Speed of convergence of time Euler schemes for a stochastic 2D Boussinesq model - Archive ouverte HAL
Article Dans Une Revue Mathematics Année : 2022

Speed of convergence of time Euler schemes for a stochastic 2D Boussinesq model

Résumé

We prove that an implicit time Euler scheme for the 2D-Boussinesq model on the torus $D$ converges. Various moment of the $W^{1,2}$-norms of the velocity and temperature, as well as their discretizations, are computed. We obtain the optimal speed of convergence in probability, and a logarithmic speed of convergence in $L^2(\Omega)$. These results are deduced from a time regularity of the solution both in $L^2(D)$ and $W^{1,2}(D)$, and from an $L^2(\Omega)$ convergence restricted to a subset where the $W^{1,2}$-noms of the solutions are bounded.
Fichier principal
Vignette du fichier
Boussinesq-Revised-November.pdf (428.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03812476 , version 1 (18-11-2022)

Identifiants

Citer

Hakima Bessaih, Annie Millet. Speed of convergence of time Euler schemes for a stochastic 2D Boussinesq model. Mathematics , 2022, Computational Methods in Nonlinear Analysis and Their Applications, 10 (22), pp.4246. ⟨10.3390/math10224246⟩. ⟨hal-03812476⟩
23 Consultations
30 Téléchargements

Altmetric

Partager

More