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SPEED OF CONVERGENCE OF TIME EULER SCHEMES
FOR A STOCHASTIC 2D BOUSSINESQ MODEL

HAKIMA BESSAIH AND ANNIE MILLET

ABSTRACT. We prove that an implicit time Euler scheme for the 2D-Boussinesq model
on the torus D converges. Various moment of the W'?-norms of the velocity and tem-
perature, as well as their discretizations, are computed. We obtain the optimal speed of
convergence in probability, and a logarithmic speed of convergence in L*(2). These re-
sults are deduced from a time regularity of the solution both in L?(D) and W'?(D), and
from an L?(Q2) convergence restricted to a subset where the W' 2-noms of the solutions
are bounded.

1. INTRODUCTION

The Boussinesq equations have been used as a model in many geophysical applications.
They have been widely studied in a both the deterministic and stochastic settings. We take
random forcings into account and formulate the Bénard convection problem as a system
of stochastic partial differential equations (SPDEs). The need to take stochastic effects
into account for modeling complex systems has now become widely recognized. Stochastic
partial differential equations (SPDESs) arise naturally as mathematical models for nonlinear
macroscopic dynamics under random influences. The Navier-Stokes equations are coupled
with a transport equation for the temperature and with diffusion. Here, the system will
be subject to a multiplicative random perturbation which will be defined later. Here, u
describes the fluid velocity field, while 8 describes the temperature of the buoyancy driven
fluid, and 7 is the fluid’s pressure.

We study the multiplicative stochastic Boussinesq equations

Ou—vAu+ (u-V)u+Vr=0+Gu)dW in (0,T) x D, (1.1)
00 — kAO + (u-V0) = GO)dW in (0,T) x D, (1.2)
divu=0 in (0,7)x D,

where T' > 0. The processes u : 2 x (0,7) x D — R?, and § : Q x (0,T7) x D — R
have initial conditions ug and 6y in D respectively. The parameters v > 0 denotes the
kinematic viscosity of the fluid, and x > 0 its thermal diffusivity. These fields satisfy
periodic boundary conditions u(t, z + Lv;) = u(t, x), 0(t,x + Lv;) = 0(t,z) on (0,T) x 9D,
where v;, i = 1,2 denotes the canonical basis of R? and 7 : Q x (0,7) x D — R is the
pressure.

In dimension 2 without any stochastic perturbation, this system has been extensively
studied with a complete picture about its well posedness and longtime behavior. In the
deterministic setting, more investigations have been extended to the cases where v = 0
and/or k = 0 with some partial results.
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If the (L?)? (resp. L?) norms of ug and y are square integrable, it is known that the
random system (1.1)—(1.2) is well-posed, and that there exists a unique solution (u X 6)
in C([0,T); (L?)? x L) N L?(Q; (H")? x H'); see e.g. [9] and [14].

Numerical schemes and algorithms have been introduced to best approximate the so-
lution to non-linear PDEs. The time approximation is either an implicit Euler or a time
splitting scheme coupled with Galerkin approximation or finite elements to approximate
the space variable. The literature on numerical analysis for SPDEs is now very extensive.
In many papers the models are either linear, have global Lipschitz properties, or more gen-
erally some monotonicity property. In this case the convergence is proven to be in mean
square. When nonlinearities are involved that are not of Lipschitz or monotone type, then
a rate of convergence in mean square is more difficult to obtain. Indeed, because of the
stochastic perturbation, one may not use the Gronwall lemma after taking the expecta-
tion of the error bound since it involves a nonlinear term which is often quadratic; such a
nonlinearity requires some localization.

In a random setting, the discretization of the Navier-Stokes equations on the torus has
been intensively investigated. Various space-time numerical schemes have been studied
for the stochastic Navier-Stokes equations with a multiplicative or an additive noise, that
is where in the right hand side of (1.1) (with no #) we have either G(u) dW or dW. We
refer to [7, 11, 5, 8, 6], where convergence in probability is stated with various rates of
convergence in a multiplicative setting for a time Euler scheme, and [1] for a time splitting
scheme. As stated previously, the main tool to get the convergence in probability is the
localization of the nonlinear term over a space of large probability. We studied the strong
(that is L?(2)) rate of convergence of the time implicit Euler scheme (resp. space-time
implicit Euler scheme coupled with finite element space discretization) in our previous
papers [2] (resp. [3]) for an H'-valued initial condition. The method is based on the fact
that the solution (and the scheme) have finite moments (bounded uniformly on the mesh).
For a general multiplicative noise, the rate is logarithmic. When the diffusion coefficient is
bounded (which is a slight extension of an additive noise), the supremum of the H'-norm
of the solution has exponential moments; we used this property in [2] and [3] to get an
explicit polynomial strong rate of convergence. However, this rate depends on the viscosity
and the strength of the noise, and is strictly less than 1/2 for the time parameter (resp.
than 1 for the spatial one). For a given viscosity, the time rates on convergence increase
to 1/2 when the strength of the noise converges to 0. For an additive noise, if the strength
of the noise is not too large, the strong (L?(Q)) rate of convergence in time is the optimal
one, that is almost 1/2 (see [4]). Once more this is based on exponential moments of the
supremum of the H!'-norm of the solution (and of its scheme for the space discretization);
this enabled us to have strong polynomial time rates.

In the current paper, we study the time approximation of the Boussinesq equations
(1.1)-(1.2) in a multiplicative setting. To the best of our knowledge, it is the first result
where a time-numerical scheme is implemented for a more general hydrodynamical model
with a multiplicative noise. We use a fully implicit time Euler scheme and once more have
to assume that the initial conditions ug and 6y belong to H'(D) in order to prove a rate
of convergence in L?(D) uniformly in time. We prove the existence of finite moments of
the H'-norms of the velocity and the temperature uniformly in time. Since we are on the
torus, this is quite easy for the velocity. However, for the temperature, due to the presence
of the velocity in the bilinear term, the argument is more involved and has to be done in
two steps. It requires higher moments on the H'-norm of the initial condition. The time
regularity of the solutions wu,# is the same as that of u in the Navier-Stokes equations.
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We then study rates of convergence in probability and in L?(Q). The rate of convergence
in probability is optimal (almost 1/2); we have to impose higher moments on the initial
conditions than what is needed for the velocity described by a stochastic Navier-Stokes
equations. Once more we first obtain an L?(f)-convergence on a set where we bound
the L? norm of the gradients of both the velocity and the temperature. We deduce an
optimal rate of convergence in probability, that is strictly less than 1/2. When H'-norm
of the initial condition has all moments (for example it is a Gaussian H'-valued random
variable), the rate of convergence in L?(Q) is any negative exponent of the logarithm of
the number of time steps. These results extend those established for the Navier-Stokes
equations subject to a multiplicative stochastic perturbation.

The paper is organized as follows. In section 2 we describe the model, the assumptions
on the noise and the diffusion coefficients, and describe the fully implicit time Euler scheme.
In section 3 we state the global well-posedeness of the solution to (1.1)-(1.2), moment
estimates of the gradient of u and 6 uniformly in time, the existence of the scheme. We
then formulate the main results of the paper about the rates of convergence in probability
and in L?(2) of the scheme to the solution. In section 4 we prove moment estimates in H'
of u and @ uniformly on the time interval [0, T if we start with more regular (H') initial
conditions. This is essential to be able to deduce a rate of convergence from the localized
result. Section 5 states time regularity results of the solution (u,f) both in L?(D) and
H!(D); this a crucial ingredient of the final results. In section 6 we prove that the time
Euler scheme is well defined and prove its moment estimates in L? and H'. Section 7 deals
with the localized convergence of the scheme in L?(Q). This preliminary step is necessary
due to the bilinear term, which requires some control of the H' norm of u and . In
section 8 we prove the rate of convergence in probability and in L?(f2). Finally, section
9 summarizes the interest of the model, and describes some further necessary/possible
extensions of this work.

As usual, except if specified otherwise, C' denotes a positive constant that may change
throughout the paper, and C'(a) denotes a positive constant depending on some parameter
a.

2. PRELIMINARIES AND ASSUMPTIONS

In this section, we describe the functional framework, the driving noise, the evolution
equations, and the fully implicit time Euler scheme.

2.1. The functional framework. Let D = [0, L]? with periodic boundary conditions,
LP := LP(D)? (resp. WFP := WkP(D)?) be the usual Lebesgue and Sobolev spaces of
vector-valued functions endowed with the norms || - || (resp. || - [|yyr.p)-

Let VO := {u € L? : div(u) = 0 on D}. Let IT : L? — V? denote the Leray projection,
and let A = —TIA denote the Stokes operator, with domain Dom(A) = W22 V0,

Let A = —A acting on L?(D). For any non negative real number k let

H* = Dom(flg), vk = Dom(Ag), endowed with the norms || - || g+ and || - ||y-

Thus H° = L?(D) and H* = W*2. Moreover, let V! be the dual space of V! with
respect to the pivot space V°, and (-,-) denotes the duality between V! and V1.
Let b: (V1)? — R denote the trilinear map defined by

b(uq, ug, us) := /D ([wi(z) - V]ua(z)) - us(z) da.
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The incompressibility condition implies b(u1,u2,u3) = —b(u1,us,uz) for u; € V1, i =
1,2,3. There exists a continuous bilinear map B : V! x V! = V=1 such that
(B(u1,us),us) = b(uy,uz,u3), forall u; € V' i=1,23.
Therefore, the map B satisfies the following antisymmetry relations:
(B(ui,u2),us) = —(B(u1,us),uz), (B(u1,us),uz) =0 forall w; €V (21)

For u,v € V!, we have B(u,v) :=II([u- V]v).
Furthemore, since D = [0, L]? with periodic boundary conditions, we have (see e.g. [18])

(B(u,u), Au) =0, YuecV? (2.2)
Note that for u € V! and 01,0, € H', if (u.V)0 = Zi:m u;0;6, we have
<[UV]91 5 92> = —<[U.V]92, 91>, (2.3)

so that ([u.V]0, 0) =0 foru € V! and § € H'.

In dimension 2 the inclusions H! € LP and V! C L? for p € [2,00) follow from the
Sobolev embedding theorem. More precisely the following Gagliardo Nirenberg inequality
is true for some constant C’p

lullws < Cp [ Abullllulls® for a=1- ;, Vue Ve, (2.4)
Finally, let us recall the following estimate of the bilinear terms (u.V)v and (u.V)6.
Lemma 2.1. Let o, p be positive numbers and § € [0,1) be such that § + p > 3 and
a+d+p>1. LetueV veVP and § € HP; then
1A T [(u.V)o] [y < Ol A%y [|AP0]lvo, (2.5)
1A= [(w.¥)b]|[ o < C|A%ullyo [|A70]] o, (2.6)

for some positive constant C := C(a, 0, p).

Proof. The upper estimate (2.5) is Lemma 2.2 in [15]. The argument, which is based on
the Sobolev embeding theorem and Hoélder’s inequality, clearly proves (2.6). (]

2.2. The stochastic perturbation. Let K (resp. K) be a Hilbert space and let (W (t),t >
0) (resp. (W(t),t > 0)) be a K-valued (resp. K- valued) Brownian motion with covari-

ance Q (resp. Q), that is a trace-class operator of K (resp. K) such that Q¢ = q;¢; (resp.

QC; = ;¢j), where {¢;};>0 (resp. {Cj};>0) is a complete orthonormal system of K (resp.

