Simple random walk on $\Z^2$ perturbed on the axis (renewal case) - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Simple random walk on $\Z^2$ perturbed on the axis (renewal case)

Pierre Andreoletti
  • Fonction : Auteur
  • PersonId : 836997
  • IdRef : 076551245

Résumé

We study a simple random walk on Z 2 with constraints on the axis. Motivation comes from physics when particles (a gas for example, see [Dal88]) are submitted to a local field. In our case we assume that the particle evolves freely in the cones but when touching the axis a force pushes it back progressively to the origin. The main result proves that this force can be parametrized in such a way that a renewal structure appears in the trajectory of the random walk. This implies the existence of an ergodic result for the parts of the trajectory restricted to the axis.
Fichier principal
Vignette du fichier
PSRWonZ2_14_10_2022.pdf (481.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03816534 , version 1 (16-10-2022)
hal-03816534 , version 2 (06-01-2023)

Identifiants

Citer

Pierre Andreoletti, Pierre Debs. Simple random walk on $\Z^2$ perturbed on the axis (renewal case). 2022. ⟨hal-03816534v1⟩
71 Consultations
33 Téléchargements

Altmetric

Partager

More