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Simple random walk on Z2 perturbed on the axis

(renewal case)

Pierre Andreoletti
Pierre Debs

Abstract: We study a simple random walk on Z2 with constraints on the axis. Motivation comes
from physics when particles (a gas for example, see [? ]) are submitted to a local field. In our case
we assume that the particle evolves freely in the cones but when touching the axis a force pushes
it back progressively to the origin. The main result proves that this force can be parametrized in
such a way that a renewal structure appears in the trajectory of the random walk. This implies the
existence of an ergodic result for the parts of the trajectory restricted to the axis.

MSC2020 : 05C81, 60J55, 60K10, 60J10, 60K40.
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1. Introduction

We consider a random walk X = (Xn, n ∈ N) on Z2 starting at (1, 1), which probabilities of transition
differ whether the walk is on the axis, denoted by Kc := {(x, y) ∈ Z2, xy = 0}, or on K which is made up
of four cones. More precisely, X is a simple random walk on K, that is p(x, x± ei) = 1/4, for all x ∈ K,
where ei is a vector of the canonical basis, whereas on Kc\{(0, 0)} the walk is pushed towards the origin:
there exists α ≥ 0 such that for all i > 0

p((i, 0), (i+ 1, 0)) = p((i, 0), (i,±1)) = p((0, i), (0, i+ 1)) = p((0, i), (±1, i)) =
1

4iα
,

p((i, 0), (i− 1, 0)) = p((0, i), (0, i− 1)) = 1− 3

4iα
,

and symmetrically when i < 0 (see figure 1). Note that the origin is a“special”point as p((0, 0),±ei) = 1/4.
The fluctuations of this random walk can be seen as the movement of a particle which is diffusive on the
cones but which is submitted to a field on the axis, this field, which source comes from infinity, is decreasing

Figure 1: probabilities of transition
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when the particle gets closer to the origin. Depending on the strength of the local field, represented by α,
the behavior of this random walk is more or less perturbed comparing to the simple random walk. In this
first work we deal with the case for which the applied force toward 0 is strong, that is α > 3. To give an
idea on the changes that provokes such a perturbation, we first present two examples of our main result
that are related to the local time of the walk: for all subset A of Z2, L (A,n) =

∑n
i=1 1Xi∈A is the local

time of X in A until time n. Our first result states as follows

Theorem 1.1. Assume α > 3, there exists two positive constants c and c′ such that:

log n

n
L ((0, 0), n)

P→ c′,
log n

n
L (Kc, n)

P→ c.

Note that c and c′ are explicitly given a little further.
Clearly the behavior of the local time of X is very different than the one of the symmetric random walk
S. For example, LS((0, 0), n)/ log n converges in law to an exponential variable with parameter π (see for
instance [? ], [? ]).
It turns out that these two results are just simple consequences of a more general result presented below.
It is essentially an ergodic-like theorem for the part of the trajectory on the axis. Recall that we assume
X0 = (1, 1) and let us introduce the following stopping times: for any i ∈ N∗

ηi := inf{k > ρi−1, Xk ∈ Kc},
ρi := inf{k > ηi, Xk ∈ K}, ρ0 = 0,

that is respectively the i-th exit and entrance times in K. Also for any n let

Nn := max{i ≤ n, ρi ≤ n}, (1)

which is the index of the last excursion to K before the instant n.
Moreover, for any x = (x1, x2) ∈ Z2, let us denote by x := max(|x1|, |x2|), the maximum norm of x.
Our main result is the following:

Theorem 1.2. Let

Bi := (Xk, ηi ≤ k < ρi) and B∗n := (Xk, ηNn ≤ k ≤ n),

the portions of the trajectory of X restricted to the axis. Let f a positive non-decreasing functional (that
is for any i ≤ k, f(x1, · · · , xi) ≤ f(x1, · · · , xk)) such that there exist 0 < δ < 2 and two positive constants
C1 and C2 such that for any x ∈ Kc,

Ex [f(B0)] ≤ C1x, (2)

Varx [f(B0)] ≤ C2x
2−δ, (3)

where B0 := (Xk, 0 ≤ k < ρ) and ρ := inf{k > 0, Xk ∈ K}. Assume α > 3 then, in probability

lim
n→+∞

log n

n

(
Nn∑
i=1

f(Bi) + f(B∗n)

)
= lim
n→+∞

log n

n

Nn∑
i=1

f(Bi) = cf , (4)

where cf is a positive constant that is described below.

Let us give some underlying ideas concerning our main result: the trajectory of X can be split in excursions
composed of parts on the axis and parts on the cones. For the parts on the axis, we can prove that at each
excursion (before the instant n) the walk escapes from Kc in a compact neighborhood of (0, 0) with a
probability close to one. This escape coordinate is actually driven by a first invariant probability measure.
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The second part on K yields that the number of excursions (composed of the part on the cone and the
part on the axis) before the instant n is of order n/ log n. This fact comes essentially from the tail of the
first time the walk exits a cone when starting from a coordinate of the neighborhood of (0, 0). It turns out
that exit coordinates of the cone are also driven by a second invariant probability measure. This finally
makes appears a renewal structure for the trajectory of the walk.
Let us now discuss about the constant which appears in Theorem 1.2

cf :=
π

8

∑
y Ey[f(B0)]π∗(y)∑

x xπ
†(x)

=
π

8

Eπ∗ [f(B0)]

Eπ† [X0]
, (5)

where π∗ and π† are respectively the unique invariant probability measures of the Markov chains (Xηi , i)
and (Xρi , i). Note that by definition π∗(x) 6= 0 ⇐⇒ x ∈ Kc whereas π†(x) 6= 0 ⇐⇒ x ∈ ∂K := {x ∈ K/
∃y ∈ Kc, x− y = 1}. We can actually give some details about these two measures, in particular their
tail: limx→+∞ x3π∗(x) = c0 > 0 and limx→+∞ xα+2π†(x) = c2 , both constants c0 and c2 are partially
explicit (see respectively Proposition 2.1 and Lemma 3.2). With this theorem and the fact that families
of function f such that for any k < m, f(xk, · · · , xm) =

∑m
i=k 1xi∈Kc (to obtain the local time on the

axis) or f(xk, · · · , xm) =
∑m
i=k 1xi=(0,0) (to obtain the local time at the origin) satisfy (2) and (3), we

obtain the first theorem. This also leads to the constants c and c′ from above expression of cf . Note that
the increasing hypothesis on f is only used to prove that logn

n f(B∗n) converges in probability to zero and

is unnecessary to prove the convergence of logn
n

∑Nn
i=1 f(Bi) to cf .

We can think of several extensions and possible generalizations of this result. The first question is what
happen when return-force is lower, that is α ≤ 3. Well in this case the renewal structure does not exist any
more, and things worsen when α < 2 as there is no longer concentration of (Xρi , i) in the neighborhood
of (0, 0) so a totally new approach is needed.
Possible generalization concerns first the shape of the return force, we could easily replace function i 7→ i−α

by a sequence (ai, i) such that
∑
i i

2ai < +∞, note that this modification should not change the results.
However we chose to keep i−α in order to obtain proof easily readable. For the random walk on K, we
could also consider more general random walks, this would need improvement of local limit theorems like
the ones proved for simple random in Section 5 (Lemmata 5.1 and 5.4). More specifically what is needed,
for example, is uniform convergence for large x of (Py(Xη = x), y) (where η := inf{k > 0, Xk ∈ K}, see
Lemma 5.1). Note that Py(Xη = x) is studied for several random walks in [? ], including simple random
walk, but some extra work is needed to obtain uniform convergences.

The paper is organized as follows, in the following section we prove an ergodic result for the first m-
excursions, in Section 3 we prove that the number of excursions before the instant n is of order n/ log n
and finish with the proof of Theorem 1.2. Finally in Section 4 (resp. Section 5) we resume stochastic
estimations for the walk when it remains on the axis (resp. on the cones). For the seek of completeness,
we had an appendix in Section 6.
Note that although our main result needs the assumption α > 3, we allege this hypothesis whenever it is
possible as this will be useful for future works (see more specifically Section 4 which only deals with the
trajectory of the walk on the axis).

2. Ergodic result on the axis during the first m two-types excursions.

We call ith two-types excursion the trajectory of X on the time interval ρi−1 < k ≤ ρi, the first part
concerning the cones and the second one the axis. In this section we prove that for any positive non-
decreasing functional f satisfying (2) and (3), its empirical mean along the trajectory of X on Kc during
the first m excursions converges. Recall that for i ≥ 1, Bi = (Xk, ηi ≤ k < ρi) and B0 = (Xk, 0 ≤ k < ρ).
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Proposition 2.1. Assume α > 3, there exists a probability measure π∗ such that

1

m

m∑
i=1

f(Bi)
P→
∑
x∈Kc

π∗(x)Ex [f(B0)] = Eπ∗ [f(B0)],

moreover limx→+∞ x3π∗(x) = c0 > 0, with c0 := 16
π

∑
y π
∗(y)Ey[Xρ].

