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Assessing clustering methods using Shannon’s entropy

Anis Hoayek∗ and Didier Rullière∗
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Abstract

Unsupervised clustering techniques are a valuable source of information for determining how
to divide a dataset into subgroups. We present a comprehensive analysis of the quality of these
algorithms by defining a clustering fuzziness metric. A statistical test and cluster probabilities
corrections are provided based on this metric. Some examples demonstrate how it can be used to
compare different clustering algorithms or improve the accuracy of various methods. An applica-
tion for adjusting the number of clusters is also presented. These results are illustrated using both
simulated and real-world data.

1 Introduction
In unsupervised learning, clustering methods are very popular methods that associate each observation
to a cluster index. Such methods are known as hard clustering approaches. In situations where some
observations are difficult to associate with certainty to specific clusters, fuzzy clustering may be used:
fuzzy clustering methods, known also as soft clustering methods, associate to each observation the
probability to belong to each possible cluster index, or more generally some membership degrees (see
e.g Ruspini et al., 2019; Yang, 1993; De Oliveira and Pedrycz, 2007, among many other references).
There is a wide diversity of clustering methods: a first subdivision is to distribute clustering methods
into two families: 1) partitional clustering algorithm (e.g. k-means, density based clustering, genetic
algorithm and many other methods), (see e.g. MacQueen (1967); Kriegel et al. (2011); Forrest (1996);
among many other references) in which data is organized into a sequence of groups without any hier-
archical structure (Ezugwu et al. (2022)); 2) hierarchical clustering algorithm (e.g. Linkage algorithm,
divisive clustering), (see e.g. Dawyndt et al. (2005); Roux (2015)) .

A problem for fuzzy clustering is to compare different available methods. Are they overconfident,
as in the case where proposed probabilities are all close to 0 or 1? are they underconfident, as in the
case where each observation can belong to any cluster, with equal probabilities? how to measure this
confidence of the clustering method? how to compare clustering methods? how to propose corrections
to proposed probabilities in case of over or underconfident clustering method?

The confidence of a clustering method is indeed of practical interest, beyond the quality of a classi-
fication. If the clustering method is too uncertain, too fuzzy (underconfident), it may induce avoidable
checks (medical investigations for example, with costs or adverse effects). If the clustering method
is too categorical (overconfident), it may disable useful alerts (need of medical checks for example).
Quantifying this under/overconfidence, or equivalently too fuzzy/not fuzzy enough characteristic of a
clustering method requires the definition of some kind of fuzziness level.

A goal of the present paper is to carefully define the fuzziness of a clustering method. As demon-
strated in various sections of this paper, defining such a fuzziness level allows for the comparison of
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fuzzy clustering methods, determining whether a clustering method is compliant with a given proba-
bilistic model, improving classification or clustering accuracy on test samples for both supervised and
unsupervised learning, and assisting in the selection of a hidden number of clusters.

In the literature, to our knowledge there is very few works on the fuzziness assessment of a clustering
method. Some existing indices, as Dave’s, Bezdek, and Xi-Beni validity measurement indices (see for
example Bataineh et al., 2011), do not directly assess the confidence of the clustering method.

However, some papers in the literature deals with overconfidence issue, see Park et al. (2021), in
a specific context of computer vision. Aghababyan et al. (2018) proposed an entropy based metric
to evaluate the confidence of clustering algorithm without proposing any correction of the underlying
probabilities in case of over/underconfident methods. Yao et al. (2000) introduced a new fuzzy clus-
tering algorithm based on entropy without investigating about the confidence level of the proposed
algorithm with respect to other state of the art methods. In addition, to the best of author’s knowledge
no work has been done on proposing a statistical hypothesis test to decide about accepting or rejecting
a clustering method based on its confidence level.

In this paper an entropy based clustering confidence metric is introduced. Based on this metric
one will be able to compare the performance of any two clustering algorithms. A statistical test is also
introduced to decide about accepting or rejecting a clustering method. Furthermore, in the context
of over/underconfident clustering method, a parametric correction of the underlying probabilities is
proposed in order to improve the accuracy of a clustering. An application for adjusting the number of
clusters is also presented.

The outline of the paper is as follows. We first introduce in Section 2, a metric to measure
clustering fuzziness using entropy, for a theoretical mixture model as well for a practical clustering
algorithm. A Section 3 is devoted to the comparison of clustering fuzziness level of different clustering
algorithms, with some applications based on numeric simulations. A statistical test helping users to
decide about accepting or rejecting a given clustering algorithm is also described. Then, in Section 4,
we propose a parametric correction method of the underlying probabilities of under/overconfident
clustering algorithms. Applications of the whole methodology on real data are shown in Section 5. A
conclusion closes the paper.

2 Measuring clustering fuzziness
Let I be a finite set of cluster indexes. In this work, (Ω,F ,P) is a probability space and for any i ∈ I,
Xi is a Rd valued random variable defined on Ω with a cumulative distribution function Fi (·), and a
probability density function fi (·) with respect to the Lebesgue measure in Rd.

