is just the restriction of h to E
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Im
(
p∗2 CH2(M2) · h→ g∗CH2(Y ) · ξ

)
= g∗ Im

(
CH2(M2)→ CH2(Y )

)
· h .

Combining the last two inclusions, we find that

g∗(a) · h ∈ g∗ Im
(
CH2(M2)→ CH2(Y )

)
· h .

Finally, by applying the projection formula we find that a lies in Im
(
CH2(M2) → CH2(Y )

)
.

This proves equality (4.5). �

4.9. K3-24. A Fano fourfold X̃ of type K3-24 is obtained as the blow-up of X = X12 with
center a genus 6 K3 surface Y ⊂ Gr(2, 5). Here M2 = Gr(2, 5) and the injection 2.14 holds for
g = 6 thanks to [45]. Proposition 4.4 then gives the Franchetta property for the family Y → B.
The Fano fourfoldX = X12 has trivial Chow groups (this is proven directly in [36]; alternatively
this follows from the existence of a full exceptional collection for the derived category of X
[22]).

Applying Proposition 3.3 we obtain an MCK decomposition (that is generically defined) for
Fano fourfolds of type K3-24.

4.10. K3-25. A Fano fourfold X̃ of type K3-25 is obtained as the blow up of X = X14 along
a genus 8 K3 surface Y ⊂ Gr(2, 6). In this case M2 = Gr(2, 6). The fourfold X14 has trivial
Chow groups [36], and the family of degree 14, genus 8, K3 surfaces has the Franchetta property
by Proposition 4.4, since injection 2.14 holds for g = 8 by the work of [45]. This implies as
above the existence of a generically defined MCK decomposition.

4.11. K3-26. A Fano fourfold X̃ of type K3-26 is obtained as the blow up of X = X16 (a
codimension two linear section of the Lagrangian Grassmannian LG(3, 6)) along a genus 9 K3
surface Y ⊂ LG(3, 6). The fourfold X16 has trivial Chow groups since its derived category has
a full exceptional collection [23, Section 6.3]. The injection 2.14 for g = 9 holds [45] and so
the Franchetta property holds true for the family of K3 surfaces. Thus we obtain a generically
defined MCK decomposition.

4.12. K3-28. Fourfolds from this family are blow-ups of Fano fourfoldsX = X18 along a genus
10 K3 surface. Here M2 = Gr(2, 7). The argument goes exactly along the same lines, following
the same references (for the existence of the full exceptional collection see [23, Section 6.4]),
this time for g = 10, as in K3-24.

4.13. K3-30. A Fano fourfold X̃ of type K3-30 is the blow-up of X = Gr(2, 4) with center a
genus 5 K3 surface Y ⊂ X . It is known that

Im
(
CH2(Gr(2, 4)→ CH2(Y )

)
= Q

(this follows from [45, First proof of Proposition 2.1]), and so Proposition 4.4 guarantees the
Franchetta property for Y → B. As clearly X has trivial Chow groups, this gives the MCK
decomposition for X̃ .
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4.14. K3-40. Here M2 = P1 × P5 and its Chow ring is generated by intersections of divisors.
In view of Proposition 4.4, this directly implies the Franchetta property for the family Y → B,
whose members here are K3 surfaces of degree 8, blown up in 8 points. The fourfold X is
the blow-up of a 4-dimensional quadric along a 2-dimensional quadric, hence clearly has trivial
Chow groups. Hence, we obtain a generically defined MCK decomposition for X̃ .

4.15. K3-41. For this family M2 = P1 × P3, and X coincides with M2. The fourfold X has
trivial Chow groups and its Chow ring is generated by intersections of divisors. This implies the
Franchetta property for the family Y → B of K3 surfaces, that in this case are bielliptic. The
argument is the same as the preceding one.

4.16. K3-46. This case is similar to the two preceding ones. The K3 surfaces Y → B are some
special degree 26 surfaces (see [6] for more details). In this case we have M2 = P3 × P5, hence
its Chow ring is generated by intersections of divisors and the Franchetta property follows for
Y → B. On the other hand X is the blow up of a smooth quadric along a line, hence has trivial
Chow groups. One concludes as in K3-40 and K3-41.

4.17. K3-47. For Fano fourfolds of type K3-47, the family of surfaces is made up by deter-
minantal quartic K3 surfaces. We have M2 = P3 × P3, and its Chow ring is thus generated
by intersections of divisors. As before this implies the Franchetta property for the K3 family
Y → B. In this case X is a codimension 2 linear section of P3 × P3, which has trivial Chow
groups since it has a full exceptional collection by an application of [8]. The upshot is that the
fourfold X̃ has a generically defined MCK decomposition.