To obtain this proposition, we prove two Lemmata, the first one tells that
∑m
i=1 f(Bi) can be approxi-

mated by
∑m
i=1 EXηi [f(B0)], the second studies the convergence of this last sum. First Lemma states as

follows

Lemma 2.2. Assume α ≥ 3, there exists 0 < C ′ < +∞, such that

E

 1

m2

(
m∑
i=1

f(Bi)− EXηi [f(B0)]

)2
 ≤ C ′

m
. (6)

Proof. Strong Markov property leads to

E

( m∑
i=1

f(Bi)− EXηi [f(B0)]

)2
 =

m∑
i=1

E
[
VarXηi [f(B0)]

]
.

By hypothesis (3), above quantity is smaller than C2

∑m
i=1 E[X

2−δ
ηi ] with 0 < δ < 2 and we conclude using

Lemma 5.5 telling that there exists C > 0 such that E
[
X

2−δ
ηi

]
< C for all i ∈ N∗.

Second Lemma, which is essentially an ergodic result, writes

Lemma 2.3. Assume α > 3, the Markov chain (Xηi , i) is positive recurrent and its invariant probability
measure π∗ satisfies

1

m

m∑
i=1

EXηi [f(B0)]
P.a.s.→

∑
x∈Kc

π∗(x)Ex[f(B0)] = Eπ∗ [f(B0)]. (7)

Proof. (Xηi , i) being obviously irreducible, we just have to prove that (0, 1) is positive recurrent. Intro-
duce, for any x ∈ Kc, τx = inf{k ≥ 0, Xηk = x}, then for all k > 0:

P(0,1)

(
τ(0,1) > k

)
= P (∀i ≤ k,Xηi 6= (0, 1))

=
∑

y∈,Kc\{(0,1)}

P(0,1)

(
∀i ≤ k − 2, Xηi 6= (0, 1), Xηk−1

= y
)

(1− Py (Xη1 = (0, 1))) .

According to (23), there exists 0 < C < 1 such that for all y ∈ Kc, Py (Xρ = (1, 1)) > C, implying:

Py (Xη1 = (0, 1)) ≥ Py (Xρ = (1, 1))P(1,1) (Xη = (0, 1)) ≥ CP(1,1) (X1 = (0, 1)) =
C

4
.

Consequently, with an obvious induction reasoning:

P(0,1)

(
τ(0,1) > k

)
≤

∑
y∈Kc\{(0,1)}

P(0,1)

(
∀i ≤ k − 2, Xηi 6= (0, 1), Xηk−1

= y
)(

1− C

4

)

= P(0,1)

(
τ(0,1) > k − 1

)(
1− C

4

)
≤
(

1− C

4

)k
.
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Thus E(0,1)

[
τ(0,1)

]
=
∑
k≥0 P(0,1)

(
τ(0,1) > k

)
<∞ and (Xηi , i) is positive recurrent.

(7) is an application of Birkhoff’s ergodic Theorem so we only have to check that Eπ∗ [f(B0)] exists: first
note that by condition (2) for any x, Ex[f(B0)] ≤ C+x, so we only have to check that

∑
x xπ

∗(x) < +∞.
For that, we have to study the asymptotic in x of π∗(x). Let y in Kc and δ > 0 small enough such that
(1− δ)α > 3, for any x

Py(Xη1 = x) =
∑

z≤x1−δ

Py(Xρ = z)Pz(Xη = x) +
∑

z>x1−δ

Py(Xρ = z)Pz(Xη = x). (8)

By (30), there exists a positive constant c+ such that for all z ∈ K, Py(Xρ = z) ≤ (1 + c+)z−α, so using
Lemma 5.6, the second sum above is bounded by

(1 + c+)
∑

z>x1−δ

z−αPz(Xη = x) ≤ (1 + c+)x−(1−δ)α
∑

z>x1−δ

Pz(Xη = x) ≤ 2(1 + c+)x−(1−δ)α = o(x−3). (9)

Local limit result (Lemme 5.1) implies that (x3/z)Pz(Xη = x) ∼ 16/π for any large x uniformly in z with
z ≤ x1−δ, so for the first sum in (8) we get for large x∑

z≤x1−δ

Py(Xρ = z)Pz(Xη = x) ∼ 16

πx3

∑
z≤x1−δ

zPy(Xρ = z) =
16

πx3Ey[Xρ1Xρ≤x1−δ ]. (10)

Then (8), (9) and (10) implies that for any y,

lim
x→+∞

x3Py(Xη1 = x) =
16

π
Ey[Xρ] ≤M

where M does not depend on y by Corollary 4.5. As π∗(x) =
∑
y∈Kc π∗(y)Py(Xη1 = x):

lim
x→+∞

x3π∗(x) =
∑
y

π∗(y) lim
x→+∞

x3Py(Xη1 = x) =
16

π

∑
y

π∗(y)Ey[Xρ] ≤
16M

π
.

So
∑
x xπ

∗(x) < +∞ is satisfied.

Lemmata 2.2 and 2.3 ensure that 1
m

(∑m
i=1 f(Bi)− EXηi [f(B0)]

)
tends to 0 and 1

mEXηi [f(B0)] to
Eπ∗ [f(B0)] in probability which gives Proposition 2.1. It yields following Corollary giving the behav-
iors (after m excursions) of the local time on the axis and at (0, 0).

Corollary 2.4. Assume α > 3,

1

m
L (Kc, ρm)

P→
∑
x

π∗(x)Ex[ρ] and
1

m
L ((0, 0), ρm)

P→
∑
x

π∗(x)Ex[L (0, ρ)].

Proof. As L (Kc, ρm) =
∑m
i=1(ρi − ηi), if we take, for any k < m, f(xk, · · · , xm) = m − k, then

L (Kc, ρm) =
∑m
i=1 f(Bi). So to prove the result for L (Kc, ρm) we only have to check that condi-

tions (2) and (3) are full-filled for this f . By Lemma 4.8, for any γ ∈ {1, 2} there exists 0 < ε < 1 such
that for any x ∈ Kc:

Ex[fγ(B0)]− Ex[f(B0)]γ = Ex[ργ ]− Ex[ρ]γ ≤ xγ−ε,

so both (2) and (3) are satisfied. L ((0, 0), ρm) =
∑m
i=1(L ((0, 0), ρi)−L ((0, 0), ηi)) is treated similarly.
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3. The number of two-types excursions before the instant n

In this section we prove following Proposition, recall that Nn is the number of the last entrance in K
before n (see (1)).

Proposition 3.1. Assume α > 3, there exists a probability measure π† such that

logm

m
Nm

P→ π

8

1∑
x xπ

†(x)
=: c1 . (11)

The main idea comes from decomposition of ρk =
∑k
i=1 ρi − ηi +

∑k
i=1 ηi − ρi−1, then by Corollary 2.4,∑k

i=1 ρi−ηi is of order k whereas we show below that in probablity
∑k
i=1 ηi−ρi−1 is of order k log k. This

last fact comes from the tail of η (the single return instant to the axis) together with the fact that for any
i ≤ k, with an overwhelming probability Xρi is in the neighborhood of (0, 0) which size is independent of
i and of the coordinates of entry of the walk on the axis. We start with following Lemma

Lemma 3.2. Assume α > 3, (Xρi, i) is positive recurrent. Moreover its invariant probability measure π†

satisfies limx→+∞ xα+2π†(x) = c2 with c2 = 2
π

∑
u uπ

†(u).

Proof. The proof of the fact that (Xρi , i) is positive recurrent is very similar than for (Xηi , i). Using the
irreducibility of this chain, it suffices to prove that (1, 1) is positive recurrent. Denote by τ̃A = inf{k >
0, Xρk ∈ A}, then, for all k > 0:

P(1,1)

(
τ̃(1,1) > k

)
=

∑
y∈K\{(1,1)}

P(1,1)

(
∀i ≤ k − 2, Xρi 6= (1, 1), Xρk−1

= y
)

(1− Py (Xρ1 = (1, 1))) .

Using (23), there exists 0 < C < 1 such that for all z ∈ Kc, Pz (Xρ = (1, 1)) > C, implying that
Py (Xρ1 = (1, 1)) ≥ C

∑
z∈Kc Py (Xη = z) = C. So, with an induction reasoning:

E(1,1)[τ̃(1,1)] =
∑
k≥0

P(1,1)

(
τ̃(1,1) > k

)
≤
∑
k≥0

(1− C)
k
<∞.