These random variables Xi, i ∈ I have distinct distributions, as they correspond to individuals of
different clusters. Assume that one chooses a cluster index with a random variable I taking values
in I. One labelled observation of the corresponding individual is given by the couple (XI , I). The
purpose of a clustering procedure is to retrieve the association between observations of the mixture
distribution XI and labels I when the labels are lost.

In this paper, we aim at assessing the fuzziness of different clustering methods, and at comparing
it with expected values when they are known.

Notice that the precise value of the labels has no impact, so that a perfect clustering procedure
can associate I or any permutation σ(I) to the observations XI : the fuzziness measure should be
insensitive to permutations of I. It should also allow to compare clustering that use different numbers
of clusters. We present hereafter a measure and some tests based on Shannon’s entropy.

An originality of this section is that the fuzziness level associated to a clustering will be represented
by the distribution of a real-valued random variable. This will provide a detailed information on the
clustering fuzziness, while allowing comparison between these fuzziness levels.
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2.1 Theoretical entropy
A labeled clustering is given by the joint distribution of (XI , I). When the labels are lost, we aim at
inferring the values of the random variable I given the observations XI .

Recall that I = {1, 2, . . . , |I|} is the finite set of all possible cluster indexes. Consider the finite
mixture distribution given by:

G := XI =
∑
i∈I

Xi1{I=i}, with I ∈ I and each Xi ∼ Fi, i ∈ I.

Fi is the cumulative distribution function (cdf ) of the random variable (rv) Xi.
Then, the cdf FG and the probability density functions (pdf ) fG of G are as follows:{

FG (x) =
∑

i∈I αiFi (x) ,

fG (x) =
∑

i∈I αifi (x) ,

where, fi is the pdf of Xi, with αi = P [I = i] and
∑

i∈I αi = 1.
Therefore, the probability that a given observation x is sampled from the underlying rv Xi is:

pi (x) := P [I = i | G = x] ,

=
αifi (x)∑

j∈I αjfj (x)
.

Now, considering the joint random variables (G, I), we compute Shannon’s entropy of the rv I given
G = x, measuring the information on the fact that an observation x is sampled from the distribution
Fi, i ∈ I:

HI (x) = −
∑
i∈I

pi (x) log2 pi (x) ,

under the convention that 0 log2 0 = 0.

Recall that I is the hidden cluster index associated to XI . This index I will be unknown in practice.
The former entropy HI (x) measures the uncertainty of the clustering at a given point x. When it is
equal to 0, e.g. in the case when pi(x) = 1 for a given i and 0 otherwise, then it is certain that x was
sampled from a specific known index i. This entropy is maximal when all pi(x) are equal, so that one
has totally lost the information about the index I that has generated the observation x.
This entropy is insensitive to cluster index permutations, which is a desirable property, as stated in
the introduction.

Consider the function HI : x 7→ HI (x) ∈ R+. Applied to a random argument G, this function
defines the random variable HI (G) ∈ R+. HI(G) measures the uncertainty of the clustering at a
random point having the same distribution as G.

We give below an original definition of the theoretical fuzziness level of a known mixture model.

Definition 1 (Theoretical fuzziness level). For a given mixture distribution G and associated labels I,
i.e. given the joint distribution of (G, I), the theoretical fuzziness level is defined as the non-negative
real-valued random variable HI(G).

The distribution of this random variable shows the discriminating power of the considered cluster-
ing approach: e.g., the higher its mean, the more ambiguous the situation is (high fuzziness). However,
a mean close to zero reflects a clustering where one expects to easily associate a unique label to each
point x (low fuzziness). On the other hand, a low dispersion shows that the difficulty of cluster labeling
is the same for all points x, whereas a high dispersion indicates that some points are easier to label
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than others.

It shall be noted that, for a given distribution G, several distributions of I and Xi, i ∈ I can lead
to the same mixture G = XI .

As an example, picking a uniform r.v. U(0, 1) with probability 1/2, and a uniform r.v. U(0, 0.5)
with probability 1/2 leads to the same mixture as an uniform r.v. U(0, 0.5) with probability 3/4 and
U(0.5, 1) with probability 1/4, but the conditional distribution of I given G are changed.

Another example is the (overlapping) mixture of Gaussian distributions, that can also be modelled
as a non-overlapping mixture of truncated Gaussian distributions; this leads to what is sometimes
called a bias or an inconsistency for k-means unsupervised clustering, as the mean of any resulting
truncated Gaussian differs from the one of the initial Gaussian (see Jin and Malthouse (2016)).

Thus in some cases, identifiability problems may occur when the joint distribution (G, I) is un-
known. This problem however depend on the families of possible distributions Fi, i ∈ I: for example,
it does not occur if all Fi are assumed to be Gaussian distributed, but it may occur if all Fi can be
overlapping truncated Gaussian distributed. Such problems will be discussed in a further Section 5,
when Fi are unknown. A short review on identifiability problem for finite mixture models is given
in McLachlan et al. (2019). We assume in this section that the joint distribution (G, I) is known, so
that all Fi are known, i ∈ I, and no identifiability problem raises here.