K), 45,3 > 0, and Tr(Q) = X,000) < 50 (resp. Tr(@) = Y0 G5 < 00)- Let {8}20

(resp. {BJ }i>0) be a sequence of independent one-dimensional Brownian motions on the

same filtered probability space (2, F, (Ft,t > 0),P). Then

W)=Y Vi Bit) G, W)=Y Vi B G-
>0 320

For details concerning these Wiener processes we refer to [10].

Projecting the velocity on divergence free fields, we consider the following SPDEs for
processes modeling the velocity u(t) and the temperature 6(t). The initial conditions ug
and 6y are Fo-measurable, taking values in V° and H? respectively, and

dru(t) + [v Au(t) + Blu(t), u(t))]dt =TI(0(t)ve) + Glu(t)) dW (t), (2.7)
OO(t) + [k AO(E) + (u(t).V)O(t)]dt = G(O(t)) AW (¢), (2.8)
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v, Kk are strictly positive constants, and vy = (0,1) € R2,

We make the following classical linear growth and Lipschitz assumptions on the diffusion
coefficients G and G. For technical reasons, we will have to require ug € V', § € H' and
prove estimates similar to (3.1)—(3.2) raising the space regularity of the processes by one
step in the scale of Sobolev spaces. Therefore, we have to strengthen the regularity of the
diffusion coeflicients.

Condition (C-u) (i) Let G : V? — L(K; V") be such that

G120y <Ko+ Killullfo,  Vue Ve, (2.9)
G 1) = ) B yoy < Lallus — sl Vour, g € VY. 2.10)

(ii) Let also G : V! — L(K; V1) satisfy the growth condition
G (@) 2 ey < Ko + Ksllul2a, Vue V7, 211)

and
Condition (C-6) (i) Let G : H* — £(K; H) be such that

|G Ko+ K10)|%0, V6 € H°, (2.12)

IG(61) — G(62)

2
L(K,HY) =

Hi(KHO) < Lyl|6y — 0230, V61,0, € HO. (2.13)

(ii) Let also G : H' — L(K; H') satisfy the growth condition

NGO 51y < K2+ Ka|0l7, VO € H. (2.14)

2.3. The fully implicit time Euler scheme. Fix N € {1,2,...}, let h := % denote the
time mesh, and for j =0,1,..., N set t; := ]%

The fully implicit time Euler scheme {u¥;k = 0,1,..., N} and {#*;k = 0,1,...,N} is
defined by u° = ug, 0° = 6y, and for p € V!, op € H' and I =1,..., N,

(ul — a7+ A + hB(ul, ul),cp> = (H@l_lvg, ©)h
(G YW () - Wt @), (2.15)

(9l — 0" 4 heAf + Rl LV, ¢) = (GO W) - W), ). (2.16)

3. MAIN RESULTS

In this section, we state the main results about well-posedness of the solutions (u,6),
the scheme {u*;k = 0,1,..., N}, and the rate of convergence of the scheme {(u*,0%);k =
0,1,...,N} to (u,0).

3.1. Global well-posedness and moment estimates of (u, ). The first results states
the existence and uniqueness of a weak pathwise solution (that is strong probabilistic
solution in the weak deterministic sense) of (2.7)-(2.8). It is proven in [9] (see also [14]).

Theorem 3.1. Let ug € L*?(Q;VY), 0y € L*®(Q; HY) for p = 1 or p € [2,00). Let

the coefficients G and G satisfy the conditions (C-u)(i) and (C-0)(i) respectively. Then
equations (2.7)—(2.8) have a unique pathwise solution, i.e.,

o u (resp. ) is an adapted V°-valued (resp. H°-valued) process which belongs a.s.
to L2(0,T; V') (resp. to L*(0,T; H')),
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e P a.s. we have u € C([0,T];V°), 6 € C(0,T); H°), and

(u(t),go)—i—u/o (Aéu(s),Aégo)ds—i—/o <[u(s)-V]u(s),g0>ds

— (u0,<p)+/0 (HH(t)v2,<P)ds+/O (¢, G(u(s))dW (s)),
(H(t),z/z)—i—/i/o (A
= (B0.)+ [ (0.GOE)DV(),

for every t € [0,T] and every ¢ € V' and ¢ € H*.

Furthermore,

N[

9(3),[1%1/1)d3 —i—/o ([u(s) - V]6(s),v)ds

T
E( sup [[u@)? + [ [1AZu(®)]|Zo [1+ [lu@)[2¢V]dt) < C(1 +E(|uol?%),  (3.1)
te[0,7) 0
S El

T
E(ts[léI;]W(t)I@f—’oJr /0 1430010 [1+ 100130 V]dt) < C(1+E(l6ollih).  (3:2)
€10,

The following result proves that if ug € V1, the solution u to (2.7)—(2.8) is more regular.

Proposition 3.2. Let ug € L2P(Q;V1)i 0o € L?(Q; HY) for p = 1 or some p € [2,00),
and let G satisfy condition (C-u) and G satisfy condition (C-0). Then the solution u to
(2.7)(2.8) belongs a.s. to C([0,T]; V) N L2([0,T];V?). Moreover, for some constant C

T
E( sup [u(t) s + /0 lAu(®)l[Zo [1+ 1A% u(t) 52 V]dt) < CI1+E(lluollF% + 160]70)]-

tel0,
(3.3)

The next result proves similar bounds for moments of the gradient of the temperature,
uniformly in time.

Proposition 3.3. Let ug € L¥1(Q; V') and 0y € L31<(Q; H') for some € > 0 and p = 1
or p € [2,400). Suppose that the coefficients G and G satisfy the conditions (C-u) and
(C-0). There exists a constants C' such that

<1 T <1 -

I | sup || 4260(t) 77, + / 146(5)|130 A3 0(s) 50~ Vas| < C. (3.4)
t< 0

3.2. Global well-posedness of the time Euler scheme. The following proposition

states the existence and uniqueness of the sequences {u* }e=o,...~ and {6F Ye=0,...N-

Proposition 3.4. Let Condition (G-u)(i) and (C-0)(i) be satisfied, ug € V' and 0° € H°
a.s. The time fully implicit scheme (2.15)—(2.16) has a unique solution {ul}lzly,”’N eVt

3.3. Rates of convergence in probability and in L?(Q2). The following theorem states
that the implicit time Euler scheme converges to the pair (u,#) in probability with the
“optimal” rate “almost 1/2”. It is the main result of the paper.

For j =0,...,N set ej := u(t;) — v’ and &; := 0(t;) — ¢’; then ey = &, = 0.
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Theorem 3.5. Suppose that the conditions (C-u) and (C-0) hold. Let ug € L3*¢(Q; V1)
and 0y € L3?T¢(Q; HY) for some € > 0, u,0 be the solution to (2.7)~(2.8), {u?,07};—0, N
be the solution to (2.15)—(2.16). Then for every n € (0,1) we have

. l _
tim P( max [leslffo + 161%0] + NZ 43¢l + 1A38)%0] > N77) = 0. (3.5)

N—oo

We finally state that the strong (i.e. in L?(Q)) rate of convergence of the implicit time
Fuler scheme is some negative exponent of In N. Note that if the initial conditions ug and
0o are deterministic, or if their V! and H'-norms have moments of all orders (for example
if up and 0y are Gaussian random variables), the strong rate of convergence is any negative
exponent of In V. More precisely we have the following result.

Theorem 3.6. Suppose that the conditions (C-u) and (C-0)(i) hold. Letug € L*T¢(Q; V1)
and 0y € L*'*€(Q; HY) for q € [5,00) and some € > 0. Then for some constant C' such
that

N
> [I43e 1o + 1455130 ) < €(tn(a))~ &Y

J=1

=1

E( max [leslo+[125]%0] +

(3.6)
for N large enough.

4. MORE EGULARITY OF THE SOLUTION
4.1. Moments of v in L*>(0,7;V1'). In this section, we prove that if ug € V! and
0y € H°, the H'-norm of the velocity has bounded moments uniformly in time.
1
Proof of Proposition 3.2 Apply the operator A2 to (2.7) and use (formally) 1t6’s formula
for the square of the ||.|[y/o-norm of A%u(t). Then, using (2.2), we obtain

t t
|AZu(t)][20 +2y/ | Au(s)| %0 ds = ||A%u0||2vo+2/ (A2T10(s)va, AZu(s))ds  (4.1)
0

¢ 1
2/ (A2G(u(s))dW (s), A2u(s /||A 3G (u(5)) |2 1,0y TH(Q)ds.

0

Let 7as := inf{¢ : [u(t)|ly1 > M}; using (2.11), integration by parts, the Cauchy-Schwarz
and Young inequalities, we deduce for M > 0 and ¢ € [0, T

tATM
E(latue Ao+ 2 [ 14us) Fads) < E(uol)
tATN

w2 ([ 106 o 140 vods + @ [

(K2 + Kollu(s)[}:)ds)
0

9 tATM 9 1 tAT)M 9
<E(Juolfo+v [ Nau(s)Fods) + SB[ 1006) o) + KT

t
+ KTE( sup [u(®)][3o) + Ks | B Abu(s A ) 2o ) ds.
te[0,7) 0

Indeed the stochastic integral in the right hand side of (4.1) is a square integrable - hence
centered - martingale. Neglecting the time integral in the left hand side, using (3.1) and
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the Gronwall lemma, we deduce

sup sup E(A%Hu(t A TM)HQVO) <0< . (4.2)
M t€[0,T)

As M — oo, this implies IE(fOT | Au(s)|[30ds) < oc.

Furthermore, the Davis inequality and Young’s inequality imply

E(Sup /OSATM (A%G(u(r))dW(r),A%u(r)))

s<t

(S

)

<3E< [ 1A%t A @ JAGatr Aoy

[N

(supHA2u SATM)HV(){TI"(Q) /Ot[Kz+K3||u(s/\TM)||%/1]d5} )
< EE(sup A% u(s ATM)HQVO) n 9%(@)1@(/5[}@ + K|u(r ATM)H?Vlds).

2 s<t

The upper estimates (4.1), (3.1), (3.2) and (4.2) imply for some constant C' depending on
1
E(fy (a3 + 1A2u()[20 + 10()]30]ds) < oo,

TNy
SupE(2 sup||A2u(t ATan) o + / | Au(s) [Zods)
M

T 1
<C+CB( [ 14RO +100) w])ds) < o

As M — oo, we deduce

L 2 4 2
E( sup [ Abu(n]) +IE</ | Au(s)[[Bods) < C < ox.
te[0,7] 0

this proves (3.3) for p = 1. Given p € [2,00) and using It6’s formula for the map x > 2P
n (4.1), we obtain

1 tATM 1 _ 1
| Azu(t A TM)H%/?O + 229’//0 [ Au(s)|13o HAiU(S)H%/(g) Vs = HAQUOH?O

tATM

+2p / (ABTIO(s)vn, Abu(s)) || Abu(s)| 22 Vs
0
EATM 1 1 1 2(p—1)

L op / (ARG (u(s))dW (s), Abu(s)) | Abu(s) |20
0

T AT G 2 14l 2(p—-1)
+ pTr(Q) ; G (u(S)[z (v 1AZuls) [0 ds

+2p(p — 1)Tr(Q) /0 M (A3G)" (uls)) (Adus) [ | Abu(s) |22 Pds.  (43)

Integration by parts, the Cauchy-Schwarz, Holder and Young inequalities imply

t
| [0y, Atu)abuREas] < [ 1Au)volo6s) HA%u<s>H2V<5—”ds

< { [ haualatu 2 Vas) [ 1014 uts) 2 Vas)

o=
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v [t 9 1 A1 2(p—1) I 2 1 2(p—1)
5 1) el atu) Vs + o [0 ol Aol s
/ [ Au(s)|2o | AFus) |22 Vs +0/ 10(5) 122 ds + c/ | Abu(s)|Zds. (4.4)
Since aP~! < 1+ a” for any a > 0, the growth condition (2.11) implies
/ A3 Gu(s) 2 gy | AR u(s) 28 Vdls
< / (K2 + Ksllu(s)| 2o + Ks Adu(s)[20] | A u(s)| 22 Vs
0

§O<T+/ lu(s) /||A2u )2ds). (4.5)

Furthermore, since (”A%G(U(S)))*A§U(S)H%/o < [K2+K3Hu(s)||%,1]||A%u(s)|]%/0, the upper

estimate of the corresponding integral is similar to that of (4.5). Since the stochastic
integral ftATM (A%G(u(s))dW(s), A%u(s)) Hu(s)H%/(g_l)) is square integrable it is centered.