Let us study the tail of invariant probability measure π†. First, note that as (Xρi , i) is obviously aperiodic,
using Lemma 4.6, for all x ∈ K:

π†(x) = lim
n→+∞

P(Xρn = x) ≤ c′

xα
(12)

implying that π† has a first moment and c1 6= 0. Let δ > 0 small enough such that (α − 1)(1 − δ) > 2,
assume x = (1, x2) with x2 > 0 (other cases can be treated similarly), let Lx := {z = (0, z2) with z2 ≥ x2}
and Lcx the relative complement of Lx in Kc. As π†(x) =

∑
y∈K π

†(y)Py(Xρ1 = x):

π†(x) =
∑
y

π†(y)
∑
z∈Lx

Py(Xη = z)Pz(Xρ = x) +
∑
y

π†(y)
∑
z∈Lcx

Py(Xη = z)Pz(Xρ = x) =: S1 + S2. (13)

When z ∈ Lcx, by the second point of Corollary 4.4, there exists C ′ > 0 such that Pz(Xρ = x) ≤ C ′/x2α,
so as α > 3

S2 ≤
C ′

x2α

∑
y∈K

π†(y)
∑
z∈Lcx

Py(Xη = z) ≤ C ′

x2α = o(x−2−α).

We now deal with the first sum in (13) which we decompose as follows

S1 =
∑

y,y≤x1−δ

π†(y)
∑
z∈Lx

Py(Xη = z)Pz(Xρ = x) +
∑

y,y>x1−δ

π†(y)
∑
z∈Lx

Py(Xη = z)Pz(Xρ = x) =: Σ1 + Σ2.
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For Σ2, by (30) and (12), as α+ (α− 1)(1− δ) > α+ 2:

Σ2 ≤
C+

xα

∑
y,y>x1−δ

1

yα
≤ C+

xα+(α−1)(1−δ) = o(x−2−α),

where C+ is a positive constant that may grow from line to line. In view of what we want to prove, S2

and Σ2 are negligible.
For Σ1, we use, as for Σ2, (30), the first point of Corollary 4.4 and also Lemma 5.1 telling that uniformly
in y, with y ≤ x1−δ and z ∈ Lx, Py(Xη = z) ∼ 16y/z3π, from this we deduce that

Σ1 ∼
∑

y,y≤x1−δ

π†(y)
∑
z∈Lx

4y

πz3xα
∼ 2

πxα+2

∑
y,y≤x1−δ

yπ†(y).

Finally as π† has a first moment, limx→+∞ xα+2Σ1 = 2
π

∑
u uπ

†(u), this finishes the proof.

Second Lemma below is a law of large number for the time spent by the walk on the cone during the first
m excursions.

Lemma 3.3. Assume α > 3, then in probability

lim
m→+∞

1

m logm

m∑
i=1

(ηi − ρi−1) =
8

π

∑
x∈K

xπ†(x).

Proof. For any 0 < ε < 1, let us decompose
∑m
i=1(ηi − ρi−1) as follows

m∑
i=1

(ηi − ρi−1) =

m∑
i=1

(ηi − ρi−1)1ηi−ρi−1≤εm +

m∑
i=1

(ηi − ρi−1)1ηi−ρi−1>εm =: Σ1 + Σ2.

• Let us prove that Σ2 = o(m logm): let A := {
∑m
i=1 1ηi−ρi−1>εm ≤ (logm)1/4}, Markov inequality

gives

P (A c) ≤ 1

(logm)1/4

m∑
i=1

P(ηi − ρi−1 > εm).

For 0 < δ < 1/2, one can write:

P(ηi − ρi−1 > εm) =
∑
x∈K

P(Xρi−1
= x)Px(η > εm)

=
∑

x,x≤m1/2−δ

P(Xρi−1
= x)Px(η > εm) +

∑
x,x>m1/2−δ

P(Xρi−1
= x)Px(η > εm).

According to Lemma 5.4, uniformly in x such that x ≤ m1/2−δ for m large enough Px(η > εm) ∼ 8x/πεm.
Then for m large enough and as α > 3 using Lemma 4.6:∑

x,x≤m1/2−δ

P(Xρi−1
= x)Px(η > εm) ≤ 8

εm
E[Xρi−1

] ≤ C+

εm
.

As α > 3, we can chose δ such that (α− 1)(1/2− δ) > 1 and using again Lemma 4.6:∑
x,x>m1/2−δ

P(Xρi−1 = x)Px(η > εm) ≤
∑

x,x>m1/2−δ

c′

xα
≤ c′

m(α−1)(1/2−δ) = o
( 1

m

)
.
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Then P(ηi−ρi−1 > εm) ≤ C+/εm, so finally P(A c) ≤ C+/(logm)1/4ε. A similar computation also prove
that P(C c) ≤ C+/(logm)1/2 with C := {

∑m
i=1 1ηi−ρi−1>m(logm)1/2 = 0}. Now, notice that on A ∩ C ,

Σ2 =

m∑
i=1

(ηi − ρi−1)1ηi−ρi−1>εm ≤ m(logm)1/2
m∑
i=1

1ηi−ρi−1>εm ≤ m(logm)3/4,

which implies P
(
Σ2 > m(logm)3/4

)
≤ C+/((logm)1/4ε), and thus, in probability Σ2 = o(m logm).

• For Σ1, assume for the moment that

lim
m→+∞

P
(∣∣∣Σ1 −

m∑
i=1

EXρi−1
[η1η≤εm]

∣∣∣ > m(logm)1/2
)

= 0. (14)

Let us compute:

EXρi−1
[η1η≤εm] = EXρi−1

[
η1η≤(logm)1/2

]
+ EXρi−1

[
η1(logm)1/2<η≤εm

]
, (15)

the first sum is smaller than (logm)1/2. For the second one, we decompose :

EXρi−1

[
η1(logm)1/2<η≤εm

]
=

∑
(logm)1/2<k≤εm

PXρi−1
(k < η ≤ εm)(1Xρi−1

≤k1/2−δ + 1Xρi−1
>k1/2−δ)

=: Σ3 + Σ4. (16)

In order to simplify the writing in the sequel, we introduce the following inequality: for (a, b) such that
a < α− 1 and (1/2− δ)(α− a− 1)− b > 1, using Lemma 4.6:

E[F (a, b)] := E
[ ∑

(logm)1/2<k≤εm

kbX
a

ρi−1
1Xρi−1

>k1/2−δ

]
≤ C+

∑
(logm)1/2<k≤εm

kb
∑

r>k1/2−δ

ra−α

≤ C+

∑
(logm)1/2<k≤εm

kb+(a−α+1)(1/2−δ) ≤ C+(logm)
1
2 (b+1+(a−α+1)(1/2−δ)).

For Σ3, we use Lemma 5.4: for any z ≤ k1/2−δ, Pz(η = k) ∼ 8z/πk2, so for large m,

Σ3 = (1 + o(1))
8

π
Xρi−1

∑
(logm)1/2<k≤εm

1

k
1Xρi−1

≤k1/2−δ

=
8

π
Xρi−1

(1 + o(1))

 ∑
(logm)1/2<k≤εm

1

k
−

∑
(logm)1/2<k≤εm

1

k
1Xρi−1

>k1/2−δ


=

8

π
(logm)Xρi−1

(1 + o(1))− 8

π
Xρi−1

(1 + o(1))
∑

(logm)1/2<k≤εm

1

k
1Xρi−1

>k1/2−δ . (17)

Finally uniformly in i ≤ m, as Σ4 ≤ F (0, 0):

logmXρi−1(1 + o(1))− 2F (1,−1) ≤ π

8
EXρi−1

[
η1(logm)1/2<η≤εm

]
≤ logmXρi−1(1 + o(1)) +

π

8
F (0, 0).

Thanks to our choice of δ, E[F (0, 0)] and E[F (1,−1)] tend to zero, implying (using a Markov inequality)
that

lim
m→+∞

P
( m∑
i=1

∑
(logm)1/2<k≤εm

(Xρi−1
k−11Xρi−1

>k1/2−δ + 1Xρi−1
>k1/2−δ) > m

)
= 0. (18)
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One can notice that i = 1 is a special case as Xρ0 = (1, 1) a.s. and that we should have made its own
reasoning. However, as the estimates remain true with even simpler calculations, we have decided to not
put it.
Collecting (15), (16) , (17) and (18) we obtain that, in probability, when m tends to infinity

1

m logm

m∑
i=1

EXρi−1
[η1η≤εm] ∼ 8

πm logm

m∑
i=1

(logm)Xρi−1 =
8

πm

m∑
i=1

Xρi−1 .

Then using that (Xρi , i) is positive recurrent, the fact that its invariant probability measure (π†(x), x)
admits a first moment (see Lemma 3.2) and the Birkhoff ergodic Theorem, we obtain for large m, that
in probability

1

m logm

m∑
i=1

EXρi−1
[η1η≤εm] ∼ 8

πm

m∑
i=1

Xρi−1

P.a.s.→ 8

π

∑
x

xπ†(x).

