Some Remarkable Rheological and Conducting Properties of Hybrid PVC Thermoreversible Gels/Organogels
Résumé
We report on investigations into the rheological properties of organogels prepared from triarylamine trisamide (TATA) and oligo phenylene vinylene (OPVOH) molecules in binary organogel gels and in ternary thermoreversible networks with poly vinyl chloride (PVC). In the case of OPVOH, we show that the modulus of the ternary gel is simply the sum of the modulus of each binary gel, corresponding to the so-called Voigt upper limit. In contrast, TATA/PVC ternary gels generally exceed the Voigt upper limit. In an attempt to account for this unexpected outcome, we hypothesized that a de-solvation process might occur in the PVC fibrils that possibly originates in the propensity of TATA molecules to form molecular compounds with the solvent. Finally, the conducting properties of TATA/solvent organogels and TAT/PVC/solvent reversible networks were measured. It was found that they strongly depend on the solvent type but are not significantly altered when PVC is present. Therefore, PVC gels can be made conducive by incorporating TATA fibers.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|