Therefore,(4.3) and the above upper estimates (4.4)—(4.5) imply
1 tATN 1
supE([AHu(e A m) P+ [ L) Falatu(e) 350)
! 2 2 ! 1 2
<or+ E(/O () 2% + 10112 s) +/0 E([|Au(s A o) [22) ds.

Gronwall’s lemma, implies

sup sup E(||A%u(s A TM)H%/])O) =C < o0, (4.6)
M ¢€[0,T]

TATAM i _
sup E(/O | Au(s)]2o A3 u(s)|[ 24 Vds) = O < oo, (4.7)

Finally, the Davis inequality, then the Holder and Young inequalities imply

SATM
(o 2] [ (AFGG)aW (). Abutr) |45 75
s€(0,t]

< 6pE<{ /OW% Tr(Q)| 42 G ()| 2,0y | A2 u() I };)

§6p(Tr(Q))%E< sup IIA%U(S)II{D/O

s<tATM

/ 142G (u(s A )12 geo | A2u(s Arag) 13 Qd}l)

1

<2 B( swp [Abu(s)|%) + CE( 1+/ Ju(s) 12 ds+/ [A3u()][ds). (4.8)
2 SG[O,t/\TM}

The upper estimates (4.3), (3.1) and (4.8) imply

T
1 2 9 )
supE su Azu(s)||h SC’H—suIE/ 0(sAT P llu(sAT P1ds)] < oo
up (se[o,T%M]” (s)Ith) < C[1sup (0 [16(sAmar) 250 Hlu(sAman)[25]ds ) |
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As M — oo in this inequality and in (4.7), the monotone convergence theorem concludes
the proof of (3.3). O
4.2. Moment estimates of 0 in L>(0,T; H'). We next give upper estimates for mo-
ments of sup;c(o 7 H[léﬁ(t)HHo, i.e., prove Proposition 3.3.

However, since ([u(s).V]6(s), Af(s)) # 0, unlike what we have in the proof of the previous
result, we keep the bilinear term. This creates technical problems and we proceed in two
steps. First, using the mild formulation of the weak solution 6 of (2.8), we prove that the
gradient of the temperature has finite moments. Then going back to the weak form, we
prove the desired result.

Let {S(t)}+>0 be the semi-group generated by —vA, {S(t)}+>0 be the semi-group gen-
erated by —rA, that is S(t) = exp(—vtA) and S(t) = exp(—xtA) for every t > 0. Note
that for every a > 0

JA“S(®) ]| cvoroy < CE®, W >0 (4.9)
1A= [1d = S®)] | cvomvo) < O, ¥t > 0. (4.10)

Similar upper estimates are valid when we replace A by A, S(t) by S(t) and VO by H°.

Note that if ug € L2(Q; V1) and 6y € L*(Q; H®), v € L*(Q; C([0,T); VO)NL>(]0,T]; V1))
and 0 € L?(Q; C([0,T); H*)) N L?(Q x [0, T); H'), we can write the solutions of (2.7)—(2.8)
in the following mild form

t t
u(t) =S{t)ug — /0 S(t — s)B(u(s),u(s))ds + /0 S(t— s)(HQ(t)vg) ds
+/ S(t— s)G(u(s))dW (s), (4.11)
0

0(t) = S(1)0 — /0 St — ) (Ju(s).V10(s)) ds + /0 St — GOV (s),  (412)

where the first equality holds a.s. in V' and the second one in HP.
1
Indeed, since || A%ul[yo < C’HA§U|]%/%||U(3)H%2°‘, the upper estimate (2.5) for §+p > 3,
0+ a+ p=1 and the Minkowski inequality imply

H/OtS(t—s)B(u(s),u(s))dsHvo < /Ot|A5A‘5B(u(s),u(s)>llvod8
< C/Ot(t — 8) [ A%u(s) |yol| APu(s) | yods

t
<C suwp |u(s)||2vl/ (1 — 5)~*ds
0

s€[0,t]

Since [|S(t)[|lzvo;v0) < 1, it is easy to see that

| /Ots(t — I(t)vads|| | < c/ot 10(8) | grods.
Furthermore,
B [ st sictunaw )]} < r@E( [ o+ Kilu)])ds) < o

Therefore, the stochastic integral fg S(t — s)G(u(s))dW(s) € VY as., and the identity
(4.11) is true a.s. in V0.

2

v
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A similar argument shows that (4.12) holds a.s. in H°. We only show that the convo-
lution involving the bilinear term belongs to H?. Using the Minkowski 1nequahty and the
upper estimate (2.6) with positive constants &, «t, p such that o, p € (0,1), 6+ p > 3 and
0+ a+ p=1, we obtain

| /O S(t = 5)[(u()-V)o(s)ds| < /O 1A°5(t — 8) A~[(u(s).V)0(s)]| o ds
< 0/ (t =) [A%(s)[vo | A%0(s) | sod 5
0

*P ~1

< C sup [uls)llvs sup 6] 2,,</ (t— 5) T ds) / |A26(s) [30ds)” < oc.
s€[0,t] s€[0,t]

where the last upper estimate is deduced from Hélder’s inequality and & < 1.

The following result shows that for fixed ¢, the L2-norm of the gradient of §(¢) has finite
moments.

Lemma 4.1. Let p € [0,+00), ug € L4pj€(Q;V1) and 6y € L4p+€(Q;H12 for some € €
(0, %) Let the diffusion coefficient G and G satisfy the condition (C) and (C) respectively.
For every N, let Ty :=1inf{t > 0: ||121%9(t)||H0 > N} AT; then

sup sup E(HA%G(t/\%N)HZDO) < 0. (4.13)
N>01¢€[0,T]

Proof. Write 6(t) using (4.12); then Hfl%@(t)HHo < 3% Ty(t), where

The Minkowski inequality implies for 8 € (0, %)
t

Ty(t) < ; |42 5(t — 5)[(u(5)-V)0(5)] [ zr0s

t
T1—-8& T (L1_
S/O IAY2S(t = )| ey 1A~ 7P (u(s)-V)0(5) | ods.

Apply (2.6) with § = % B, a = l and p € (B, %) A simple computation proves that
142 fll g0 < | A5 FI28 1 FI 52 for any f € HY. Therefore,

IA=G=D[(u().¥)8(s)] | o < CllAZu(8)[|y0l| A26(8) | ro
< CllAzu(s)[lyol| AZ60(s) (|72 16(s) | 170"

This upper estimate and (4.9) imply

1 ~1
126 < € swp [A%uts)lvo swp (0611 [ 6= ) 1 AT0G) s
s€[0,T] s€[0,t]
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For any p € [1, 00), Holder’s inequality with respect to the finite measure (t—s)~(1=5) Lo, (s)ds
implies

t 2p—1
Ty(t)? < C sup ||A2u(s )||V0 sup]HO( )H2p1 2p) (/0 (t_s)*(lfﬁ)d8>

s€[0,¢] s€[0,t
t
—(1— Tl
x (/0 (t = )"0 Abo(s)|10ds ).

2(1— 2(1—
Let p1 = 1(_22), P2 (1(_25)2 and p3 = %. Then p% + p% + p% =1, 4ppp3 = 2p and

pp1 = p(1 — 2p)p2 := p. Young’s and Hoélder’s inequalities imply

1 1 = 1 =
T t2p<0[— sup |[Azu(s)||?2 + — sup ||6(s)||*
o <[ sup AT+ o s 10,

" plg</0t(t —5)"7)A Azg (S)H?Ods> (/Ot(t— 3)_1—’—6(15)])3_1]'

Note that the continuous function p € (0, ) — 21(1 22 ) i increasing with lim, o 5 (1 ) =2.

Given € > 0 choose p € (0, 7) close enough to 0 to have 2p = 2p2(1 p) = 4p + ¢, then
choose 8 € (0, p). The above computations yield

Tty < C| s?p}uAM I+ sup [6(:)1F )] +c / $) 7P A2 0(s) | 7o ds.
s€|0,t s€|0
(4.14)

Finally, Burhholder’s inequality, the growth condition (2.14) and Hélder’s inequality imply
for t € [0, T

H/t/\TN %St—s)é(e(s))dW(S)Hj;) pIE ‘/t/\rN i

<y (@)(| [t Kalo(o i + f%gnfiae(s)u%;o]ds] )

N[

GO g0y 5] )

< Olp, Ko, Ko Q)T |1+ E( sup 1951

+Cp(Te(Q)) K5 TP} /OtE(HAéa(s A TN ) ds. (4.15)

The upper estimates (4.14), (4.15) and T3(¢) < HA%HOHHO < ||6o]| g1 used with t A Ty
instead of ¢ imply for every t € [0,T]

~1 - ~1 € €
E(A26(¢ A 7)) <Cy[1+E(IA260]1 7 + sup [|A3u(s)[{5 + sup [0(s)]1 570 ) ]

SG[ } SE[ }
t 1
+Op/0 [(t — s)71P + KyTPHE(|AZ0(s A7) |75 ) ds

where the constant C), does not depend on ¢t and N. Theorem 3.1, Proposition 3.2, and
the version of Gronwall’s lemma proved in the following lemma 4.2 imply (4.13) for some
constant C' depending on E(HuOH4p+6) and E(|]90H4p+5).

The proof of the Lemma is complete (]

The following lemma is an extension of Lemma 3.3, p. 316 in [19]. For the sake of
completeness its prove is given at the end of this section.
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Lemma 4.2. Let e € (0,1), a,b,c be positive constants and ¢ be a bounded non negative
function such that

ot) <a+ /Ot [b+c(t—s)"] p(s)ds, Vte[0,T]. (4.16)

Then supe(o,1) o(t) < C for some constant C depending on a,b,c,T and €.

Proof of Proposition 3.3 We next prove that the gradient of the temperature has bounded
moments uniformly in time.
We only prove (3.4) for p € [2,+00); the other argument is similar and easier.
Applying the operator A3 to equation (2.8), and writing It6’s formula for the square of
corresponding H%-norm. we obtain

1A3000)]12 + 26 / 146(s)[12p0ds = [ A300]%0 — 2 / (u(s).9)8(s), A8(s))ds

1

—1—2/0 (flié(@(s))dﬁ/(s),fl% )+ Tr(Q / A2G(0(5))]%0ds.