We deduce from that, in probability

lim
m→+∞

1

m logm

m∑
i=1

EXρi−1
[η1η≤εm] =

8

π

∑
x

xπ†(x).

We are left to prove (14), like in Lemma 2.2 strong Markov property yields

E
[(

Σ1 −
m∑
i=1

EXρi−1
[η1η≤εm]

)2]
≤

m∑
i=1

E
[
EXρi−1

[
η21η≤εm

]]
. (19)

Again using Lemma 5.4

EXρi−1

[
η21η≤εm)

]
≤ C+

∑
k≤εm

kPXρi−1
(η > k)

≤ C+(logm)2 +
∑

logm≤k≤εm

kPXρi−1
(η > k)(1Xρi−1

≤k1/2−δ + 1Xρi−1
>k1/2−δ)

≤ C+(logm)2 + C+

∑
logm≤k≤εm

Xρi−11Xρi−1
≤k1/2−δ + εmF (0, 0).

as by Lemma 4.6 E[Xρi−1 ] ≤ c for any i, in particular, the mean of the sum in the above inequality is
bounded by a constant times εm. Thanks to our previous computations, we have that εmE[F (0, 0)] =

o(m). Therefore E
[
EXρi−1

[
η21η≤εm

]]
≤ C+mε, so the second moment (19) is smaller that C+εm

2.

Finally using (second moment) Markov inequality in the probability in (14), yields (14).

The proof of Proposition 3.1 then writes: by Corollary 2.4 and Lemma 3.3, in probability

lim
k→+∞

ρk
k log k

= lim
k→+∞

(∑k
i=1 ηi − ρi−1

k log k
+

∑k
i=1 ρi − ηi
k log k

)
= lim
k→+∞

∑k
i=1 ηi − ρi−1

k log k
=

8

π

∑
x

xπ†(x),

which yields the result by definition of Nm.

3.1. Proof of Theorem 1.2

By Propositions 3.1, for any ε > 0 with probability converging to one logn
n

∑b(1−ε)c1n/ lognc
i=1 f(Bi) ≤

logn
n

∑Nn
i=1 f(Bi) ≤ logn

n

∑d(1+ε)c1n/ logne
i=1 f(Bi) then, as limt→+∞ b(1−ε)c1 tc/t = (1 − ε)c1 , Proposition
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2.1 gives for the lower bound

log n

n

bc1 (1−ε)n/ lognc∑
i=1

f(Bi)
P→ (1− ε)c1

∑
x∈Kc

π∗(x)Ex[f(B0)] = cf (1− ε).

A similar result is true for the upper bound, taking the limit when ε→ 0 yields logn
n

∑Nn
i=1 f(Bi)

P→ cf .

So we are left to prove that logn
n f(B∗n)

P→ 0. Let us give an upper bound for P( logn
n f(B∗n) > n−ε/2):

using successively Lemma 5.3 implying P(∪ni=1{Xηi > n1/2+2ε}) ≤ C+n
−4ε, and the increasing property

of f giving that f(B∗n) ≤ max1≤i≤n f(Bi):

P
( log n

n
f(B∗n) > n−ε/2

)
≤ P

( log n

n
f(B∗n) > n−ε/2,∩ni=1{Xηi ≤ n1/2+2ε}

)
+ C+n

−4ε

≤ P
( n⋃
i=1

{ log n

n
f(Bi) > n−ε/2, Xηi ≤ n1/2+2ε

})
+ C+n

−4ε

≤ n max
1≤i≤n

P
( log n

n
f(Bi) > n−ε/2, Xηi ≤ n1/2+2ε

)
+ C+n

−4ε. (20)

To deal with this probability we first compare each random variable f(Bi) with EXηi [f(B0)]. In the one
hand by strong Markov property, Tchebychev inequality and finally condition (3)

P
(
|f(Bi)− EXηi [f(B0)]| > n1−ε

log n
,Xηi ≤ n1/2+2ε

)
= E

[
1Xηi≤n1/2+2εPXηi

(
|f(B0)− EXηi [f(B0)]| > n1−ε

log n

)]
≤ (log n)2

n2−2ε
E
[
1Xηi≤n1/2+2εVarXηi [f(B0)]

]
≤ C2

(log n)2

n2−2ε
E
[
1Xηi≤n1/2+2εX2−δ

ηi

]
≤ C2

(log n)2

n1−6ε+δ/2+2δε
≤ 1

n1−6ε+δ/2
, (21)

recall indeed that δ introduced in condition (3) is given and ε can be chosen as small as we want so in
particular above probability converges to zero as long as δ/2 > 6ε. On the other hand we have to control
the sequence (EXηi [f(B0)], i ≤ n): using condition (2) and lemma 5.5 for 1 < β < 2

P
(
EXηi [f(B0)] >

n1−ε

log n

)
≤ P

(
C2Xηi >

n1−ε

log n

)
≤ C (log n)β

nβ(1−ε) E[Xβ
ηi ] ≤ C

(log n)β

nβ(1−ε) . (22)

Taking β(1− ε) > 1 ensures that nmaxi≤n P
(
EXηi [f(B0)] > n1−ε

logn

)
converges to 0. Collecting (20),(21)

and (22) implies that limn→+∞ P
(

logn
n f(B∗n) > n−ε/2

)
= 0, which leads to the desired result. �

4. Reversibility and technical Lemmata for trajectories on the axis

In this section we prove technical estimates for the part of the trajectory restricted to the axis, note that
we do not need the condition α > 3 here, in fact most of the time α > 1 is enough so we mention the
condition for α for each statement. For typographical simplicity, for any x and y in Kc, let P(x→ y) be
the probability of the shortest path on Kc to join y from x. For instance, on figure 2:

P(x→ y) =

x∏
i=1

(
1− 3

4iα

) y−1∏
i=1

1

4iα
.
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Figure 2

Note that the expression of P(x → y) has a useful consequence to compute probability of the form
P·(Xρ = ·). For example, one can see that there exists 0 < C < 1 such that:

Px(Xρ = (1, 1)) > C, ∀x ∈ Kc. (23)

Indeed, as α > 1, P(x→ (0, 0)) >
∏∞
i=1

(
1− 3

4iα

)
:= a > 0. Then:

Px (Xρ = (1, 1)) ≥ P (x→ (0, 0)) p((0, 0), (0, 1))p((0, 1), (1, 1)) =
a

42
=: C > 0.

The first statement below treats about the reversibility of the random walk on Kc.

Lemma 4.1. For all x, y ∈ Kc such that x+ ei, y + ej ∈ K:

Px(Xρ = y + ej) =
P(x→ y)

P(y → x)

xα

yα
Py(Xρ = x+ ei).

Proof. First we prove that for all x, y ∈ Kc and all n ∈ N∗:

Px(Xn = y, n < ρ) =
P(x→ y)

P(y → x)
Py(Xn = x, n < ρ). (24)

This fact is a simple consequence of the reversibility of random walk X. To prove (24), take a path Γ
from x to y on Kc of length n, Γ := (x0 = x, x1, . . . , xn−1, xn = y). Its probability is

Px(X1 = x1, . . . , Xn = y) =

n−1∏
i=0

p(xi, xi+1) = P(x→ y)AΓ

and note that AΓ is a product such that if p(xi, xi+1) appears in AΓ there is also necessarily j 6= i, such
that p(xj , xj+1) = p(xi+1, xi).
If we reverse the path (taking i→ n− i), we obtain similarly

Py(X1 = xn−1, . . . , Xn−1 = x1, Xn = x) =

n−1∏
i=0

p(xi+1, xi) = P(y → x)AΓ
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as the reversion does not change the value of AΓ.
As a result summing on all path Γ of length n from x to y:

Px(Xn = y, n < ρ) =
∑

Γ

n−1∏
i=0

p(xi, xi+1) = P(x→ y)
∑

Γ

AΓ =
P(x→ y)

P(y → x)

∑
Γ

P(y → x)AΓ

=
P(x→ y)

P(y → x)

∑
Γ

n−1∏
i=0

p(xi+1, xi) =
P(x→ y)

P(y → x)
Py(Xn = x, n < ρ).

Now, the result of the lemma follows taking x, y ∈ Kc such that x+ ei, y + ej ∈ K:

Px(Xρ = y + ej) =
∑
n≥0

Px(Xn = y, n < ρ,Xn+1 = y + ej) =
∑
n≥0

Px(Xn = y, n < ρ)p(y, y + ej)

=
P(x→ y)

P(y → x)
p(y, y + ej)

∑
n≥0

Py(Xn = x, n < ρ)

=
P(x→ y)

P(y → x)

p(y, y + ej)

p(x, x+ ei)
Py(Xρ = x+ ei) =

P(x→ y)

P(y → x)

xα

yα
Py(Xρ = x+ ei).

