Assessing clustering methods using Shannon's entropy - Archive ouverte HAL
Article Dans Une Revue Information Sciences Année : 2024

Assessing clustering methods using Shannon's entropy

Résumé

Unsupervised clustering techniques are a valuable source of information for determining how to divide a dataset into subgroups. We present a comprehensive analysis of the quality of these algorithms by defining a clustering fuzziness metric. A statistical test and cluster probabilities corrections are provided based on this metric. Some examples demonstrate how it can be used to compare different clustering algorithms or improve the accuracy of various methods. An application for adjusting the number of clusters is also presented. These results are illustrated using both simulated and real-world data.
Fichier principal
Vignette du fichier
Assessing_clustering_methods_using_Shannon_s_entropy-2_2023.11.09.pdf (712.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03812055 , version 1 (12-10-2022)
hal-03812055 , version 2 (09-11-2023)

Identifiants

Citer

Anis Hoayek, Didier Rullière. Assessing clustering methods using Shannon's entropy. Information Sciences, 2024, 689, pp.121510. ⟨10.1016/j.ins.2024.121510⟩. ⟨hal-03812055v2⟩
130 Consultations
590 Téléchargements

Altmetric

Partager

More