Then apply Itd’s formula for the map x — xP. This yields, using integration by parts,

~1

1 l — Tl
1AZ0(t)| +2p/-”~/ 140(s) 30| A20(s) 1556 s = [[A260] 37,

[T
(]
—~~
D
—
S~—
SN—
%‘
—
V)
~—
o
N[
D
—
v}
~
~—
o
[SIE
<>
—
=
T R
T
=

t ~
+2p/ (A
0

+pTr(Q) H A2G(0()) 301 A20(s) 305 Vs

L 2p(p— 1)TH(G / [(A5G) (0() (A36(s) % A20(s) 20 Dds.  (417)

The Gagliardo-Nirenberg inequality (2.4) and the inclusion V! C L* implies
t
| w9006, Aot 123058 s
0
l l 2(p—1
<C / 140(3)l o () | AZ0(5) | | AZ0(3) 75~ s

~ 3 ~1 op—3
< C/O 146(5) | Follu(s) v 1| A6(s) 550 2d

Then using the Holder and Young inequalities, we deduce

;
2p/\ 5), A6(s)) | A20(s) |22 Va
<(2p-1) / 1AO(s)) %011 A20(s) |20 Dds
L Ck,p) sup [u(s)llha / |A36(s)|2,ds. (4.18)
s€[0,7T
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The growth condition (2.14), Holder’s and Young inequalities imply

/W|% nmn%@mm”d<o/ [+ 1100s) 175 + [A20(s) 370 ]ds,  (4.19)

and a similar computation yields

[ 1635 Gy 0 (A2006) [l A%0(6) s

N

<c/ 14 16() 2% + | A6(s) 2] ds. (4.20)

Let 7y :=inf{t > 0 : H[l%@(t)HHo > N}. The upper estimates (4.17)— (4.20) written for
t A Ty instead of ¢ imply

N]]

TNATN 1 TNATN 1
+0stMMw% |Ad6(s)|2 m+c/ (14 16()]1% + | A50(s) (12, )ds

s€[0,7T

tATN 5
+ 2p sup / (A
tel0,7] Jo

N[

G(O(s))dWV (5), A20(s)) [ A20(s) 315

Using the Cauchy-Schwarz inequality, Fubini’s theorem, (3.3) and (4.13), we deduce

E(mmwwwaﬂmmu%<w%w)

s€[0,T7]

< {E( sup Hu(s)||§,1)}%{/OTE(|/~1§9(S/\TN)||HO)ds}; <C. (4.21)

s€[0,T7]

The Davis inequality, the growth condition (2.14), the Cauchy-Schwarz, Young and Hélder
inequalities imply

sw(/MW AEG(0() W (), Ab6(s)) | A30() 287

te[o T
SCEGX;ﬁ@ (s + K0 A7) 3 [ A30(s A7) 8 % } )

<CE [(sup (HA%H(S A 7~_N)HI]){0)(TI.<Q))%

s<T

T 1
X {/ (Ko + Ksl|0(s A7) |20 +K3||A%9(3A%N)H§IO]||A%9(3A%N)H§}§—”ds}2)
0

1 ~1 -2 T FET N
< = P P _
< 4pE<§2¥(||A29(s/\TN)||HO>+CIE(/O (1411005 A7) % + 142005 A7) 2] s )

Therefore, the upper estimates (3.2), (4.13) and (4.21) imply

TATN
lmwp\%@Amw%)+qu 146(s A7) 30| A5 0(s) |5~ Vas) < ©

for some constant C' independent of N.
As N — +o0, we deduce (3.4); this completes the proof of Proposition 3.4. a
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We conclude this section with an extension of the Gronwall Lemma.
Proof of Lemma 4.2 For t € [0,T], iterating (4.16) and using the Fubini theorem, we
obtain

o(t) <a+ /Ot [b+c(t—s)~17 [a + /OS (b+c(s — r)_1+6)g0(r)dr} ds
< a(l +/Ot[b +c(t — s)_He}ds) + /Ot (/: [b+c(t—s) b+ c(s — r)_He}ds)go(r)dr
<A+ /Ot [bQ(t —r)+ 2Tbc(t — )4 /t(t —5) (s — T)_lﬂds} o(r)dr

t 1
<A +/ B+ Ca(t - r)_1+2€/ AT = AT p(n)r,
0 0

for positive constants A; (depending on a,b,c,T,€), By (depending on b,¢,T,€), and C;
(depending on ¢ and €). One easily proves by induction on k that for every integer k > 1

o(t) < Ay +/0t [Bk + ey /:(t — g)lHke(s r)*”eds} o(r)dr

t
< Ap+ / [Bi, + Ci(t — T)fH(kH)G]SO(?”)d?Z
0

for some positive constants Ay, By and C) depending on a, b, ¢, T and e. Indeed, a change
of variables implies

¢ 1
/ (t — 5)_1+ke(5 — T)—1+€d5 = (t _ r)—l-i—(k-‘rl)e/ )\—1+ke(1 N )\)_1+€d)\
" 0

_ C’k(t _ T)71+(k+1)e

for some constant Cj, depending on k and e.
Let k* be the largest integer such that ke < 1, that is k*e¢ < 1 < (k* + 1)e. Then since
(t _ T)—1+(k*+1)e < T—1+(k*+1)e7 we deduce

T
() < A+ /0 Bo(r)dr,

for some positive constants A and B depending on the parameters a,b,c,T and €. The
classical Gronwall lemma concludes the proof of the Lemma. O

5. MOMENT ESTIMATES OF TIME INCREMENTS OF THE SOLUTION

In this section we prove moment estimates for various norms of time increments of the
solution to (2.7)—(2.8). This will be crucial to deduce the speed of convergence of numerical
schemes. We first prove the time regularity of the velocity and temperature in L2.

Proposition 5.1. Let ug, 8y be Fo-measurable, and suppose that G and G satisfy (C-u)
and (C-0) respectively.
(i) Let ug € L*(; V1) and 6y € L?P(; HY). For0< 1 <7 < T,

E([lu(r2) — u(m)lh) < Clr =il (5.1)

(ii) Let ug € L3T¢(Q; V1Y) and 0y € L¥P+<(Q; HY) for some € > 0. Then for 0 < 1 <
T2 S T;
E([0(r2) — 0(m1)|7%) < C'lr2 — 7l (5.2)
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Proof. Recall that S(t) = e "* is the analytlc semi group generated by the Stokes operator

A multiplied by the viscoswy v and S(t (t) = —#t4 i5 the semi group generated by A = —A.
We use the mild formulation of the solutions stated in (4.11) and (4.12).

(i) Let 0 < 7y < 79 < T; then u(m) — u(r) = i, Ti(11, 72), where
Tl(Tl,TQ) = S(TQ)U() — S(Tl)u[) = [S(TQ) ( )]S(Tl)UQ,

Ty (1, 73) _/TQS(TZ—S) (u ds—/ S(r1 — 5)B(u(s), u(s))ds,

Ty(mim) = [ " S(r — 5)TI0(s vgds—/ S(r — $)T10(s)vads

Ty(r, 7) :/ S(rs — 5)G(u / S(r — 8)Glu(s)dW(s).  (5.3)
The arguments used in the proof of Lemma 2.1 [4], using (2.5), (4.9), (4.10) and (3.3)
;
o E(|T1(r1, m2) 5% + [ Ta(r1, ) I55) < C[L+ E(Juolli2)]lm2 — 1P (5.4)

Let T3(7‘1,7’2) = T371(7'1,7'2) + T372(7'1,7'2), where

Tua(rir) = [ 1802 = )~ 1S( — ) [00(s)0a] s,

T59(m1,m2) = /TQS(TQ — s) [H0(s)vz]ds.

Since the family of sets { A(t, M)} is decreasing, the Minkowski inequality, (4.9) and (4.10)
imply

T1
H%Ammmws/Hﬁan—$mmwmm%wm—nwdeWWWW@wme
0
1
< Clra— 71| sup [0(s)| g0,
s€[0,7T

and
T2

1 T3.2(m1, 72)llvo < / 1S(7 = 5)[T10(s)v2] [[vods < |72 — 7] sup, 10(s)l -
. s€(0,T
The inequality (3.2) implies

E(ITs(r, )% ) < Clra = nE(I6oll 7). (5.5)

Finally, decompose the stochastic integral as follows:

T1

Tt (m1,7m2) = /0 [S(ra—71)—1d]S(71— 8)G(s)dW (5), Ta(r1, 72) = / " S(ra—)G(s)dW (s).

The Burkholder inequality, (4.10), Holder’s inequality and the growth condition (2.11)
imply

B(ITl%) <GE(] [ 118t = m) - 1St - )G o Tr(@)ds])
cr@y(] [ 147450 — 1) - 1 oo 143G (D[R] )

< (| [" = nl [+ Kl as])
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<C[1+E(Juoli2)] I — (56)

where the last upper estimate is a consequence of (3.1) and (3.3). A similar easier argument
implies

[ 1862 = )6 Batei@as)

T1

E(IT12l3% ) <GoE(
<C[1+E(uoll?)] |72 — m|". (5.7)

The inequalities (5.4)—(5.7) complete the proof of (5.1). .
(ii) As in the proof of (i), for 0 <71 < 1 < T, let (1) —0(71) = Z?Zl T;(11,72), where

Ti(m1,m2) = [5(7’2 —7) — Id]S(Tl)QQ,
Ty(r,73) = / S — ) ([uls). ds—I—/ S(ry — 5)([u(s).V]6(s))ds
S(r1,7) / S(rs — $)G(O(s)) AW (5) — /O (r1 — $)G(0(s)) AW (s). (5.8)

The inequality (4.10) implies
~ 1~ ~ ~1
T2 (1, 7)o = [|A72 [S(72 — 1) — 1d] S(11) A2 6o | o
< Clra = nil2 6o (5.9)

Decompose TQ(Tl,TQ) = T271(7'1,7’2) + T272(7'1,7’2), where
Ty 1 (71, 72) = / " [8(m = 71) — 1) 5(r1 — ) (fu(s).V]8(s)] ds,
Ty 2(71,72) / S(re — ) ([u(s).V]0(s))ds.

Let § € (0, 3); the Minkowski inequality, (4.9), (4.10), and (2.6) applied with a = p = 1
imply

HTQ,l(Tl,Tg)”Ho < /OT1 ||§(7'1 —5) [S’(TQ —1) — Id] ([u(s).V]G(s))HHods
SAHW“MSW—Wmcmﬂowl[mz—Tﬁ—mmqmﬂwﬁéﬂM@VW@ﬂm%
<C/ (11— 8)~ G+ |7, — 71| % [ Abu(s)|lyo [|AF0(s)] jods

T1 ~
<C|r—1|2 sup HA2u(s)HVo/ (11 — )@+ || A26(s)| 10 ds.
s€[0,7 0

Let p1 € (2, 2+ @), let 0 € (O,% — p%) Let p2 be the conjugate exponent of pi; we have

(3 + 6)p2 < 1. Thus, Hélder s inequality for the finite measure (73 — s)_(l‘*"s)l[ ) (s)ds
with exponents 2p and 55 and then for ds with conjugate exponents p; and po imply

~ T1 _
Hnﬂmmw%som—nvswrm%@ﬁ%/<n—@@”w@mw%@
0

s€[0,T

71 2p—1
A [ o)
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1

1 71 L
<Cln-nl’ s labu(e)% { [ 1Ab0Gs) 5 ds}”
s€[0,77] 0

ial 1
X {/0 (11— s)_(%+6)p2ds}p2

Since 2pp; < 4p + § and 2pps < 4p, Holder’s inequality, Fubini’s theorem together with
the upper estimates (3.3) and (4.13) imply

1
E(”TQJ(TDTQ)”Z?O) < Csz - Tl|p{E< sup HA%U( )||2PP2)}
s€[0,T]
1

X {/0 (1 A26(s) | 22" s}ﬁ <Clrn -7l (5.10)

A similar argument proves for n € (0,1)