To illustrate the function HI(.) we consider a few basic examples:

Case A Let G be a Gaussian mixture distribution in one dimension with a pdf :

fG (x) = 0.3fN (0,1)(x) + 0.5fN (10,1)(x) + 0.2fN (3,0.1)(x).

where fN (.,.) denotes the pdf of a Gaussian r.v. with indicated parameters. The left side of
Figure 1 represents the pdf of G, while the right side illustrates the function HI . One can remark
that the labeling is perfectly accurate when the values x of G are far from the central area of
the distribution (i.e. left and right queues of the mixture distribution). However, the difficulty
of cluster labeling is higher for central values where the region is fuzzy in terms of distribution
selection.

Case B Let G be a Dirac mixture distribution in one dimension with a probability distribution:

P [G = x] = 0.31{x=0} + 0.71{x=3}

where, 1{x=a}, a ∈ R is the indicator function defined by:

1{x=a} =

{
0 ifx ̸= a

1 ifx = a
.

The left side of Figure 2 represents the probability masses of G, while the right side illustrates
the function HI . One can remark that the labeling is perfectly accurate for all values of x.
This is well suited to the Dirac case where the discrimination between different clusters/labels is
obvious.

Case C Let G be a two dimensional Gaussian mixture distribution with a pdf :

fG (x) = 0.4fN (µ1,Σ1) + 0.6fN (µ2,Σ2),

where, µ1 = (0, 0)
T and µ2 = (4, 4)

T . In addition Σ1 =

(
1 0
0 1

)
and Σ3 =

(
2 0.4
0.4 2

)
.

The left side of Figure 3 represents the contour lines of the pdf of G, while the right side illus-
trates the contour lines of HI . Once again, one can say that the accuracy of the labeling is lower
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(a) pdf of the mixture distribution (b) entropy HI

Figure 1: Gaussian mixture distribution of Case A. Left: pdf of the mixture distribution G, right:
entropy HI representing the variation of the labeling difficulty.

on zones that are with a high fuzziness level (e.g. between the two modes), and thus difficult to
label.
In Figure 4 we are showing the impact of increasing the variance of the underlying distribution
of a mixture model on the distribution of the entropy by showing the corresponding entropy’s
boxplot. Hence, the mixture distribution of Case C is considered and the matrices of the un-
derlying distributions are multiplied by a parameter α. The considered values of α are 1, 4 and
8 respectively. One may remark that when the values of α are increasing the fuzziness level is
going to be higher with a lower labeling accuracy, which confirms that the entropy is a suitable
tool to show the impact of the variance increase on the global fuzziness level.
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(a) probability masses (b) zero-valued entropy HI

Figure 2: Dirac mixture distribution of Case B. Left: probability masses of the mixture distribution G,
right: zero-valued entropy HI representing the trivial labeling of any observation of G.

(a) Contour lines of the pdf (b) Contour lines of the entropy HI

Figure 3: Two dimensional Gaussian mixture distribution of Case C Left: pdf of the mixture distribu-
tion G, right: entropy HI representing the variation of the labeling difficulty.
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Figure 4: Entropies of two dimensional Gaussian mixture distribution of Case C for different scales

2.2 Empirical entropy
In practice, even when the true mixture G is unknown, one can derive an associated empirical fuzziness
level from both a dataset and a clustering algorithm. Indeed, the dataset provides an empirical distri-
bution of the underlying mixture, and the clustering algorithm provides associated weights, summing
to one, that can be used to define an underlying random index. The aim of this section is to define
the empirical fuzziness level deriving from both a dataset and a clustering algorithm.

Notice that the weights (or membership grades) in traditional fuzzy clustering methods represent
the degree to which data points belong to each cluster. These weights have not originally been meant
to be probabilities, or to estimate underlying probabilities. But in some situations, they need to be
used as probabilities, or are implicitly used as probabilities. We investigate here the resulting fuzzi-
ness level of these weights, in order to compare them to other fuzziness levels. The purpose is not to
depreciate one method or another, but to understand the implicit fuzziness level of each method (and
associated parameters), and to propose possible clustering weights corrections.

The considered data is an iid sequence of random variables {G1, . . . , Gn}, sampled from a mixture
distribution G. Let Gn be a rv distributed as this data (e.g. a uniformly randomly chosen element of
the sequence).

Even when G is unknown, a clustering algorithm associate to each data point x the probability
that it belongs to different clusters of a set J . Denote by pj (x) the probability that a data point x
belongs to a cluster j ∈ J , according to the clustering algorithm.

For any data point x, given Gn = x, the probabilities {pj (x) : j ∈ J , } define the marginal distri-
bution of a rv Jn. Hence the joint distribution of a couple of rv (Gn, Jn) can be defined from the data
and the clustering algorithm. Based on these probabilities, given Gn = x, the Shannon’s entropy of
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the random variable Jn is:
HJn

(x) = −
∑
j∈J

pj (x) log2 pj (x) .