4.18. K3-49. In this case the family Y → B is made up of degree 20 K3 surfaces. Moreover
M2 = P2 × P4, whose Chow ring is generated by intersections of divisors. This implies the
Franchetta property for Y . The fourfold X is a (1, 1)-divisor of P2 ×Q3 (where Q3 is a smooth
quadric threefold), that has a full exceptional collection by the description in [6]. Hence it also
has trivial Chow groups. This implies the existence of the MCK decomposition.

4.19. K3-55. The family of surfaces Y → B here is made up of degree 30 K3 surfaces. We
have M2 = P4 × P5, thus once again the intersections of divisors generate the Chow ring, and
the Franchetta property holds for K3 surfaces. Furthermore, the variety X can be seen as a P1-
bundle on a smooth quadric threefold, hence has trivial Chow groups, and so the blow-up X̃ has
a generically defined MCK decomposition.

4.20. K3-56. For this family, the K3 surfaces are certain degree 28 K3 surfaces, with Picard
rank 3. The Chow ring of M2 = P1 × P2 × P2 is generated by intersections of divisors, which
implies the Franchetta property for Y → B. The variety X is isomorphic to the product of P1

and the blow-up of P3 in one point, hence has trivial Chow groups. This implies that X̃ has a
generically defined MCK decomposition.

4.21. K3-58. In this case, the family of surfaces Y → B is made up of bielliptic K3 surfaces.
On the other hand, M2 = P1 × P1 × P3 and its Chow ring is generated by divisors. This implies
the Franchetta property for Y → B. Now, X is the product of P1 and the blow-up of P3 along a
line, thus it has trivial Chow groups. This implies that X̃ has an MCK decomposition.
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4.22. K3-59. The family of surfaces for K3-59 is given by K3 surfaces that are isomorphic to
a degree 20 K3. Here M2 is P1 × P2 × P2, and its Chow ring is generated by intersections
of divisors. This in turn implies the Franchetta property for Y → B. On the other hand, X
is the product of P1 and a flag manifold. The upshot is that X has trivial Chow groups. The
combination of these results implies that there is an MCK decomposition for X̃ .

4.23. K3-60. The K3 surfaces for this family are degree 24 surfaces with Picard rank 4. In
this case M2 coincides with X = (P1)4, and it has both trivial Chow groups and Chow ring
generated by intersections of divisors. The latter property implies the Franchetta property for
Y → B, and, combining this with the former, one obtains that X̃ has a generically defined MCK
decomposition.

Remark 4.6. The families K3-30 and K3-41 already appear in [11], under the labels B2 resp.
B1. An MCK decomposition for these families was constructed in [28], by arguments similar to
those of the present paper.

5. A CONSEQUENCE FOR THE INTERSECTION PRODUCT

Our Theorem 4.1 has some interesting consequences on the behaviour of the intersection prod-
uct with respect to the cycle class map. Not surprisingly, Fano fourfolds that appear in Theorem
4.1 behave very much like K3 surfaces.

Corollary 5.1. Let X be one of the Fano fourfolds in Table 1. Then the image of the intersection
product map

m : CH1(X)⊗ CH2(X) → CH3(X)

injects into cohomology. In other words, there are ρ := dimH2(X,Q) distinguished 1-cycles
`1, . . . , `ρ such that

Im
(

CH1(X)⊗ CH2(X) → CH3(X)
)

=

ρ⊕
i=1

Q[`i] .

Proof. Note that for any Fano fourfold X in Table 1 we have H3(X,Q) = 0 (indeed, these Fano
fourfolds are obtained either as blow-up of a fourfold with trivial Chow groups with center a K3
surface, or as repeated blow-up of a cubic fourfold with center some surfaces with trivial Chow
groups).

In view of Lemma 5.2 below, we thus have

CHi(X) = CHi
(0)(X) ∀ i 6= 3 .

As CH∗(∗)(X) is a bigraded ring under the intersection product, the image of the map m is thus
contained in CH3

(0)(X). But CH3
(0)(X) injects into cohomology by virtue of Lemma 2.6.

The rest of the claim is a straightforward cohomology computation.
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Lemma 5.2. Let X be a smooth Fano fourfold with H3(X,Q) = 0. Then

CHi
hom(X) = 0 ∀ i 6= 3 .

In particular, if in addition X has an MCK decomposition then

CHi(X) = CHi
(0)(X) ∀ i 6= 3 .

To prove the lemma, we recall that smooth Fano varieties X (are rationally connected and so)
have CH0(X) = Q. The Bloch–Srinivas argument [4] then implies that the Abel–Jacobi map

CH2
hom(X) → J 3(X)

is injective (where J 3(X) is the intermediate Jacobian. The assumption on H3(X) guarantees
that J 3(X) = 0, and so CH2

hom(X) = 0. This proves the first statement.
For the second statement of the lemma, this follows from the first statement upon observing

that for any variety X with an MCK decomposition one has

CHi
(j)(X) ⊂ CHi

hom(X) ∀ j 6= 0 .

This closes the proof of the lemma and of the corollary. �
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