1T2,2(71, m2) [ o < / 1A (rz = )| sy | A~ ([u(s)-V10(5)) || rods

T1

<C/ (72 = )" | A2 u(s)||yo [| A26(s) | ods

T2
<Clr—n[" sup HAZu(s)Hvo/ (rg — 8) "1 ||A26(5)| rods.
SG[O,T} T

Let n € (ﬁ,l); for € > 0 let p1,p2 € (1,+00) be conjugate exponents such that

(%) \% (igii) < p1 < 2; then (1 — n)py < 1. Holder’s inequality implies

T2
IT2,2(m, 72) [0 < C o — 7| G717 S[%pT]HA%( )H%/po/ (72 = )17 AZ0(s)|| o ds
KIS T1

Ty 1
<C ‘7‘2 — 7| (2p—1)n sup ||A2 u(s )||%/p0 {/ (19 — 5)—(1—n)p2ds}p2
s€[0,T] m

A iAo asy

1
Since (2p—1)n > p, % < 2; furthermore, 2ppy < 4p+ § and 2pp; < 4p. Holder’s inequality
together with the upper estimates (3.3) and (3.4) imply

E(||T2,2(7'1772)H12§o) <Clrp—mnfP {E( sup ||A%u( )”217112)}

s€[0,T
T2 1 1
<{ [TEAR i} < C =P .11
T1
This inequality and (5.10) imply
E(|To(r1, 2)l3%) < C'lr2 — mfP. (5.12)

Finally, an argument similar to that used to prove (5.6) and (5.7), using the growth
condition (2.14) and (3.2), implies,

E(|T5(r1, 2)l3%) < C'lr — " (5.13)
The upper estimates (5.9), (5.12) and (5.13) complete the proof of (5.2). O

We next prove some time regularity for the gradient of the velocity and the temperature.
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Proposition 5.2. Let N > 1 be an integer and for k =0,--- | N set ty = ’%T, G and G
satisfy conditions (C-u) and (C-0) respectively, and let n € (0,1).

(i) Let p € [2,00), ug € L®(Q; V1) and 0y € L?*(Q; H®). Then there exists a positive
constant C (independent of N ) such that

T>77P

N ,
E(| Z/t (luts) = u(t)l[3: + lluls) = ulty—)3]ds| ) < (5 (5.14)

(ii) Let p € [2,00), ug € L'PT<(Q; V1) and 6y € LYP+<(Q; HO) for some € > 0. Then

np

E(\é /t:jl[ue(s)—0<tj>||%p+\|0<s>—e<tj_1>uip]ds]”)sc(ﬁ) RNCRE

Proof. (i) For j =1,..., N, write the decomposition (5.3) of u(t;) — u(s) used in the proof
of Lemma 5.1 (that is 71 = s, 79 = t;), and apply A2. The upper estimates of the sum of
terms A%Tl(s, t), A%Tg(s, tj) obtained in the proof of Lemma 2.2 in [4] imply for n € (0, 1)

(b 1 1 p T \np
E(\Z/ (AT (s, )10 + A3 Ta(s, 1)) ds| ) < CE(uolli?) (57)" - (5:16)
j=1"ti-1

The Minkowski inequality and the upper estimates (4.9) and (4.10) imply for § € (0, 3)
1 b _
43T (st < [ 1A = 9l e 14500 = ) =14 T eqvoy
x || II(s)vz][yo ds

t.
<Clt;— s’ sup [6(s)] 5o / (41— 5) "G,
0

s€[0,t5]

Hence we deduce

N tj 1 9 p T \ 2pd %
> [ 1T e asl < ()" s o)
=14

s€[0,T]
N t;
> /
j=17ti-1

T \ 2pd 9
<C(— sup [10(s)| %
()" 2 16N,

/s(s — r)_(%H)dr)st‘p
0

T T\ 2p6
31_25ds‘p<0 — sup ||0(s)||*%,.
/ <c(y)" s 106l

Using once more the Minkowski inequality and (4.9), we obtain
Noortio p N i
> [t eds < |3 [
j=1 tji—1 j=1 t;
2
<C sup [0(r)[I;70

Nt tj 112 p
Z/ / (tj — s)fidr‘ ds‘
rel0,7] j=1 ti—1 s

T\P
<C sup ||0(r b G
s o ()

tj 2
/J 1A S(t —T)Hﬁ(r)vgﬂvodr’ ds

‘p
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The above estimates of T3 1 and T3 2 together with (3.2) imply for n € (0, 1)

N ot 1 5 P T\
E(‘;/tj_l A2 Ty (s, t;)] 20 ds‘ ) gc(ﬁ) . (5.17)

We next study the stochastic integrals.
Using twice Holder’s inequality, the Burkholder inequality, (4.9), (4.10) and the growth

condition (2.11), we obtain for § € (0, 3)

(’ZHAzTM(s ) Fods|) < N7 121& ]/ 43T, Bods])

]_

<NP1 (%)p_l i/ H / A°S(s —r)A°[S(t; — s) — Id]A%G(u(r))dW(r)H% )ds

Vo
J=1

p—1 g: /ttj E(‘ /03(8 — )2 — 8)25HA%G(U(T))H%(K,VO)TT(Q)dT‘p)dS
=1/t

gc(f\;)%p/OTE(/o (s = 1) 2 [Ko + Ksljur) [ Jar| ) ds
gc(]TV)%”[HE(/ u(r)||% (/ (s—r)*%ds)dr)] < c(%)%’), (5.18)

where the last upper estimates are deduced from the Fubini theorem, from (3.1) and (3.3).
A similar argument proves

EQ i 43 Taals, tj)”%odﬁ‘p)
<7pr-1 Z /t]

tj—1

(H/ S(t; — $)ASGlu(r ))dW(r)HQV”O)ds

N
<Cp TP ' Tr(Q)P Z/

j=1"ti-1

-1 t;
(%) [ K8+ EB(AR )35 ) ards

’/ (K2 + Kallu(r )||v1]d7" )d

gC(ﬁ)p[l+/0TIE(HA§u(s)H%}’O)ds} <o(3)" (5.19)

The inequalities (5.18) and (5.19) imply for n € (0, 1),

Nt 1 ) P T\np
E(‘;/tj_l ||A2T4(s,tj)||vods‘ ) < c(ﬁ) . (5.20)
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The above arguments (5.16), (5.17) and (5.20) prove similar inequalities when replacing
Ti(s,t;) by Ti(tj—1,s) fori=1,...,4and j = 1,..., N. Using (5.1), this concludes the proof
of (5 14)

(ii) As above, we apply A3 to the terms T;(s, tj),i =1,2,3 of the decomposition (5.8) of
0(t;) — 0(s) introduced in the proof of Proposition 5.1 (ii). For 6 € (0, ), the inequalities
(4.9) and (4.10) imply

o,
\Z/ A55(5)[5(r; — 5) — 1] 00|20

<1Z " AS () A [0, — 5) — 1] Abeo) 2

tj—1

T ~ p
<C\Z/ 52 (1) 1 Ab0l

ti—1

<o(%) " 1A \/ sas|"

Hence for n € (0,1),

") < CE(I6o]7) (%)W. (5.21)

N .
B30 [ 1AEES0; ) ~ ol

o1t
Let 8 € (0, 1) and 5€ (0,5 1 _4). The Minkowski inequality, (4.9), (4.10) and (2.6) applied
with o = p = 5 imply for s € [tj_1,1;]

5
H/ fl% (s —r) ( ) —Id]([u(r).V]Q(r))dr‘

< / y|A5+ﬂ+5S(s—r)A—ﬁ[§(tj—s)—ld} A7 ([u(r).V]0(r)) || grodr

HO

<C [ 5= @ (L) AT vo 43600 g i

Therefore, the Cauchy-Schwarz inequality and Fubini’s theorem imply

\Z [ VAT )

<C(F) e g 1o 3 [ ([emnr o naton )
X (/s(s—r)_(%"’ﬁ"r&)dr)ds‘ }
0
- <T 26p [ sup]HAZ‘u / 1A26(r ||H0d5>(/ (s_r)—(%+ﬁ+6)ds)dr’p]
s€(0,T

<o(3)" (e (i 14tu(e SR /OT (1o ) dr

The upper estimates (3.3) and (4.13) imply for n € (0,1)

‘Z/t] ArTy (s tj)llfgodS‘p) < C(%yp. (5.22)

v)
)
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Using the Minkowski inequality, (4.9) and (2.6) with o = p = %, and Fubini’s theorem,

we obtain for § € (0, %)

‘Z/ %T (s,t5) HHOdS <‘Z/
S RLCT) oy A Y RORR RS
- TG[O,pT] =1 ti- e

X (/tj(tj — r)_(%+5)dr)ds‘
<C sup HA2u Z/

rel0,77]

1 p
< sup [abueln () [ 14
re0,T] 0

The Cauchy-Schwarz inequality, (3.3) and (4.13) imply

~1 2 p
[t =) EO AT u(r) ol A20(r)||podr | ds

)i

l\)\»—l

oo i ([ as)ar|

0(s)Frodr

1\3\»—‘

E(‘zNj/tj ||A%T2,2(s,tj)|y§,0ds‘p) < c(%)p. (5.23)

j=17ti-1

Finally, arguments similar to that used to prove (5.20) imply for n € (0, 1)

‘Z/ A2 Ty(s tj)ll?/odS‘p) < C( )np (5.24)

The upper estimates (5.21)—(5.24) conclude the proof of

E(‘i/tj 1A% [o(t )—e(s)]||§{0ds‘p)gc(%)"p, n e (0,1).

j=17ti-1

Using (5.2), similar argument completes the proof of (5.15). O

6. THE IMPLICIT TIME EULER SCHEME

We first prove the existence of the fully time implicit time Euler scheme {u*;k =
0,1,..,N} and {6% k =0,1,..., N} defined by (2.15)-(2.16). Set AW := W(t;) — W (ti-1)
and AIW = W(tl) — W(tlfl), [l = 1, veuy N.

6.1. Existence of the scheme. Proof of Proposition 3./ The proof is divided in two
steps.

Step 1 For technical reasons we consider a Galerkin approximation. Let {¢;}; denote an
orthonormal basis of V¥ made of elements of V2 which are orthogonal in V! (resp. {&};
denote an orthonormal basis of H? made of elements of H? which are orthogonal in H1).
For m = 1,2,... let V,,, = span (eq, ..., em) c V% and let P, : VO — V,, denote the
projection from V0 to V. Similarly, let H,, = span (€1, ..y €m) C H? and let P, : HY —
H,, denote the projection from H° to H,,
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In order to find a solution to (2.15)(2.16) we project these equations on V,, and H,,
respectively, that is we define by induction {u*(m)}r—o_. N € Vi and {0%(m)}r—0. N €
H,, such that uo(m) = Pp(uo), GO(m) = Pp(6y),and fork =1,...., N, p € V, and ¢ € Hy,

(w*(m) — u* + h[v(Abut(m), A3) + (B(uF(m), u* (). )
= h(TI0F vy, ) + (G (M) ALV, ) (6.1)
(6 (m) — 0"~ (m), ) + h |k (A26" (m), A7) + ([u" " k(m). V16" (), )
=(G<0k Hm) AW, ) (6.2)

For almost every w set R(0,w) := [lug(w)|[yo and R(0,w) := [|6p(w)| go. Fix k=1,...,N
and suppose that for j = 0, ..., k—1 the F; - measurable random variables u’ (m)and 67 (m)
have been defined, and that

R(j,w) := sup ||/ (m,w)||2 < oo and R(j,w):= sup ||/ (m,w)|L2 < oo
m>1 >1

m=

for almost every w. We prove that u*(m) and 6% (m) exists and satisfy sup,,>1 |[u*(m, w)|[yo <
oo and sup,,>; 10% (m, w) || o < 00 a.s.