Remark 4.2. There is a counterpart of the precedent result on K: For all w, z ∈ K and all n ∈ N∗ such
that w + ei, z + ej ∈ Kc

Pw (Xη = z + ej) = Pz (Xη = w + ei) . (25)

The proof of (25) is very similar to (24) and is left to the reader (see Figure 2).

The lemma below gives an asymptotic of the distribution of the exit coordinate from the axis. We use
the following notation: for any x ∈ Z2, let (T kx )k≥0 be the sequence defined by T 0

x = 0 and for all k ∈ N∗:

T kx = inf{k > T k−1
x , Xk = x},

for simplicity we write Tx instead of T 1
x .

Lemma 4.3. Assume α > 1, there exists c+ > c− > 0 such that for all i > 1

1 + c−i
−α ≤ 4iαP(0,i)(Xρ = (1, i)) ≤ 1 + c+i

−α. (26)

Proof. Using the strong Markov property:

P(0,i)(Xρ = (1, i)) =
∑
k≥0

P(0,i)

(
T(0,i) < ρ

)k P(0,i)

(
ρ < T(0,i), Xρ = (1, i)

)
= p((0, i), (1, i))

∑
k≥0

P(0,i)

(
T(0,i) < ρ

)k
=

1

4iα
1

1− P(0,i)

(
T(0,i) < ρ

) =:
1

4iα
1

1− h(i)
. (27)

In order to obtain a lower bound for h(i), we apply the Markov property several times:

h(i) =
1

4iα
h(i+ 1) +

(
1− 3

4iα

)
h(i− 1) (28)

=
1

4iα

(
1− 3

4(i+ 1)α
+

1

4(i+ 1)α
h(i+ 2)

)
+

(
1− 3

4iα

)(
1

4(i− 1)α
+

(
1− 3

4(i− 1)α

)
h(i− 2)

)
(29)

≥ 1

4iα

(
1− 3

4(i+ 1)α

)
+

(
1− 3

4iα

)
1

4(i− 1)α
≥ c−
iα
.
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The upper bound is also obtained from (28): first h(i+ 1) is simply bounded from above by 1− 1
2(i+1)α

using (29). We treat h(i− 1) separately with a similar reasoning as the one to obtain (27) and taking a
particular trajectory:

h(i− 1) =
p((0, i− 1), (0, i))

1− P(0,i−1)

(
T(0,i−1) < T(0,i) ∧ ρ

) =
1

4(i− 1)αP(0,i−1)

(
T(0,i−1) > T(0,i) ∧ ρ

)
≤ 1

4(i− 1)αP(0,i−1)

(
T(0,i−1) > ρ,Xρ ∈ {(−1, 1); (1, 1)}

)
≤ 1

4(i− 1)α
1

1
2

∏i−1
k=2

(
1− 3

4kα

) ,
then

h(i) ≤ 1

4iα

(
1− 1

2(i+ 1)α

)
+

1

4(i− 1)α
1

1
2

∏i−1
k=2

(
1− 3

4kα

) ,
and as α > 1,

∏i−1
k=2

(
1− 3

4kα

)
is strictly positive constant so we get the upper bound.

The following Corollary is a consequence of Lemma 4.3. Recall that for i > 0, L(0,i) = {z = (0, z2), z2 ≥ i}.

Corollary 4.4. For α > 1, all z ∈ Kc and i > 0:

P(z → (0, i)) ≤ 4iαPz(Xρ = (1, i)) ≤ 1 + c+i
−α. (30)

Moreover,

1. if z ∈ L(0,i):
lim

i→+∞
4iαPz(Xρ = (1, i)) = 1; (31)

2. there exists C ′ > 0 such that for all z /∈ L(0,i):

Pz(Xρ = (1, i)) ≤ C ′

i2α
. (32)

3. there exists 0 < C̃ < 1 such that for all z ∈ Kc, Pz(Tz < ρ) ≤ C̃.

Proof. Using the strong Markov property:

Pz(Xρ = (1, i)) = Pz(T(0,i) < ρ,Xρ = (1, i)) = Pz(T(0,i) < ρ)P(0,i)(Xρ = (1, i)), (33)

which implies (30) using Lemma 4.3 and the fact that P(z → (0, i)) ≤ Pz(T(0,i) < ρ).

1. This formula is direct as

P(z → (0, i)) =

z∏
k=i+1

(
1− 3

4kα

)
≥

∞∏
k=i+1

(
1− 3

4kα

)
=: Ri −→

i→+∞
1,

as Ri is the rest of a convergent infinite product.
2. With (33), the inequality Pz(T(0,i) < ρ) ≤ P(0,i−1)(T(0,i) < ρ) and an obvious symmetry:

P(0,i−1)(Xρ = (1, i− 1), T(0,i) > ρ) ≤ P(0,i−1)(Xρ = (1, i− 1)),

and (30) implies the existence of C ′ > 0 such that for all positive i, C ′ ≥ 1 + c+i
−α.
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3. We can take z = (0, i) for i ≥ 1 without loss of generality. Using (28), the same symmetry as the
previous point and (30):

P(0,i)(T(0,i) < ρ) ≤ 1

4iα
+ P(0,i−1)(T(0,i) < ρ) ≤ 1

4iα
+ P(0,i−1)(Xρ = (1, i− 1)) ≤ 1

4iα

(
2 +

c+
iα

)
.

As a result, we can find N > 0, such that for all i ≥ N , P(0,i)(T(0,i) < ρ) ≤ 1
2 , and taking

C̃ := max(max0≤i<N P(0,i)(T(0,i) < ρ), 1
2 ), we have the claimed result.

Corollary 4.5. Let β > 0 such that α− β > 1, there exists M > 0 such that:

∀z ∈ Kc,Ez
[
X
β

ρ

]
≤M. (34)

Proof. Without loss of generality, we can assume that z = (0, i) with i ≥ 1. Using the symmetry of the
problem and (26), for j > 2:

P(0,i)

(
Xρ = j

)
= 2P(0,i) (Xρ = (1, j)) + 6P(0,i) (Xρ = (j, 1))

= 2P(0,i)

(
T(0,j) < ρ

)
P(0,j) (Xρ = (1, j)) + 6P(0,i)

(
T(j,0) < ρ

)
P(j,0) (Xρ = (j, 1))

≤ 8P(0,j) (Xρ = (1, j)) ≤ C+j
−α.

Consequently:

E(0,i)

[
X
β

ρ

]
=
∑
j≥1

P(0,i)

(
Xρ = j

)
jβ = P(0,i)

(
Xρ = 1

)
+
∑
j≥2

P(0,i)

(
Xρ = j

)
jβ ≤ 1 + C+

∑
j≥2

jβ−α = M.

The last Lemma is a simple consequence of Corollary 4.5 and Corollary 4.4

Lemma 4.6. Assume α > 2, there exists c and c′ such that for any i and x ∈ K

E[Xρi ] ≤ c and P(Xρi = x) ≤ c′/xα. (35)

Proof. According to Corollary 4.5, there exists M > 0 such that for any E[Xρi ] = E[EXηi [Xρ]] ≤M .
Similarly, writing P(Xρi = x) = E[PXηi (Xρ = x)], one can obtain the second inequality with (30).

Lemma 4.7. Assume α > 1. For any a, r > 0 and m large enough

P(0,a)(ρ > m) ≤ m−r. (36)

Proof. For all k ∈ N∗, let T ∗k = inf{n ≥ 0, Xn = k}. As m goes to infinity, we can assume without loss
of generality that 2a < logm. Then, one can write (we have chosen to not indicate the integer parts for
typographical simplicity) :

P(0,a)(ρ > m) = P(0,a)(ρ > m, T ∗logm < ρ) + P(0,a)(T
∗
logm > ρ > m) := (I) + (II).

For part (I) by symmetry, the fact that P(0,a)(T(0,logm) < ρ) > P(0,a)(T(0,− logm) < ρ) and Lemma 4.1,
we obtain:

(I) ≤ 4P(0,a)(T(0,logm) < ρ) = 4
P(0,a) (Xρ = (1, logm))

P(0,logm) (Xρ = (1, logm))
≤ 16(logm)αP(0,a) (Xρ = (1, logm))

= 16aα
P((0, a)→ (0, logm))

P((0, logm)→ (0, a))
≤ 16aα

∏logm−1
i=a

1
4iα∏∞

i=1

(
1− 3

4iα

) = 4C

logm−1∏
i=a+1

1

4iα
≤ 4C

logm−1∏
i= logm

2

1

4
(

logm
2

)α
≤ 4C

(
4

(
logm

2

)α)− logm
2

,
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which implies that for all r > 0, (I) is bounded from above by m−r for m large enough.
Otherwise, for second term (II)

(II) = P(0,a)(T
∗
logm > ρ > m) = P(0,a)

 ∑
z∈Kc,|z|≤logm

L (z, ρ) > m


≤ P(0,a)

(
∃z ∈ Kc, |z| ≤ logm,L (z, ρ) >

m

4 logm+ 1

)
≤

∑
z∈Kc,|z|≤logm

P(0,a)

(
L (z, ρ) >

m

4 logm+ 1

)
.