Now, consider the function HJn : x 7→ HJn (x) ∈ R+. Applied to a random argument Gn, this
function HJn (.) defines a rv HJn (Gn).

For a given clustering algorithm, we give below the resulting original definition of the empirical
fuzziness level.

Definition 2 (Clustering empirical fuzziness level). Let Gn be a rv distributed as the empirical data,
and Jn be the associated random labels according to a given clustering algorithm. Given the joint
distribution of (Gn, Jn), the clustering empirical fuzziness level is defined as the non-negative real-
valued random variable HJn

(Gn).

The higher the average values of the random variable HJn
(Gn), the higher the fuzziness level of

the underlying clustering, the higher the labeling difficulty on a random point of the data.
In the next section, we develop the analysis and compare this fuzziness level to a theoretical one, given
an underlying mixture model.

3 Comparing clustering fuzziness
We aim here at comparing two clustering fuzziness levels, or equivalently at comparing two clustering
confidence levels. Using the fuzziness levels defined in the former section 2, this ends up in comparing
the distribution of two entropies.

Comparing the fuzziness level of theoretical or empirical distributions can be beneficial in many
ways: it can aid in the selection of one fuzzy clustering algorithm over another, it can aid in the tuning
of some fuzziness parameter, it allows for the comparison of the performance of several algorithms
exhibiting the same fuzziness level, and it also allows for the correction of cluster weights in order to
comply with some probabilistic model. As detailed in numerical illustration, it will also help improving
the accuracy of clustering algorithm on some test samples.

As a first illustration, we present here the case where the theoretical distribution (G, I) is known,
i.e. when one knows the underlying reality of the data. The case of real data with unknown distri-
bution will be treated in a further Section 5. We compare here a theoretical fuzziness level with an
empirical fuzziness level. A direct comparison between two empirical fuzziness level, even when the
theoretical mixture is unknown, would also be possible, although not treated here.

The idea we develop below is that a fuzzy clustering algorithm, applied to an iid sample of G,
should end up with an entropy distributed as the random variable HI (G). If it concludes with a lower
mean entropy, then the clustering algorithm exhibits too low fuzziness, is too overconfident in its asso-
ciations/labeling. If it concludes with a higher mean entropy, then the clustering algorithm has a too
high fuzziness level and is too hesitating. Indeed, the distribution of HI (G) reflects the difficulty of
the labeling problem. In fact, depending on the underlying structure of G, some clustering algorithms
may perform better then others regarding this fuzziness level. We first assume that the joint random
distribution (G, I) is given, so that no identifiability issue raises here. Notice that we will be able
to compare algorithms that associate a cluster index probability for each point, and algorithms that
associate a unique label to each point.

We aim at comparing the distributions of the two random variables HI (G) and HJn (Gn). Therefore,
in order to compare the entropy distributions of these random variables, a distance (or a dissimilarity)
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is calculated. Furthermore, as the distribution of HI (Gn) is easier to obtain than the one of HI (G),
which requires a numerical integration, we will consider in practice the following dissimilarity:

Dn := D (HI (Gn) || HJn
(Gn)) ,

where D(.) is the chosen dissimilarity. Note that, the distribution of HI (Gn) represents the theoret-
ical labeling difficulty for the mixture distribution (at data points), whereas HJn

(Gn) represents the
perceived labeling difficulty of the clustering algorithm on the data.

The fuzzy clustering weights will be more in line with the underlying theoretical model as the
distance decreases. A zero distance means that the clustering algorithm delivers the true underlying
cluster probability at each data point. The choice of using here HI (Gn) instead of HI (G) also relies
on this zero distance property.

In the next subsections, we compare clustering empirical fuzziness with some underlying known
theoretical one, using either a Kolmogorov-Smirnov distance or a Jensen-Shannon Divergence.

3.1 Comparison using Kolmogorov-Smirnov distance
In this subsection, we compare some theoretical and empirical fuzziness level, using Kolmogorov-
Smirnov distance. To do this, we compute the following statistic:

KSn := D (HI (Gn) || HJn
(Gn)) . (1)

We reconsider the first two examples of Section 2.1 and we test the proposed approach on two
clustering methods, using Kolmogorov-Smirnov distance (KS):

1. In the first application, the k-means clustering approach is applied on a sample of n = 10 000
observations generated from the mixture distribution G. In the one dimensional Gaussian mixture
model (Case A), the cardinal of J was considered to be equal to three. Kolmogorov-Smirnov
statistics has a value of KSn = 0.43 with a p − value of ≈ 0%. Then, one can say that the two
distributions are significantly different and that the proposed clustering method fails to identify
the labeling difficulty. This is expected as a hard clustering here is clearly overconfident in its
labeling. However, the k-means applied on Dirac mixture underlying distribution (Case B), with
J = 2, gives KSn ≈ 0 and a p − value of ≈ 100%. Then, in the Dirac case, k-means succeed
perfectly in re-finding the original labels of the observations. Note that these results fit well with
the nature of the k-means algorithm, which proposes a labeling with no degree of fuzziness, known
as hard clustering approach. Hence, one can confirm that such kind of clustering algorithm is
to be selected when the underlying structure of G is more categorical, as in the case of a Dirac
distribution.