For w € Q let <I>7’fn,w : Vin — Vi (resp. @fnw) be defined for f € V, (vesp. for f € H,,)
as the solution of

(@hu(F)9) = (f —u"( + h|v(A3f, A3g) + (PuB(f. f). )
—mw4<w%>}< G(u*

(Bh, (£ ) = (F = 0" (m,w), ) + h[n(A3F,
—w%mwﬂmwmm%>

“Hm,w) AW (w), ), Vo € Vin

39) + ([P (m).A3] /], 9)

i
V), V€ Hy.
Then the Cauchy-Schwarz and Young inequalities imply
| (u* " (m,w), M<wmwﬂwlmwmm
\WﬂWWﬁugmeWﬂmwmm
(065 (m, ), 7)] < 1o + 1% (m, ),
Mcw“%mwmmwwvs;m@rumw“%mw»ﬁmymmuw@
< 7110+ [+ Kl m, w)l[3o] |46 W

[(G(6*! (m,w)) AW, ) < 1B + 10" m, O o) | A6 W 15

r—l»-lk

< 230 + [Ko + Ky flu® (m,w) [ Fo 1AW

..;;

If
110 = R2(k,w) =4[ B2k = 1,w) + (hR(k = 1,0))°

+ [Ko + K1 R*(k—1,w)] HAkW(w)H%()],
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1710 = B2k, w) s=2[ B2k = 1,w) + (o + Ky B2k — 1,w) [ AT (@)% ],

we deduce
1 _ 1 _
(@F, (). ) Zzllfllfiz — [ m, w)[F2 + B A2 fI[30 — B2[16F (m, w)] G0
— [Ko + Kl m, ) [Bo] A6 @) [ > 0

. 1. - 1.
(@ (), f) Zj\f\lfm — (167 (m, w) [ Fo + RIIAZ f1 o

= [Ko + K116 (m, w) |3 | AW (w)[|% >
Using [16, Cor 1.1] page 279, which can be deduced from Brouwer’s theorem, we de-
duce the existence of an element u*(m,w) € V(m) (resp. 6%(m,w) € H(m)), such that
Ok (m,w)(uF(m,w)) = 0 (resp. ®F(m,w)(0%(m,w)) = 0) and ||uk(m,w)|]%/0 < R*(k,w)
(resp. ||6%(m,w)]||go < R2(k,w)) a.s. Note that these elements u*(m,w) and 8% (m, w) need
not be unique. Furthermore, the random variables u*(m) and 0% (w) are J;, -measurable.
The definition of u*(m) (resp. 6%(m)) implies that it is a solution to (6.1) (resp. (6.2)).
Taking ¢ = u*(m) in (6.1), using the antisymmetry property (2.1) and the Young inequal-
ity, we obtain

luk(m) |0 + hvl|A2uk (m )||%/o = (u* 1 (m),u"(m)) + h (L6 (m)vz, u*(m))
+ (G( Yom) AW, uF m))

3 _ _
< leu (M0 + 1" (m)[1F0 + 1167 (M) 70 + [Ko + K llu* " (m)[3o] | AW | % -
Hence a.s.

1 ~
sup [l ) + By A3t (m,w) B | < R2(k = 1,w) + B2 (k= 1,0)

+ [Ko + KiR*(k — 1,w)] | AsW (W) | %

A similar computation using 1 = 6%(m) in (6.2) implies

sup [ 516 m. )0+ Bl 420", )] < B2k = 1)+ [Ro + Ka Bk = D] |8
Therefore, for fixed k and almost every w, the sequence {u*(m,w)},, is bounded in V;
it has a subsequence (still denoted {u*(m,w)},,) which converges weakly in V! to ¢ (w).
The random variable ¢, is F;, -measurable. Similarly, for fixed £ and almost every w, the
sequence {0%(m,w)},, is bounded in H'; it has a subsequence (still denoted {6%(m,w)}.,)
which converges weakly in H' to ¢ (w) which is Fi,-measurable.

Since D is bounded, the embedding of V! in V? (rsp. of H' in H) is compact; hence the

subsequence {u (m, w)}m converges strongly to ¢y (w) in VO (resp. {6%(m,w)}. converges
strongly to ¢y (w) in HO).
Step 2 We next prove that the pair (¢, d) is a solution to (2.15)(2.16). By definition
u®(m) converges strongly to ug in V°, and 6°(m) converges strongly to 6y in H°. We next
prove by induction on k that the pair (¢, ¢*) solves (2.15)~(2.16). Fix a positive integer
mo and consider the equation (6.1) for k = 1,..., N, ¢ € Vp,,, and m > mg. As m — o0
we have a.s.

(WP (m) — "1 (m), ) = (6" — 1), (AZub(m), AZg) — (Az¢F, A39),
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(Hﬁk_l(m)vg,go) = (Gk_l(m)UQ,go) — (qgkvg, ©).
Furthermore, the antisymmetry of B (2.1) and the Gagliardo-Nirenberg inequality (2.4)
yield a.s.

(B (uF(m), uk (m)) — B(6*,6%), )]
< [(B(u*(m) = 6", ¢), ub(m))| + [(B(¢*, p), u"(m) — ¢")]
< Az glvolluf(m) — ¢*|lLs [lla*(m)llLe + 16¥|4]

C llpllvo [ max [u® (m) v+ + |6F v 111 A2 () — 6| 2ol (m) = ¢¥[|20 — 0

IN

as m — oo. Finally, the Cauchy-Schwarz inequality and the Lipschitz condition (2.10)
imply
[([G ("1 m)) = G(* )] AW, @) | < llellvol| G (m) = G| vy [ AW |
< VL llellez [[u*~ (m) = " YL | AWl = 0
as m — o0o. Therefore, letting m — oo in (6.1), we deduce

(6" = 65" + hvAdh + RB (6", 0%), ) = (16" 10y, 0) + (G(6")AWW , 9), Vop € Vi,

Since Upg Vin, is dense in V', we deduce that {¢*}r—o
A similar argument proves that ¢* is a solution to (2.16). This concludes the proof. O

~ is a solution to (2.15).

-----

6.2. Moments of the Euler scheme. We next prove upper bounds of moments of u*
and 0F uniformly in k =1,...,N.

Proposition 6.1. Let G and G satisfy the condition (C-u)(i) and (C-0)(i) respectively.
Let K > 1 be an integer, and let ug € L2 (Q;V°) and 0y € L2" (Q; HO) respectively. Let
{uk}k:07,,.71\; and {0y }r=o,.. N be solution of (2.15) and (2.16) respectively. Then

IE( L2K oL QK) ‘
sup omax fullyo + max 60750 ) < oo (6.3)
N N
1 12 112K -2 T2 112K -2
]svggE(hZIIAwllvollu 5072+ 1Y [[A26" 101|652 < oo, (6.4)
= =1 =1

Proof. Write (2.15) with ¢ = u!, (2.16) with ¢ = 6, and use the identity (f,f — g) =
$[1flle = llgli?2 + [If — gll22]. Using the Cauchy-Schwarz and Young inequalities, the
antisymmetry (2.1) and the growth condition (2.9), this yields for [ = 1,..., N

S o — R+ == o] 4+t A o =h(T6 e, ) + (Gt ) AT, ),
(6.5)
100 — 10 30+ 116" — 0 [Bya] + | 301 By =(G(0' ) AT 0. (6.6)
Fix L =1,..., N and add both equalities for [ = 1, ..., L; this yields
1 1 L L
2 o = ol + 16710 — Nolipo] + 5 [ Dot == + 3 16— 6"
=1 =1

L L—1 L—1
1 <1 h
+0Y [l Az} + K| A26' 30 ] < 3 S OO, + 2> et e + Rlu (o
=1 =0 =1
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_l’_

M=

l

L
_ 1 _
(G 1oy AW I+l = u7HGo] + Y (G H AW, u'™)
1 =1

_l’_

M=

L
— N 1 B
GO oy 1AW [T + 116 = 0 [ F0] + D (GO H AW, 07). (6.7)
=1

=1

Let N be large enough to have h = % < %. Taking expected values, we deduce

L
1 _ _
IE<||UL||%/O + ||¢9L||fq0 + 3 Z [||ul — ! 1”%/0 n Hel g 1||%/0]
=1

N
+ 20 Y [l AR 3o + Kl AZ6'30] ) < B0 +116°130) + 2T [KoTr(Q) + KoTx(Q)]
=1

~ _ L—-1

+ A4+ 2max(K1 Tr(Q), KiTr(Q)] Y E(|[u![[E0 + [16]1%0)-
=0

Neglecting both sums in the left hand side and using the discrete Gronwall lemma, we
deduce

sup E([[u"[[}0 + 16"]F0) < C, (6.8)
1<L<N

where
C = <2E(HUOH%/0 + HQOH%{O) + QT[K()TI“(Q) +kOTr(Q)])eT[4+2max(K1Tr(Q)7K1Tr(Q)]
is independent of N. This implies

N
sup B3 [4u o + 146 30] + ' = = + 116" = 6/ s ) < o0
= =1

this proves (6.4) for K = 1. For s € [tj,tj41), j = 0,...,N — 1, set s = t;. The Davis
inequality, and then the Cauchy-Schwarz and Young inequality imply for any € > 0

L
E(lg}lag(NZ (G AW, u'™") + (GO AW, 91_1”)

sup/ (G(u®)dW (s u7)> (Sup /t (é(@i)dW(s),Hé))

te0,T tefo,1]Jo

1 T ~
ssxa(\ /0 G ) 2 o el Tr(@)ds| ) + 35 /0 IGON 1100|0530 T (@) s

)

1

N 1
< 3@V s, I ve (1 (Ko + Kall'™ o] )]

N 1
+3Tx(Q) B[ max |6 HHo(hl};[Kleuel11!%10])2}

N
Se]E(lr<nla<x HulHVo>+E(Hu0HV0 +3 Tr h; Ko+ K E(|[u' " [1}0)]
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N
9 - - -
112 02 —12
+eE(lgll%>5V||0HHo)+E(He |!Ho)+46Tr<cz>hl§_1 (Ko + KaE(0'[F0)]  (6.9)

Taking the maximum over L in (6.7) and using (6.9), we deduce

N
=g, 101+ 1]) < 26l +16°V5) 1 (10 + " )
N
+ 26E(11<11La<xN [[[u!)1Z0 + ||9LH%10]> + Tr )h Z Ko+ KiE(||u"30)]
sls =1

N
+5 Tr Q)h > [Ko+ KiE(|6'[30)].
=1

For € = 1, (6.8) proves

sup [E( sup HuLH%/o)+E( sup HGLH%{oﬂ < 00,
N>1 1<L<N 1<LEN

which proves (6.3) for K = 1.

We next prove (6.3)—(6.4) by induction on K.