Note that for all k ≥ 2 and all z ∈ Kc, using the third point of Corollary 4.4:

P(0,a) (L (z, ρ) > k) = P(0,a) (Tz < ρ)Pz (Tz < ρ)
k ≤ Pz (Tz < ρ)

k ≤ C̃k.

Consequently:

(II) ≤
∑

z∈Kc,|z|≤logm

C̃
m

4 logm = (4 logm+ 1)C̃
m

4 logm ,

so, for all r > 0 , (II) is also bounded from above by m−r for m large enough.

In the following Lemma we obtain asymptotic (with respect to the coordinate of the starting point) of
the exit time from the axis ρ and its second order.

Lemma 4.8. Assume α > 1, let 0 < β ≤ 2 and 0 < ε < 1. Then, for large i

|E(0,i)[ρ
β ]− iβ | = O(iβ−ε). (37)

Proof. For the lower bound, just note that

E(0,i)

[
ρβ
]
≥ E(0,i)

[
ρβ1ρ≥i−i1−ε

]
≥ (i− i1−ε)βP(0,i)

(
ρ ≥ i− i1−ε

)
= (i− i1−ε)β

(
1− P(0,i)

(
ρ < i− i1−ε

))
=: L(i)

and with (30):

P(0,i)

(
ρ < i− i1−ε

)
≤

∑
k≥i1−ε

P(0,i) (Xρ = (1, k)) ≤
∑

k≥i1−ε
P(0,k) (Xρ = (1, k))

≤
∑

k≥i1−ε

1

4kα

(
1 +

c+
kα

)
≤ C+i

−(α−1)(1−ε).

This implies that for large i, L(i) = (i− i1−ε)β(1 + o(1)) = iβ +O(iβ−ε). For the upper bound,

E(0,i)

[
ρβ
]

= E(0,i)

[
ρβ
(
1ρ<i+i1−ε + 1ρ≥i+i1−ε

)]
≤
(
i+ i1−ε

)β
+ E(0,i)

[
ρβ1ρ≥i+i1−ε

]
=:
(
i+ i1−ε

)β
+ U(i).

Then, using (36), with r > β + 1 and i large enough:

U(i) =
∑

k≥i1−ε
(i+ k)βP(0,i) (ρ = i+ k) ≤

∑
k≥i1−ε

(i+ k)β

kr
= o(1).

This finishes the proof.
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5. Technical lemmata for trajectories on the cone

Recall the definition of η = inf{k > 0, Xk ∈ K}. In this section we obtain a (uniform) local limit result
for Xη (Lemma 5.1) as well as a uniform tail for η (Lemma 5.4).

Lemma 5.1. For any δ > 0, uniformly in y ≤ x1−δ:

lim
x→+∞

x3

y
P(1,x)(Xη = (y, 0)) = lim

x→+∞

x3

y
P(y,1)(Xη = (0, x)) =

16

π
.

lim
x→+∞

x3

y
P(1,x)(Xη = (0, y)) = lim

x→+∞

x3

y
P(1,y)(Xη = (0, x)) =

16

π
.

Proof. Note that the first equality on both above lines comes from the symmetry of the distribution of
the simple random walk on the cones (see Remark 4.2).
For any sequence (Yn, n ≥ 1) of real random variables, introduce Y n := inf1≤k≤n Yk.
We start with P(1,x)(Xη = (y, 0)). First, writing Xn = (X1

n, X
2
n), we easily see that:

P(1,x)(Xη = (y, 0)) =
∑
k≥x

P(1,x)(Xk = (y, 0), η = k) =
∑
k≥x

P(1,x)(X
1
k > 0, X1

k = y,X2
k−1 > 0, X2

k = 0)

=
1

4

∑
k≥x

P(1,x)(X
1
k−1 > 0, X1

k−1 = y,X2
k−1 > 0, X2

k−1 = 1),

as the k-th step is necessarily vertical, more precisely X2
k−1 = 1 and X2

k = 0.

If H k
j is the event {among the first k − 1 steps, there is exactly j horizontal ones} and if Z is the

symmetric random walk on Z, one can write:

`jk :=P(1,x)(X
1
k−1 > 0, X1

k−1 = y,X2
k−1 > 0, X2

k−1 = 1|H k
j )

=P1(Zj > 0, Zj = y)Px(Zk−j−1 > 0, Zk−j−1 = 1). (38)

Thus, for 0 < ε < 1:

P(1,x)(Xη = (y, 0)) =
1

4

∑
k≥x

k−1−x∑
j=y−1

P(H k
j )P1(Zj > 0, Zj = y)Px(Zk−j−1 > 0, Zk−j−1 = 1)

=
1

4

∑
k≥x

∑
j∈Bk,ε

P(H k
j )`jk +

1

4

∑
k≥x

∑
j∈Bck,ε

P(H k
j )`jk =: Σ1 + Σ2, (39)

where Bk,ε := [(k−1)(1−ε)/2, (k−1)(1+ε)/2] and Bck,ε its complementary in {y − 1, · · · , k − 1− x}.
First note that according to (54), for j in Bk,ε P(H k

j ) ≤ e− ε
2k
6 , implying:

Σ2 ≤
∑
k≥x

e−
ε2k
6

∑
j∈Bck,ε

`jk ≤
∑
k≥x

ke−
ε2k
6 ≤

∫ ∞
x

te−
ε2t
6 dt = e−

ε2x
6

6

ε2

(
x+

6

ε2

)
(40)

and as a result limε→0 limx→+∞
x3

y Σ2 = 0. In view of what we want to prove, we only consider j ∈ Bk,ε
in the following and we write:

Σ1 =
1

4

( ∑
x≤k<εx2

+
∑

εx2≤k≤x2/ε

+
∑

k>x2/ε

) ∑
j∈Bk,ε

P(H k
j )`jk =: Σ11 + Σ12 + Σ13.
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• Asymptotic behaviour of Σ12

Applying Lemma 6.3:

Σ12 =
2xy

π

x2/ε∑
k=εx2

∑
j∈Bk,ε

P(H k
j )

e−
x2

2(k−j)

(j + 1)
3
2 (k − j) 3

2

(
1 +O

(
y2

k

)
+ o

(
x3

k2

))
.

Using formula (53), a lower bound for Σ12 is given by :

Σ12 ≥
16xy

π(1 + ε)3

(
1 +O

(
1

x2δ

)) x2/ε∑
k=εx2

e−
x2

k(1−ε)

(k + 1)3

∑
j∈Bk,ε

P(H k
j )

≥ 16xy

π(1 + ε)3

(
1 +O

(
1

x2δ

)) x2/ε∑
k=εx2

e−
x2

k(1−ε)

(k + 1)3

(
1 +O

(
1√
k

))

=
16xy

π(1 + ε)3

(
1 +O

(
1

x

)
+O

(
1

x2δ

)) x2/ε∑
k=εx2

e−
x2

k(1−ε)

(k + 1)3
. (41)

With the substitution u = x2
/z:

x2/ε∑
k=εx2

e−
x2

k(1−ε)

(k + 1)3
≥
(

1− 2

εx2 + 1

)3 x2/ε∑
k=εx2

e−
x2

k(1−ε)

(k − 1)3
≥
(

1− 2

εx2 + 1

)3 x2/ε∑
k=εx2

∫ k

k−1

e−
x2

z(1−ε)

z3
dz

≥
(

1− 2

εx2 + 1

)3 ∫ ⌊
x2

ε

⌋
bεx2c

e−
x2

z(1−ε)

z3
dz =

(
1− 2

εx2 + 1

)3
1

x4

∫ x2

bεx2c

x2

b x2ε c
ue−

u
1−ε du

=: g(x, ε).

By Lebesgue’s dominated convergence theorem limx→+∞ x4g(x, ε) =
∫ 1
ε

ε
ue−

u
1−ε du and limε→0 limx→+∞

x4g(x, ε) =
∫ +∞

0
ue−

u
1−ε du = 1, this implies

lim
ε→0

lim
x→+∞

x3

y
Σ12 ≥

16

π
lim
ε→0

lim
x→+∞

1

(1 + ε)3

(
1 +O

(
1

x

)
+O

(
1

x2δ

))x4

y

∑
εx2≤k≤x2/ε

g(x, ε) ≥ 16

π
.

Note that this last inequality implies the desired lower bound as:

lim
x→+∞

x3

y
P(1,x)(Xη = (y, 0)) ≥ lim

ε→0
lim

x→+∞

x3

y
Σ12 ≥

16

π
.