2. In the second application, a soft clustering approach is applied. To do this, we have chosen the
fuzzy clustering algorithm called “fanny” which was introduced in Chapter four of Kaufman and
Rousseeuw (1990). Here, for each observation, instead of considering only one clustering label,
probabilities of different clustering labels is computed. Now, under the same hypothesis of the
first application, Kolmogorov-Smirnov statistics has a value of KSn ≃ 1 with a p−value of 0% for
both Gaussian and Dirac cases. Then, for the Gaussian underlying distribution, the considered
soft approach has no additional value compared to the k-means and the algorithm fails again
in identifying the labeling difficulty. However, for the Dirac case the soft approach, unlike the
k-means, is not able to identify well original labels, which is logical due to the fact that in Dirac
case the mass function is concentrated at only one point. Finally, the comparisons of the cdf of
both HI (Gn) and HJn

(Gn) in Figure 5 shows that, as a result of its high fuzziness, the chosen
clustering is under-confident. In fact, the values of HI (·) are almost concentrated in the interval
[0, 0.15] while those of HJn

(·) are spread on [0.15, 1.4]. In addition, Table 1 shows that, under the
Gaussian assumption, the distribution of HJn

(·) is more volatile with significantly higher mean
comparing to HI (·) which is another evidence of the high level of uncertainty of the considered
soft clustering algorithm.
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(a) 1D, Fanny algorithm (b) 2D, Fanny algorithm

Figure 5: cdf of different entropies (under fanny algorithm) in the case of a Gaussian mixture dis-
tribution (n = 10 000 observations). On the left: one dimensional case of Case A, on the right: two
dimensional case of Case C. High abscissas values correspond to points with high labeling difficulty, or
equivalently high uncertainty. The cdf of HI(Gn) are blue upper curves, cdf of HJn(Gn) are red lower
curves.

1-D Gaussian case 2-D Gaussian case
HI (Gn) HJn (Gn) HI (Gn) HJn (Gn)

Mean 0.008 0.585 0.056 0.681
Variance 0.0014 0.1004 0.027 0.024
Minimum 0 0.144 ≃ 0 0.415
Maximum 0.993 1.534 ≃ 1 1

Table 1: Moments of entropy distributions for soft clustering fanny-algorithm (n = 10 000 observations)

3.2 Comparison using Jensen-Shannon Divergence
In this subsection, we aim at comparing an empirical entropy deriving from a fuzzy clustering algorithm
(and associated parameters), with the known underlying entropy of the known mixture G. To this
aim, the distance between two entropy distributions P and Q is calculated based on Jensen-Shannon
divergence (JSD) metric defined by:

JSD (P || Q) =
1

2
[KL (P || R) + KL (Q || R)] ,

where R = 1
2 (P +Q) and KL (P || R) denotes the Kullback-Leibler divergence between probability

distributions P and R. Note that the JSD has the following properties: 1) Non negative measure; 2)
Symmetric measure and 3) JSD ∈ [0, 1] , with JSD = 0 if and only if P = Q. Hence, this metric is
suited to the case of fuzzy underlying distributions when soft clustering algorithm are applied.

We compare here some theoretical and empirical fuzziness level, using the Jensen-Shannon Diver-
gence. To do this, we compute the following statistic:

JSDn := JSD (HI (Gn) || HJn
(Gn)) . (2)
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(a) 2D, Fanny algorithm (b) 2D, FKM algorithm

Figure 6: cdf of different entropies in the case of a 2-D Gaussian mixture model, Case C, (n = 10 000
observations). On the left fanny algorithm, on the right FKM algorithm.. The cdf of HI(Gn) are blue
upper curves, cdf of HJn(Gn) are red lower curves.

By applying the JSD on our previous examples introduced in Section 2.1, we get the following
results:

1. For the Gaussian mixture distribution and “fanny” clustering algorithm context with a sample
size n = 10 000: JSDn = 0.985 for one dimensional Gaussian (Case A) and JSDn = 0.897 for
the two dimensional (Case C). Then, for this setting and for this criterion, the performance of
“fanny” algorithm is better for the two dimensional Gaussian mixture distribution (in terms of
fuzziness level). But it is still an under-confident approach (see Figure 5 and Table 1). Note that,
in the numerical illustrations of this paper, in order to compute different JSD, random variables
HI (Gn) and HJn (Gn) were discretized with a constant step size of 0.001.