Multiply (6.5) by [|u![|?,, and (6.6) by [|6'||%,. Using the identity a(a —b) = §[a®> —b*+
la — bﬂ for a = HulH%/D (resp. a = HGIH%O) and b = Hul*1\|%,0 (resp. b = Hé?k*lH%{O), we
deduce for [ =1,..., N

Lrog - I - 2 I - ! - 2
1 [HU 7o — Mo + [l 130 — = 30" + 168130 — 16 130 + 16170 — 16" 11350 }

1 l - l l - l 1 l
+§[Ilu —u T 1 150 + 116" — 610110130 + Pl AZu! [ llu! 10

4
+ hi| A2 6250160130 = A(TI0" Log, ) [l 20 + Y T3(0), (6.10)
where
Ty (1) = (G (=) AW, u =) [, To(l) = (G ) AW, — a1 [l |2,

T5(1) =(GO"H AW, 07107 [T, Ta(l) = (GO HAW, 0 =0 650
The Cauchy-Schwarz and Young inequalities imply
_ _ 1, 3
(16" s, ) [l [Fo < 16" ol [Vo < 116 W50+l o (6.11)
The Cauchy-Schwarz and Young inequalities imply for €, € > 0,

IT2(0)] < G 2epvoyllu’ — = ollu o

- I
< ellul — T Follu [ Fo
1 - - ! -
+ ZeHG(U I)H%(K;VO)HAZWH%(U|U o + (1e']0 = [ 30)]

l l l - -
< ellu’ — ol 70 + EIIG(U O vy AW llu' = [Fo
1

—I11,.0112 -12 |2
+€|||U ”VO_”U HVO‘ +@Z€H

Gz a0 | AW - (6.12)
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A similar argument proves for €,é > 0

_ T~ e - _
I Ta(D)] <efl6" —¢' 1\@10H91H§10+@HG(91 N &gy AN 16" 30
iali2 g2 2, LA %114
el 00— 10 3o + 2oy I GO oINS (6.13)
A similar argument shows for € > 0

T2 (0)] < NG @™ AW [lyollu'™ o + 1G(u"™H) AW ol lu'™ o [[lu[Fo — llu' = [3]

1 _ 3, _ _ 2
SZHG(UZ 1)|’45(K;v0)||AlW|’}1<+ZHUl 1”%/o+€’||ul||3/07||ul 1||V0H2|

1 _ _

IO o) |8V Bl [, (6.14)

and
1~ . ~ 3 - _ _ 2
5] <ZNGEO Doy AW I + 16 o + €100 — 16 [ o]
1~ = _
NG g ST 10 (6.15)
Add the inequalities (6.10)~(6.15) for [ = 1 to L < N, choose € = 1 and € = 1z, and use

the growth conditions (2.9) and (2.12). This yields
L
1 _ 2 _ _ 2
L4 L ! ! Ll ! ! !
W llvo + 16" 150 + 5 D 3o = a1 | ' = Mol 50 + 16711770 — 6" 50
=1

L
1 ~1
+ 116" = 6" o110 ) + 4R [l Az [Tl [0 + ]| A2 61016170
=1

L—-1 L
1 3
<luollyo + Wollf + 5h S 1640 + 0 o
=0 =1

_ — — 2
([K0+K1Hul o Il M ol AW I + [Ko + Kallu'™"[[30] HAzWH%)

M=

+C

N
Il
o

~ ~ _ _ ~ ~ ~ _ 2 ~
([Ko + a0 0] 10 ol A% + [Ko + Kallo' " 30) AV ).
(6.16)

M=

+C

-~
I
o

Taking expected values, we deduce for every L =1,..., N and h = % <1

L
1 _ 2 _
E (" llyo + 1050 + 5 [ 130 = o + ' = =1 o ! o
=1

11610 = 6 0 + 116" — 0" 6 13] )

L
+E(40 Y [l AR Bl 30 + ] 2630 67]130] )
=1
L-1
< E(l[uollto + I6oliyo) + 3AE(lub o) + C+ Ch S (o + 161 40)
=0
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for some constant C' depending on K;, K;, Tr(Q), Tr(@) and 7', and which does not depend
on N. Let N be large enough to have 3h < % Neglecting the sums in the left hand side
and using the discrete Gronwall lemma, we deduce for E(|luol|30 + [[6o]|30) < o0

L L
;@gOQHLgNE(\Iu o+ 16%140) < o, (6.17)
which implies
N
s B(h 3 (143 ol [+ 143013, [0'135]) < oc. (6.18)

=1
that is (6.4) for K = 2. The argument used to prove (6.9) implies
L

(s, 3 (GO DA )

< L4
< B( max [[u"[}o) +C(0)[1+ max E(lu"]{o)

and

Mh

< max

-1 -1 -1
Jmax > (GETHAW, 07 |luo HHo)

l:l

<
< (| max, [10"[}o) +C(0)[1+ max E(I6" [}0)

Taking the maximum for L = 1,..., N and using (6.17), we deduce (6.3) for K = 2. The
details of the induction step, similar to the proof in the case K = 2, are left to the
reader. (]

7. STRONG CONVERGENCE OF THE LOCALIZED IMPLICIT TIME EULER SCHEME

Due to the bilinear terms [u.V]u and [u.V]6, we first prove an L?(2)-convergence of the
L2(D)-norm of the error, uniformly on the time grid, restricted to the set Q,;(N) defined
below for some M > 0

()= { suwp [A3u(s)o < Mpn{ sup [|A30(s)|30 < M}, Vi =0, N,
s€[0,t5] s€[0,t5]
(7.1)

and let Qps := Qpr(N). Recall that for j = 0,..., N set ej := u(t;) —u’ and &; := 0(t;) —6;
then eg = éy = 0. Using (2.7), (2.8), (2.15) and (2.16) we deduce for j = 1,...,N, ¢ € V!
and ¢ € H!

tj
(ej—ej,l, 90) —1-1// (A

N |=

[u(s) — uj], A%go)ds + / ’ <B(u(s), u(s)) — B(uj,uj), <p>ds

= /1; (H[G(s) — 07 Yoy, go)ds + /t ([G(u(s)) — G(uI™H]dW (s), go), (7.2)
and
(& —€j—1, ) + /ﬁ;/t.] ([1%[9(3) - Qj]’zfl%zp)ds + /t,] ([u(s).¥10(s) — [wV]#’], ¢)ds
_ / " (1GO(s)) — GO (s), ). (7.3)

ti—1
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In this section, we will suppose that N is large enough to have h := % € (0,1). The
following result is a crucial step towards the rate of convergence of the implicit time Euler
scheme.

Proposition 7.1. Suppose that the conditions (C-u) and (C-0) hold. Letug € L3*+¢(Q; V1)
and 0y € L3?T(Q; HY) for some € > 0, u,0 be the solution to (2.7)—(2.8), {u?,67};—0. N
be the solution to (2.15)~(2.16). Fiz M > 0 and let Qpr = Qpr(N) be defined by (7.1).
Then for n € (0,1), there exists a positive constant C, independent of N, such that for N
large enough

N
B (10, [ max (lults) =/ B + 100) — 091B0) + 7 D (14 uty) - vl o

j=1
AR O() — 0)1%0] ) < 01+ et () (7.4)

for some v > 0, and Cy is the constant in the right hand side of the Gagliardo-Nirenberg
inequality (2.4).

Proof. Write (7.2) with ¢ = e; and (7.3) with ¢ = 67; using the equality (f, f —g) =
sUIFlE2 = NlgllEa +11f — gllf2], we have for j =1,...,N

7
1 1 1
5 UleillPo = llej-1lFo) + 5 lles — ej-llfo + vhllAzejlfo < D Ty, (7.5)
I=1
Lo e = 2 1 A3
5 (181150 = l165-1llFr0) + 1185 = &1l + whl A2¢5]30 < Z (7.6)

where by the antisymmetry property (2.1) we have

Ta== [ (Blesud)eis == [ (Blesutt) i)

ti—1 ti—1

Tjo=— / ’ <B(u(s) — u(ty) ,u(tj)) ej>ds,

ti—1

Tj3=— ' (B(u(s),u(s) — ul(t))), e;)ds = /t.j (B(u(s),ej) , u(s) —u(t;))ds,

tj—1

N[

Tj4=— V/ti (A (u(s) — u(tj)),A%ej)ds, Tj5 = / ’ (H[G(s) — Gj_l]vg, ej)ds,

tj—1

t; ]
Lo = [ (1GG(s) = G AV, ¢ — e5).

Ty = [ (16(u(s) = G D] W (). es-1),
and

Tj,l = — / ’ <[€j_1.V]6j, éj>d$ = —/t‘j <[ej_1.V]9(tj), éj>d$,

ti—1
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Tio=— [ ((uls) ~ ult;-1).910(t5) &),

Tio= [ (G0u(s) — G D] AW (s),e1-1),

ti—1
We next prove upper estimates of the terms 7}, for [ =1, ...,5, TjJ forl=1,...,4, and of
the expected value of T}¢, T 7 Tj5 and Tj¢.
The Holder and Young inequalities and the Gagliardo Nirenberg inequality (2.4), imply
for 61 >0

~ 1 1
T <CahllejllyollAZe;llyollAZu(t;)|vo
Ci

1
mh A2 u(t;)[[Folles]Fo, (7.7)

S(Slyh”A%ejH%/o +
and for 51, 0o > 0,

l ;
|T]1|<C’4hHAZej 1||V0He] 1||V0|| 2 |yH0||eJy|HO|| 20(t;)|| g0
<Gy vh||Aze; 1|0 + S1hn ]| A2E; 4o
CYZ 04 l 2 - 2

h ; 11%0. 7.8
168, 1651 H 2 ( )HHO||6]HHO ( )

Hélder’s inequality and the Sobolev embedding V! ¢ L* imply for 63 > 0

Tl
+ R AZ0(t) 3o llej-1 o +

tj 1 11 1
175, lu(s) = u(t)llvil[Azu(;)llvollAzesll Vo llejllods

o2 2 c 1 o [ 2
< Sy Abeslo + hlleslifo + =l Abult)lbo | lutty) —u()fads,  (79)

tj—1

while for dy > 0,

~ ~ ~1 - C t 1
ol < anh A6 o + Bl 50 + = [ 143 [u(s) — u(tj-0)] Fuds
2

tj_l
ST s [V 2
4 R0 [ o) = ultyon)ods, (7.10)
2 j—1
Similar arguments prove for dq4, 63 >0
19 C s [Y 2
[Tyal < SwhllAbes B+ o sup u(s)B [ ()~ u(t)[Bads, (711
4 s€[0,T ti—1
it C s [ 2
| Tj3] < b3k h||A2&][30 + — sup_[lu(s)[[3 16(s) — 0(t;)[| g ds. (7.12)
53 s€[0,7T tj—1
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The Cauchy-Schwarz and Young inequalities imply for Js, 64> 0

1 v L 1
Tial < GwhlAbelfo+ 35 [ 1 A uls) —u)lRods,  (113)
-1

N

l K tj ~
[ Tjal < darh||AzE;| 70 + = / I Az[0(s) — 0(t;)]|[70ls- (7.14)

404 Je

j—1

Using once more the Cauchy-Schwarz and Young inequalities, we deduce

tj
T 5] S/ [16Cs) = 0(tj-1) 1o + 1611l o] [lejllvods

tj_1

1 [l
||6]Hvo+ 1€j-1F0 + 2/ 16(s) — 0(tj—1)|70ds. (7.15)

t]'_l

Note that the sequence of subsets {Q/(J) }o<j<n is decreasing. Therefore, since ey = €y =
0, given L =1, ..., N, we deduce

2 ~ 12 ~ 2
1I<nt]a§LZ 1QM (3-1) |€]||V0 - ||ej*1HV0 + HeJHHO - ||€j,1||H0}

L
= max 3 (Lo, o lleslo + 116 1%0] )

1<J<L 4
Jj=2

L
+ 3 (layG-2 = layG-) [lej-1llFo + 1E-1]170]
j=2
L

> max 3 (1o, [leslfo + 165130] ).
- - 2

Hence, for Z?zl §; < % and S
a>0

5 < 3, using Young’s inequality, we deduce for every

L
1 . 1 - -
& max (Tay oy [leslfo +181%0] ) + & D oy (les = ei1llfo + 15 = &-110)