To obtain an upper bound, as
∑
j∈Bk,ε P(H k

j ) ≤ 1,

Σ12 ≤
16xy

π(1− ε)3

(
1 +O

( 1

x2δ

)) x2/ε∑
k=εx2

e−
x2

(k+1)(1+ε)

k3
, (42)

the rest of the proof is similar as the one for the lower bound implying that limε→0 limx→+∞
x3

y Σ12 ≤ 16
π .

To complete the proof for the upper bound we have to show that Σ11 and Σ13 are negligible:
• Σ13 negligibility:
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We just note, by (50) and (51), that

Σ13 ≤
1

4

∑
k>x2/ε

max
j∈Bk,ε

`jk ≤
32

π

∑
k>x2/ε

xy

(k(1− ε))3
e−

x2

(k+1)(1+ε) (43)

≤ 32xy

π(1− ε)3

(
x2 − ε

x2(x2 + ε)

)2 ∫ ε x
2+ε

x2−ε

0

ue−
u

1+ε du.

This finally implies

lim
ε→0

lim
x→+∞

x3

y
Σ13 ≤ lim

ε→0

32(1 + ε)2

π(1− ε)3

∫ ε
1+ε

0

ve−vdv = 0.

• Σ11 negligibility :
We use same first inequality as in (43) and then split again the sum : let 0 < δ < 1

Σ11 ≤
∑

x≤k≤x2−δ/2

max
j∈Bk,ε

`jk +
∑

x2−δ/2<k≤εx2

max
j∈Bk,ε

`jk =: Σ′11 + Σ∗11.

According to Lemma 6.5, for 0 < ε < 1/3 and x large enough, there exists c− > 0 such that:

Σ′11 ≤
∑

x≤k≤x2−δ/2

max
j∈Bk,ε

`jk ≤
∑

x≤k≤x2−δ/2

max
j∈Bk,ε

P(Zk−j−1 ≥ x− 1) ≤
∑

x≤k≤x2−δ/2

e−c−
x2

k ≤ x2−δ/2e−c−x
δ/2

,

so limx→+∞
x3

y Σ′11 = 0. And similarly as for Σ13 above, using (50) and (51)

Σ∗11 ≤
∑

x2−δ/2<k<εx2

32xy

π(k(1− ε))3
e−

x2

(k+1)(1+ε) ≤ 32xy

π(1− ε)3

(
x2 − ε

x2(x2 + ε)

)2 ∫ ∞
x2+ε

ε(x2−ε)

ue−
u

1+ε du. (44)

Implying that :

lim
ε→0

lim
x→+∞

x3

y
Σ∗11 ≤ lim

ε→0

C+

ε
e−

1
ε(1+ε) = 0.

So finally limε→0 limx→+∞
x3

y Σ11 = 0.

We now give some details for P(1,x)(Xη = (0, y)).

As y ≤ x1−δ, we can assume without loss of generality that y < x. Like the previous case:

P(1,x)(Xη = (0, y)) =
1

4

x2/ε∑
k=εx2

k−1−(x−y)∑
j=0

P(H k
j )P1(Zj > 0, Zj = 1)Px(Zk−j−1 > 0, Zk−j−1 = y)

=
1

4

∑
k≥x

∑
j∈Bk,ε

P(H k
j )hjk +

1

4

∑
k≥x

∑
j∈Bck,ε

P(H k
j )hjk =: Ω1 + Ω2,

where Bck,ε is here the complementary of Bk,ε in {0, · · · , k−1−(x−y)}. According to (40), Ω2 is negligible.

Now, we only focus on the quantity Ω12 := 1
4

∑
εx2≤k≤x2/ε

∑
j∈Bk,ε P(H k

j )hjk and (49) and (52) give

Ω12 =

(
1 +O

(
1

x2δ

)
+ o

(
1

x

))
2xy

π

x2/ε∑
k=εx2

∑
j∈Bk,ε

P(H k
j )

e−
x2

2(k−j−1)

(j + 1)
3
2 (k − j − 1)

3
2

.
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Using (53), with the same reasoning as the one for (y, 0):

Ω12 ≥
(

1 +O

(
1

x2δ

)
+ o

(
1

x

))
16xy

π(1 + ε)3

x2/ε∑
k=εx2

e−
x2

(k−1)(1−ε)

(k + 1)3

Ω12 ≤
(

1 +O

(
1

x2δ

)
+ o

(
1

x

))
16xy

π(1− ε)3

x2/ε∑
k=εx2

e−
x2

(k+1)(1+ε)

(k − 1)3
.

The upper and lower bound for Ω12 we obtain here is the equivalent of what we obtain for Σ12 in the
previous case (see (41) and (42)). Then the rest of the proof is very similar than what we previously detail
so we chose to let this to the reader. The only difference is for the quantity

∑
x−y≤k≤x1+δ P(H k

j )hjk, where
we use again Lemma 6.5.

Remark 5.2. For any δ > 0, uniformly in y ≤ x1−δ, there exists C > 0 such that:

Py(Xη > x) ≤ C y

x2 .

Lemma 5.3. Assume α > 3. There exists C > 0 such that for all n ∈ N∗, all 1 ≤ i ≤ n and 0 < ε < α−3
4 :

P(Xηi > n
1/2+2ε) ≤ C

n1+4ε

Proof. For i ≥ 2, using the previous remark and Lemma 4.6 (two times):

P(Xηi > n
1/2+2ε) =

∑
x∈K

P(Xρi−1
= x)Px(Xη > n

1/2+2ε)

≤
∑

x≤n1/2+ε

P(Xρi−1
= x)Px(Xη > n

1/2+2ε) +
∑

x>n1/2+ε

P(Xρi−1
= x)

≤ C

 1

n1+4ε

∑
x≤n1/2+ε

xP(Xρi−1
= x) +

∑
x>n1/2+ε

1

xα

 ≤ C (E[Xρi−1
]

n1+4ε
+

4

n(α−1)(1/2+ε)

)

≤ C
(

1

n1+4ε
+

1

n(α−1)(1/2+ε)

)
.

As 0 < ε < α−3
4 , we have 1 + 4ε < (α− 1)(1/2 + ε). Note that for i = 1, the proof is easier using straightly

Remark 5.2 and we have our claimed result.

Lemma 5.4. For any y ∈ ∂K such that y = o(k1/2), limk→+∞
k2

y Py(η = k) = 8
π .

Proof. For typographical simplicity, we only treat P(1,x)(η > n) with x > 0 (the other ones can be obtain
by symmetry). Recall the definition of H .

. before (38), following the same ideas as for the proof of Lemma
5.1, for ε > 0:

P(1,x)(η = k) =
∑

m≤k−1

P(1,x)(η = k|H k
m)P(H k

m)

=
( ∑
m∈Bk,ε

+
∑

m∈Bck,ε

)
P(1,x)(η = k|H k

m)P(H k
m) := Σ1 + Σ2,
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and we can prove that Σ2 is negligible (see (40) for details). Thus we only study Σ1 and write:

Σ1 =
1

4

∑
m∈Bk,ε

P(H k
m)P1(Zm > 0)Px(Zk−m−1 > 0, Zk−m−1 = 1)

+
1

4

∑
m∈Bk,ε

P(H k
m)P1(Zk−m−1 > 0, Zk−m−1 = 1)Px(Zm > 0) =: Σ11 + Σ12.

For any large k and any x = o(k1/2), with Corollary 6.2, (50) and (53):

Σ11 ≥
x

π

∑
m∈Bk,ε

P(H k
m)

e−
x2

2(k−m)

√
m(k −m)

3
2

(
1 + o

(
x3

(k −m)2

)
+ o

(
1

m

))

≥ 4x

π(1 + ε)2

e−
x2

k(1−ε)

k2

(
1 + o

(
x3

k2

)
+ o

(
1

k

)) ∑
m∈Bk,ε

P(H k
m)

≥ (1− 2ε)
4x

π

e−
x2

k(1−ε)

k2
≥ (1− 3ε)

4x

πk2
.

The upper-bound is simpler as:

Σ11 ≤
4x

π(1− ε)2

1

(k − 1)2

(
1 + o

(
x3

k2

)
+ o

(
1

k

))
≤ 4x

πk2
(1 + 2ε)

Thus, limε→0 limn→∞ nΣ11/x = 4/π. Σ12 can be treated similarly and we obtain our claimed result.

We conclude this section with two lemmata, the first one is the counterpart on K of Lemma 4.6 and
the last one a useful identity:

Lemma 5.5. For any 0 < β < 2 there exists C > 0 such that for all i ≥ 1:

E
[
X
β

ηi

]
≤ C.