2. Now in order to compare the efficiency of two different soft clustering algorithm “fanny” and
“Fuzzy k-means (FKM)” introduced by Bezdek (1981) we consider a sample n = 10 000 of the two
dimensional Gaussian mixture distribution (Case C). Under these assumptions we get JSDfanny

n =
0.897 > JSDFKM

n = 0.658. Then with this setting, the FKM algorithm is more suited to find
similar fuzziness as the true underlying model. The result is illustrated in Figure 6.

To study the impact of the sample size n on the quality and the performance of different clustering
algorithms, Table 2a shows JSDn for different values of n in the case of one and two dimensional
Gaussian underlying distribution and in the context of “fanny” clustering algorithm. On the other
hand Table 2b shows a comparison between JSDfanny

n and JSDFKM
n for different values of n in the case

of two dimensional Gaussian mixture distribution. In both cases, especially for 2-D Gaussian case,
JSD is decreasing for high values of n. Then, one can say that the ability of a clustering algorithm to
reconstruct original hidden labels is partly related to the uncertainty on the empirical distribution.

As not to be limited to the comparative aspect of our approach, its important to propose a method
that helps setting a kind of threshold or boundary between accepted and rejected clustering method,
in terms of labels reconstruction performance, for a given set of data.
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n 1-D Gaussian case 2-D Gaussian case
100 1.000 1.000
500 0.991 0.967
1000 0.997 0.959
3000 0.990 0.921
5000 0.990 0.920

(a) Performance of “fanny” algorithm for different values
of n

n fanny FKM
100 1.000 0.960
500 0.967 0.846
1000 0.959 0.817
3000 0.921 0.707
5000 0.920 0.664

(b) Comparing the perfor-
mance of “fanny” and FKM
algorithms for different val-
ues of n, Case C

Table 2: JSD for different values of n, the lower the better.

3.3 Statistical test
Using the results of Section 2, we can make some progress on the problem of selecting a good cluster-
ing method that fits well the original mixture distribution assumption, when it is known. This way,
one can understand if a clustering method tends to be over or underconfident, compared to a given
underlying model. We will investigate the case of unknown mixture distribution in Section 5.

Recall that Gn is a rv having the same empirical distribution as an iid sample of G, and that HJn
(Gn)

is the empirical entropy of the clustering method under investigation, as defined in Section 2.2, for the
corresponding sample.

We make the assumption that the clustering method under consideration has a specific consistency
property: more precisely, we assume that there exist joint random variables (G, J) such that HJn

(Gn)
d→

HJ(G) in distribution, as n → ∞. In other words, the algorithm’s empirical fuzziness distribution
should converge to some limit distribution, which occurs especially if the clustering weights are not
too altered as the sample grows. As an illustration of this assumption, Figure 7 shows that for both
fanny and FKM algorithms, and after a reasonable number of observations (e.g. n = 500) the cdf s of
entropies HJn

(Gn) seem to empirically converge to some limit distribution.
We consider the context of a statistical test with H0 : “the entropy of clustering method complies

with the original mixture distribution assumption” vs H1 : “the entropy of the clustering method does
not comply with the mixture distribution assumption”. In other words one can write:

H0 : HJ (G) d
= HI (G) .

The considered test compare here a clustering method with an underlying given theoretical mixture
distribution, but it would be quite straightforward to adapt it to the comparison of two different
clustering algorithms.

Assume observations are an iid sequence of n random variables distributed as G, say G1, . . . , Gn.
For this data and for a given clustering algorithm, the deterministic function HJn(.) is returned at
each of these data points. Under the above mentioned consistency assumption, we assume for n large
enough that the sequence HJn

(G1) , . . . ,HJn
(Gn) is an iid sample of HJ (G).

Now assume that the underlying joint distribution of (G, I) is known. Given G = x, the value of
HI (x) is known. For an iid sequence of m random variables G′

1, . . . , G
′
m distributed as G, independent

from the previous sequence, the sequence HI (G
′
1) , . . . ,HI (G

′
m) is an iid sample of HI (G).

Finally, we get two independent iid samples of the respective real-valued random variables HI (G)
and HJ (G), with respective sample sizes m and n. Under H0 the two samples derive from the same
distribution. Hence any two-sample test of equality of distribution can be applied, like the two-sample
Kolmogorov–Smirnov test. This can also be applied if G is discrete or derived from some particular
data.
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(a) 2D, Fanny algorithm (b) 2D, FKM algorithm

Figure 7: cdf of entropies HJn
(Gn) for different values of n in the case of a 2-D Gaussian mixture

model, Case C. On the left fanny algorithm, on the right FKM algorithm.

More specifically, the test statistic can be written

Tm,n := D (HI (G′
m) || HJn

(Gn)) (3)

where D is the chosen dissimilarity between two distributions of real-valued random variables, for
example, the Kolmogorov-Smirnov distance, or the JSD divergence, and where G′

m and Gn are two
independent rv distributed as the respective samples {G′

1, . . . , G
′
m} and {G1, . . . , Gn}.

When the distribution of the test statistic is unknown, the problem of obtaining an approximate
critical region of the considered test, under H0, can be solved by applying a numerical simulation
method.