5

i Loy, b v (i—;@-)\A%ejnaom(;—i&)ufi%éju%o]
L
=t

14+ a)C
- l”ef”w((zml“llf“ u(tj)lfo + e

(14 a)CF e 3
03 ol (2 o, i+ 2) + 2
]_]_ 1661
+1I?ﬁ§LZlQM] 0[Tis + Tis] + ax, Zlﬂm o [T+ Tje). (7.16)



STRONG CONVERGENCE OF TIME EULER SCHEMES FOR 2D BOUSSINESQ 33

where

ZL—ChZHeJHVO 142 fu(ty) — w00 + A2 [0(85) = 0(t5-1)]130)

7j=1
L ~1
1O S o A2 (0(t) — 00t )]0
j=1
ti 2 2
+cz( sup [u(s)f +1) [ [lut) = u@)[Ra+ us) - uttsoalf]ds
s€[0,7 tj—1
ito g
+OZ|| ol [ llu(s) = ulty 1) fads
-1
t;
+CZ< sup |lu(s ||V1+1)/ 16(s) — 0(t;)]|3:ds. (7.17)
~: SGOT] tj—l

The Cauchy-Schwarz and Young inequalities imply

L L
1
D Loy -1l Tiel < g > laug-nle —eiallyo

=1 =1
3 & ty . 2
+221QM(j_1)H/t [Gu(s)) — G )] aw (s)]| (7.18)
j=1 i-1
L ~ 1 L
Y layG-vlTisl < & Y Lo lE = &-1l
j=1 7=1
~ 2
43 Z1QM] 1 H/t —a v (7.19)
j—1

Using the upper estimates (7.16)—(7.19), taking expected values, using the Cauchy-Schwarz
and Young inequalities, and the inequalities (3.1), (3.2), (4.13), (6.3), (5.1), (5.14) and
(5.15), we deduce that for n € (0,1) and every L =1,..., N

=

< J 2
8(2) < C{B( sup Jul)lvn + s [l }

b

+C{E( suw ||9(S)||‘i[o+0g§>§vll9jll}§o)}é{ E(|n i A2 [6(t;) — 6(t;1)]1}0)
- =1

s€[0,T

x {E (\hz 1A% [uty) = uti-0)] o + 143 [0(25) — 0(t5-1)] I30)

N

)

+ofE(1+ s utlin)} \Z / [u(s) — u(t;) 2o
Y

+ llu(s) = ut—)[Vo + 10(s) = 0(t;)770]
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+CZ/ {E(]|A

l\.’)\»—t

0e)50) (1) -ty 1)) }ds < cwr, (7.20)

for some constant C independent of L and N. Furthermore, the Lipschitz conditions (2.10)
and (2.13), the inclusion Qp/(j —1) C Qup(j — 2) for j = 2,..., N and the upper estimates
(5.1) and (5.2) imply

L t; )
<3 K / " Laygonalluls) — w7 R Tr(@)ds)

L

L t
<2 Q) 3 Ellaygaleilfe) + €S E( [ () - ulty-o)[Rds)

=2 j=1 tj—1

<20iTr(Q)h Y E(lg,, -z llej-1l}o) + Ch, (7.21)
j=2

E(glm_nu [ G - cwav);

)

HO

L
<20 Tr(Q)h Y E(lg,,-2lléj-1lF0) + Ch. (7.22)
j=2

Finally, the Davis inequality, the inclusion Q7(J — 1) C Qp(j — 1) for j < J, the local
property of stochastic integrals, the Lipschitz condition (2.10), the Cauchy-Schwarz and
Young inequalities, and the inequality (5.1) imply for A > 0

J
E( x 1 T )
1<J<L O (J-1) 21

J:

<3 E({laygn [ " G () — G o TH(@les1 s} )

j=1 tj—1

t; , 1
<3 Y E|( max layg-olelve){ [ LlTr(Q)IIU(S)*u”‘IHQVOdS}Q)

j=1 ti—1

gm( max 1o, ;1 ej 1|\V0 +0E Z " LT(Q)lfuls) - uj‘llliodS)

1<G<L ti 1
<)\E< max g, 2 llej-1l} ) +ChZE(He-_1H2O)+0h. (7.23)
— 1<j<L M= =1V J 14

j=1
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A similar argument, using the Lipschitz condition (2.13) and (5.2), yields for A > 0

L
~ 2
E( s, o 1>;n7) <28 e 1oy 650 o) + C Bl + O
(7.24)

Collecting the upper estimates (7.7)—(7.24) we obtain for 2?21 & < 1%, Z?:l 0 < 1,
€ (0,1) and a, A >0

2 ~ 112
B ou, o [leslo + 2310] )

+E<gIQM(]’1 { (2—625)”14263”1/0+’€(2_625) Az HVOD

<h NZ:lE(lgM(jl) llesll3o {(;,7)04 (51 + 4;;2>M + C])

j=1
N—
3(1+a)C}
1 € ——M+C
g (tomg-nleslin [~z )
O+ HE( sup [u(®lEo -+ 100 o] + ma (1670 +167])])
F120E( max Lo, [lej1[Fo + 17 (70] ) + . (7.25)

Therefore, given v € (0,1), choosing A € (0, 112) and a > 0 such that lljg/\ < 1+n7,

neglecting the sum in the left hand side and using the discrete Gronwall lemma, we deduce
for n € (0,1)

2 ~ 112 TC(M
E( max Tayg-n/[lejlo + 18 [70] ) < O+ d0)e 00, (7.26)

where ~
3(1+7)C3 ( 1 1 )
_ 2 — — M

2 fax o1V + 4691 ’ 461K ’
(and choosing ¢;,i = 3,4,5 and 5,-,2' = 2,3,4 such that
Let 09 < %5 and §; = 405. Then for some v > 0, we have

Wmax (§, l) M.

v K
Plugging the upper estimate (7.26) in (7.25), we conclude the proof of (7.4). O

C(M) =

for 2?21 0 < é and 51 < %
Yo di < g and Yoi 0i < 3)-

c(M) =

8. RATE OF CONVERGENCE IN PROBABILITY AND IN L?(Q)

In this section, we deduce from Proposition 7.1 the convergence in probability of the
implicit time Euler scheme with the “optimal” rate of convergence “almost 1/2” and a
logarithmic speed of convergence in L?(§2). This notion has been introduced in [17]. The
presence of the bilinear term in the It6 formula for HA%G(t) |2,y does not enable us to prove
exponential moments for this norm, which prevents from using the general framework
presented in [3] to prove a polynomial rate for the strong convergence.
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8.1. Rate of convergence in probability. In this section, we deduce the rate of con-
vergence in probability from Propositions 3.2, 3.3, 6.1 and 7.1.
Proof of Theorem 3.5 For N > 1 and n € (0, 1), let

l
S (bl + 1426 150] = N- g3
7j=1

Let n€ (n,1), M(N) =In(InN) for N > 3. Then
(A( 1)) < P(A(N,n)N QM(N)) +P((QM( )¢ )

Z\H

AN = { max [leslbo + 1] +

where Qp7(n

~n)(IN) is defined in Proposition 7.1. The inequality (7.4) implies

< N7 E(

N
] lAesl30 + 1 A78]%0]])

Z\H

[llesllfo + lleslo] +

1QA1(N) Ln

ax
JIN

o) (T
< N7 C[1+ In(in N) |7 0N ()

<C[1+mInN)](InN)" N1 50 as N = oc.
The inequalities (3.3), (3.2) and (3.4) imply

1
P((Q GO<——E( sup |lu + sup |0@)|%:) =0 as N — .
(0100 < 377778 ( e Tutolf + sup 1060 )

The two above convergence results complete the proof of (3.5). O

8.2. Rate of convergence in L?(Q2). We finally prove the strong rate of convergence,
which is also a consequence of Propositions 3.2, 3.3, 6.1 and 7.1.

Proof of Theorem 3.6 For any integer N > 1 and M € [1,+400), let Qyr = Qpr(N) be
defined by (7.1). Let p be the conjugate exponent of 29. Holder’s inequality implies

1

]E(l(QM)c max_ [lesllfo + ||€J||H0D < {P((QM)C)};

2—4q
< AE( sup u()Fo + sup [0()Fo + max /[T + max [107]350) }
s€[0,T] s€[0,T]
1

< o{P(m))}". (8.1)

where the last inequality is a consequence of (3.1), (3.2) and (6.3).
Using (3.3)and (3.4) we deduce

P((Q0)°) < M7 E( sup_[u(s)|Fh + sup [6(s)]I3) = M (8.2)
s€[0,T7 s€[0,T7]

Using (7.4), we choose M(N) — oo as N — oo such that for n € (0,1) and v > 0

9(1 -+ V)CZ%T 5 1 - —99-1
D PEDST (5 Dy < e+
which, taking logarithms, yields
91 +~)CiT 5 1

8 vk

N Tex

—nln(N) +
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Set,
8 “
M(N) TOESSTIETY )T[nln(N)— (297! + 1) In (In(N))]
8
“sarmeEv oY
Then
—nn(N) + (H;)C(V %)M(N) +In(M(N)) < —(2¢7" + 1) In (In(V)) +0(1),

—(277 1) In (M(N)) =< —(2971 + 1) In(N) + 0(1).
This implies
2 =12 —(2771+1)
B [leslfa +ls1]) < C(n(w)) ="
The inequalities (3.3)—(3.4) for p =1 and (6.4) for K =1 imply

N
1 l Y
s B 3 [14bu(t) o + 145w o + 14400 o+ 140713]) < o0
7=1

Hence a similar argument implies
N
T

— -1
E<NZU\A%@-H%O+H Azé, HH“D < C(In(V))" ),
j=1

This yields (3.6) and completes the proof. O

9. CONCLUSIONS

This paper provides the first result about the rate of convergence of a time discretization
of the Navier-Stokes equations coupled with a transport equation for the temperature,
driven by a random perturbation; this is the so-called Boussinesq/Bénard model. The
perturbation may depend on both the velocity and temperature of the a fluid. The rates
of convergence in probability and in L?({2) are similar to those obtained for the stochastic
Navier-Stokes equations. The Boussinesq equations model a variety of phenomena in
environmental, geophysical, and climate systems (see e.g. [12] and [13]). Even if the outline
of proof is similar to that used for the Navier-Stokes equations, the interplay between the
velocity and the temperature is more delicate to deal with in many places. This interplay,
which appears in Bénard systems, is crucial to describe more general hydrodynamical
models. The presence of the velocity in the bilinear term describing the dynamics of the
temperature makes more difficult to prove bounds of moments for the H'-norm of the
temperature uniformly in time and requires higher moments of the initial condition. Such
bounds are crucial to deduce rates of convergence (in probability and in L2(Q)) from the
localized one.

This localized version of the convergence is the usual first step in a non linear (non
Lipschitz and not monotonous) setting. Numerical simulations, which are the ultimate
aim of this study since there is no other way to ”produce” trajectories of the solution,
would require a space discretization, such as finite elements. This is not dealt with in this
paper and will be done in a forthcoming work. This new study is likely to provide results
similar to those obtained for the 2D Navier-Stokes equations.
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Also note that another natural continuation of this work would be to consider a more
general stochastic 2D magnetic Bénard model (as discussed in [9]), which describes the
time evolution of the velocity, temperature and magnetic field of an incompressible fluid.

It would also be interesting to study the variance of the L2(D)-norm of the error term,
in both additive and multiplicative settings, for the Navier-Stokes equations and more
general Bénard systems. This would give some information about the accuracy of the
approximation. Proving a.s. convergence of the scheme for Bénard models is also a
challenging question.
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