Sequential convex programming for non-linear stochastic optimal control - Archive ouverte HAL
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2022

Sequential convex programming for non-linear stochastic optimal control

Résumé

This work introduces a sequential convex programming framework for non-linear, finitedimensional stochastic optimal control, where uncertainties are modeled by a multidimensional Wiener process. We prove that any accumulation point of the sequence of iterates generated by sequential convex programming is a candidate locally-optimal solution for the original problem in the sense of the stochastic Pontryagin Maximum Principle. Moreover, we provide sufficient conditions for the existence of at least one such accumulation point. We then leverage these properties to design a practical numerical method for solving non-linear stochastic optimal control problems based on a deterministic transcription of stochastic sequential convex programming.
Fichier principal
Vignette du fichier
cocv210218.pdf (2.67 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03823441 , version 1 (20-10-2022)

Identifiants

Citer

Riccardo Bonalli, Thomas Lew, Marco Pavone. Sequential convex programming for non-linear stochastic optimal control. ESAIM: Control, Optimisation and Calculus of Variations, 2022, 28, pp.64. ⟨10.1051/cocv/2022060⟩. ⟨hal-03823441⟩
35 Consultations
67 Téléchargements

Altmetric

Partager

More