Under the assumption H0, the distribution of Tm,n can be estimated by simulation: two indepen-
dent iid samples of m and n observations respectively are generated according to the joint original
distribution (G, I). The distance TH0

m,n between corresponding empirical distributions of HI (G′
m) and

HI (Gn) is calculated. By repeating this procedure a large number of times, one obtains under H0

the approximate quantiles of the distribution of TH0
m,n, from which one can get a critical region of

approximated level α.
Finally, on a sample of n observations, we choose here m = n and a clustering method is accepted

if Tn,n < (1− α)
th quantile of the obtained distance distribution TH0

n,n under H0.

As an application, using JSD metric, we consider testing H0 vs H1 where the underlying distribu-
tion is the two dimensional Gaussian mixture defined in Section 2.1. Based on the numerical simulation
method described above, with m = n = 10 000, and by repeating the procedure 1000 times, we obtain
the approximate quantiles of the corresponding JSD distribution and the critical region of approxi-
mated level α = 5%, which is qJSD

0.95 = 0.04. Then for a given clustering algorithm if Tn,n > qJSD
0.95 we

reject H0. Hence the clustering method fails to understand the labeling difficulty of the considered
observation. In our case, both fanny and FKM are rejected as both T fanny

n,n and TFKM
n,n are greater than

0.04.

It is important to note that the proposed test only evaluates the compatibility of a clustering
method with an underlying probabilistic model in terms of fuzziness. A test rejection does not imply
that the clustering method is ineffective; rather, it indicates that it must be modified if it is to be
compatible with a given probabilistic model. This is the goal of the following section.
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Training set Testing set
JSD(θ = 1) θ̂ JSD

(
θ̂
)

JSD(θ = 1) JSD
(
θ̂
)

Fanny 0.895 5.958 0.043 0.918 0.088
FKM 0.630 3.348 0.039 0.678 0.084

Table 3: Comparison of JSD: original vs corrected on testing and training data, the lower the better.

4 Correction of clustering probabilities
In this section, we assume that the true model behind observations is known, i.e. that the joint law of
(G, I) is known. We will discuss the case of unknown model in the further Section 5.

Assume that the statistical test of Section 3.3 is rejecting the clustering method. Before proposing
another clustering algorithm, a possible solution is to adjust the underlying cluster probabilities using
a parametric transformation.

Recall that pj (xℓ) is the probability of assigning observation xℓ to cluster j. In order to adjust
these probabilities to fit the original mixture distribution we propose the following transformation:

pj (xℓ)
∗
=

pj (xℓ)
θ∑

i∈J p
Ci

(xℓ)
θ
, (4)

where J is the proposed set of cluster indices and θ ∈ R+ a parameter, to be estimated, reflecting the
reason behind the bad clustering quality.

Then, based on these new probabilities a new clustering entropy is calculated. We denote it by
HJn

(G, θ). Hence, one may assess the effect of this transformation by recomputing JSD (HI (Gn) || HJn
(Gn, θ)).

Now, the optimal value of the parameter θ is the one minimizing the previous JSD, which will be
given by:

θ̂ = argmin
θ

JSD (HI (Gn) || HJn
(Gn, θ)) .

So, in case θ̂ > 1, one can say that the proposed clustering algorithm is not categorical enough and
has a higher fuzziness level then the one of the original mixture distribution. Otherwise, if θ̂ < 1, the
current clustering algorithm is too categorical and we need to regularize it by injecting some source of
fuzziness. Due to this interpretation, the parameter θ̂ can be considered as an indicator of fuzziness.

To study the efficiency of this approach, we apply it on a previous example considering two different
soft clustering algorithm “fanny” and “Fuzzy k-means (FKM)”. We generate a sample n = 10 000 of the
two dimensional Gaussian mixture distribution with the same parameters as the one in Section 2.1.
Based on this training sample we calculate the estimator θ̂ of θ. Then, we use the value of this
estimator to correct the probabilities proposed by each of the clustering algorithm on a testing sample
of 3000 observations and we compare the impact of this correction on the quality of the clustering on
both training and testing sets by calculating the corresponding JSD. Under these assumptions we get
results summarized in Table 3.

Then, by applying the parametric transformation proposed in Equation (4) we are able to reduce
enormously the JSD and correcting the behavior of both algorithms, so that they become more suited
to find the hidden labels of the original data. Even on the testing set, the correction has a considerable
favorable influence on both algorithms’ clustering quality. In addition, comparison of the cdf of different
entropies HI (Gn) vs HJn

(
Gn, θ̂

)
are illustrated in Figure 8 for training set and Figure 9 for testing.