Proof. According to [? ], Theorem 1.3 page 223 (see also [? ] Lemma 10 page 1007), for any 0 < β < 2
there exists C > 0 such that for any x ∈ K:

Ex
[
max
i≤η

X
β

i

]
≤ C(1 + xβ). (45)

Using the strong Markov Property (two times), previous inequality and Corollary 4.5 yields

E
[
X
β

ηi

]
= E

[
EXρi−1

[
X
β

η

]]
≤ CE

[
X
β

ρi−1

]
= CE

[
EXηi−1

[
X
β

ρ

]]
≤ CE[M ] = CM. (46)

Lemma 5.6. For all x ∈ Kc : ∑
y∈∂K

Py (Xη = x) = 2.
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Proof. We can assume without loss of generality that x = (0, i) for i ≥ 1. Using the reversibility:∑
y∂K

Py (Xη = (0, i)) = P(1,1) (Xη = (0, i)) +
∑
j≥2

P(j,1) (Xη = (0, i)) + P(1,j) (Xη = (0, i))

+ P(−1,1) (Xη = (0, i)) +
∑
j≥2

P(−1,j) (Xη = (0, i)) + P(−j,1) (Xη = (0, i))

= P(1,i) (Xη = (0, 1)) +
∑
j≥2

P(1,i) (Xη = (j, 0)) + P(1,i) (Xη = (0, j))

+ P(−1,i) (Xη = (−1, 0)) +
∑
j≥2

P(−1,i) (Xη = (0, j)) + P(−1,i) (Xη = (−j, 0)) = 2.

6. Appendix

In this appendix, we give asymptotic results linked to (Zn)n≥0, the symmetric random walk on Z, results
that we used throughout this paper. Recall that Bk,ε = [(k−1)(1−ε)/2, (k−1)(1+ε)/2] and H k

j is the event
{among the first k − 1 steps, there is exactly j horizontal ones} .

Lemma 6.1. Let 0 < δ < 1, assume that k is an integer such that limx→+∞ ln k/ln x ∈ [(2− δ), 2], then

2−k
(

k
k−x

2

)
=

√
2

πk
e−

x2

2k

(
1 + o

(
x3

k2

))
. (47)

If, moreover there exists y ≤ x1−δ:

2−k
(

k
k−y

2

)
=

√
2

πk

(
1 +O

(
y2

k

))
. (48)

Proof. Using Stirling formula:

2−k
(

k
k−x

2

)
=

2−k√
2π

kk+ 1
2 e−k

(
1 + 1

12k + o
(

1
k

))
(
k−x

2

) k−x+1
2 e−

k−x
2

(
k+x

2

) k+x+1
2 e−

k+x
2

(
1 + 1

6k + o
(

1
k

))
=

√
2

πk

1(
1− x

k

) k−x+1
2

(
1 + x

k

) k+x+1
2

(
1− 1

12k
+ o

(
1

k

))
.

Moreover

A :=
(

1− x

k

) k−x+1
2

(
1 +

x

k

) k+x+1
2

= e
k−x+1

2 ln(1− xk )e
k+x+1

2 ln(1+ x
k )

= exp

(
k − x+ 1

2

(
−x
k
− x2

2k2
− x3

3k3
+ o

(
x3

k3

))
+
k + x+ 1

2

(
x

k
− x2

2k2
+

x3

3k3
+ o

(
x3

k3

)))
= exp

(
x

(
x

k
+

x3

3k3

)
− x2

2k2
(k + 1) + o

(
x3

k2

))
= exp

(
x2

2k
+

x4

3k3
− x2

2k2
+ o

(
x3

k2

))
= exp

(
x2

2k
+ o

(
x3

k2

))
= exp

(
x2

2k

)(
1 + o

(
x3

k2

))
.
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In the first case:

2−k
(

k
k−x

2

)
=

√
2

πk
e−

x2

2k

(
1 + o

(
x3

k2

))(
1− 1

12k
+ o

(
1

k

))
=

√
2

πk
e−

x2

2k

(
1 + o

(
x3

k2

))
,

If y ≤ x1−δ, e−
y2

2k = 1− y2

2k + o
(
y2

2k

)
= 1 +O

(
y2

k

)
, giving the second formula.

Corollary 6.2. When k goes to infinity, for any m ∈ Bk,ε and any u = o(k1/2),

u

√
2

πm

(
1 + o

( u
m

))
≤ Pu (Zm > 0) ≤ u

√
2

πm

(
1 + o

(
1

m

))
.

Proof. According to [? ] pp.72 and pp.88-89, Pu (Zm = j) = 2−m
( m
m−(j−u)

2

)
∨
( m
m−(j−u)−1

2

)
, then, assuming

m ∈ Bk,ε:

uPu (Zm = 1) ≤ Pu (Zm > 0) =

u∑
j=1

Pu (Zm = j) ≤ uPu (Zm = u) .

As u = o(k1/2), we conclude using Lemma 6.1,

Lemma 6.3. When k goes to infinity

P1(Zk > 0, Zk = 1) =

√
2

π

2

(k + 1)
3
2

(
1 + o

(
1

k2

))
. (49)

Let 0 < δ < 1, for any x large enough and for any k ≥ x2−δ/2 ,

Px (Zk > 0, Zk = 1) =

√
2

π

2x

(k + 1)
3
2

e−
x2

2(k+1)

(
1 + o

(
x3

k2

))
. (50)

If, moreover y ≤ x1−δ,

P1(Zk > 0, Zk = y) =

√
2

π

2y

(k + 1)
3
2

(
1 +O

(
y2

k

)
+ o

(
1

k2

))
, (51)

Px (Zk > 0, Zk = y) =

√
2

π

2xy

k
3
2

e−
x2

2k

(
1 + o

(
x3

k2

)
+O

(
y2

k

)
+O

(
(xy)2

k2

))
. (52)

Proof. Using the stationarity of (Zk)k≥0 and the Desire André’s reflexion principle (see [? ], p. 72-73 and
95 problems for solution):

Px(Zk > 0, Zk = 1) = P(Zk > −x, Zk = 1− x) =
1

2k

((
k

k+1−x
2

)
−
(

k
k−x−1

2

))
=

(
1

2

)k+1
2x

k + 1

(
k + 1
k+1−x

2

)
,

and we easily obtain (49) taking x = 1 and using Lemma 6.1. The reasonings to obtain (50) and (51) are
very similar and use again Lemma 6.1.
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To prove (52), we use again the Desire André’s reflexion principle and formula (47)

Px(Zk > 0, Zk = y) = P(Zk > −x, Zk = y − x) =

(
1

2

)k ((
k

k−(x−y)
2

)
−
(

k
k−(x+y)

2

))
=

√
2

πk

(
1 + o

(
x3

k2

))(
e−

(x−y)2
2k − e−

(x+y)2

2k

)
=

√
2

πk

(
1 + o

(
x3

k2

))
e−

x2+y2

2k

(
e
xy
k − e−

xy
k

)
=

√
2

πk

(
1 + o

(
x3

k2

))
e−

x2+y2

2k

(
2xy

k
+O

(
(xy)3

k3

))
=

√
2

π

2xy

k
3
2

e−
x2+y2

2k

(
1 + o

(
x3

k2

))(
1 +O

(
(xy)2

k2

))
=

√
2

π

2xy

k
3
2

e−
x2

2k

(
1 + o

(
x3

k2

))(
1 +O

(
y2

k

))(
1 +O

(
(xy)2

k2

))
.

To finish we recall elementary facts use several times in Section 5.

Lemma 6.4. When k goes to infinity:∑
j∈Bk,ε

P(H k
j ) ≥ 1−O

( 1√
k

)
, (53)

and for all j /∈ Bk,ε
P(H k

j ) ≤ e− ε
2k
6 . (54)

Proof. Formulas (53) and (54) are respectively applications of the Berry-Esseen and Chernoff inequalities.

Lemma 6.5. For k > x − y with y = o(x) and 0 < ε < 1/3, there exists c− > 0 such that for x large
enough:

max
j∈Bk,ε

P(Zj ≥ x− y) ≤ e−
c−x

2

k .

Proof. Proof is elementary, we give some details for completeness. Assume y = 1 for the moment, for any
α > 0:

P(Zj ≥ x− 1) = P
(
eαZj ≥ eα(x−1)

)
≤ E

[
eαZj

]
e−α(x−1) = E

[
eαZ1

]j
e−α(x−1)

= ej lnE[eαZ1 ]−α(x−1) ≤ ej(E[eαZ1 ]−1)−α(x−1) = ej(coshα−1)−α(x−1).

For 0 < α < 2, coshα ≤ 1 + 3
4α

2 implying that for such α:

P(Zj ≥ x− 1) ≤ e 3
4 jα

2−α(x−1) =: eψ(α).

One can find that ψ reaches its minimum for α = 2(x−1)
3j (note that for 0 < ε < 1/3 and k > x, this

quantity is bounded above by 2) and for that choice of α:

P(Zj ≥ x− 1) ≤ e−
(x−1)2

3j ≤ e−
(x−1)2

3k ≤ e− x
2

6k ,

for x large enough. This finishes the proof for y = 1, for general y proof is identical just the optimal α
changes in α = 2(x− y)/3j.
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