Note that a more complex transformation than the one proposed in (4) can be done using more
than one parameter and focusing on local parts of the distribution. By adapting the same approach
described in this section we can select the best transformation according to, say, the least JSD criterion.
Also, as the application is done on data with gaussian underlying distributions, it is obvious to expect
that the best performance, in terms of clustering, will be for the Gaussian Mixture Model (GMM)
based clustering method, introduced by McLachlan and Basford (1988), where gaussian distributions
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(a) 2D, Fanny algorithm (b) 2D, FKM algorithm

Figure 8: cdf of different entropies in the case of a 2-D Gaussian mixture model (n = 10 000 obser-
vations, Case C). On the left fanny algorithm (θ̂ = 5.958), on the right FKM algorithm (θ̂ = 3.348),
with modified probabilities applied on training data

are considered as priors. As expected, even before correction, JSD of the GMM method is about 0.042
for training and 0.089 for testing with a good fit of the cdf s of the two entropies (see Figure 10).

Furthermore, after applying the proposed probability transformation, we used the theoretical labels
of the 2-D Gaussian mixture distribution generated in Subsection 2.1 to examine the ability of fuzzy
clustering algorithms in reconstructing the original clusters of an underlying data. Then, the idea is
to make a confusion matrix comparing theoretical labels with the labels proposed by the clustering
method. The accuracy of each clustering method is calculated as the proportion of well classified
observation and formulated by:

Accuracy =
1

n

n∑
ℓ=1

∑
j∈J

P [assign observation ℓ to cluster j/Theoretically observation ℓ is in cluster j] . (5)

Tables 4 and 5 show the clustering accuracy as defined in Equation (5) for several soft clustering method
applied on 2-D Gaussian mixture distribution generated data, before and after applying the correction
of clustering probabilities on training and testing sets respectively. Note that here also θ is estimated on
the training set and used to correct clustering probabilities on the testing set. In general, the accuracy
of the clustering is improving in a significant way after applying the correction method, except for
the GMM clustering method where the accuracy is almost the same as this method is designed to
deal with gaussian mixture underlying distributions which is fitting perfectly the generated data. In
addition, the estimated value of θ is giving information about the quality of the clustering method.
For Fanny and FKM algorithms the fuzziness index θ̂ is far greater than one, so these two methods are
not categorical enough and have higher fuzziness level than the original mixture. However, θ̂ for GMM
is close to one, which is reasonable because GMM is designed in a way to generate original clusters
of a gaussian mixture distribution. Also, an added value of the proposed correction method, is that
after performing the correction one can revisit the result of the statistical test that was introduced in
Section 3.3 to reassess if after modification, a certain clustering method that was rejected previously is
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(a) 2D, Fanny algorithm (b) 2D, FKM algorithm

Figure 9: cdf of different entropies in the case of a 2-D Gaussian mixture model (n = 3000 observations,
Case C). On the left fanny algorithm (θ̂ = 5.958), on the right FKM algorithm (θ̂ = 3.348), with
modified probabilities applied on testing data

Figure 10: cdf of different entropies in the case of a 2-D Gaussian mixture model (n = 10 000 observa-
tions, Case C) for GMM algorithm (θ̂ = 0.970) applied on training data without modified probabilities
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Clustering method Accuracy before correction Accuracy after correction θ̂

GMM 0.968 0.980 0.970
Fanny 0.802 0.968 5.958
FKM 0.904 0.969 3.348

Table 4: Accuracy of different clustering methods calculated on training data before and after correc-
tion, the higher the better. θ is estimated based on the training set and used to correct clustering
probabilities on both training and testing sets.

Clustering method Accuracy before correction Accuracy after correction θ̂

GMM 0.978 0.97 0.970
Fanny 0.798 0.967 5.958
FKM 0.901 0.967 3.348

Table 5: Accuracy of different clustering methods calculated on testing data before and after correc-
tion, the higher the better. θ is estimated based on the training set and used to correct clustering
probabilities on both training and testing sets.

now accepted. Conclusions of the statistical test applied on several soft clustering methods before and
after probability correction are presented in Tables 6 and 7 for training and testing sets respectively.
It is clear that after applying the parametric correction of the probabilities, the values of the statistic
of the test of Section 3.3 decrease significantly to become much closer to the critical region empirical
quantile

(
qJSD
0.95 = 0.04

)
. In fact some of the clustering algorithms that was rejected before correction

are accepted after it. Then, correcting clustering probabilities makes: 1) different clustering method
more accurate in reconstructing original clusters and 2) the comparison between different clustering
method more reasonable in addition to the selection of the best performing one.

Value of the JSD statistic Decision about H0

Clustering method Before correction After correction Before correction After correction
GMM 0.042 0.035 Accepted Accepted
Fanny 0.895 0.043 Rejected Accepted
FKM 0.630 0.039 Rejected Accepted

Table 6: Statistical test conclusions on training data. JSD is calculated on training data before and
after correction, the lower the better. θ is estimated based on the training set and used to correct
clustering probabilities on both training and testing sets.
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Value of the JSD statistic Decision about H0

Clustering method Before correction After correction Before correction After correction
GMM 0.089 0.086 Rejected Rejected
Fanny 0.918 0.088 Rejected Rejected
FKM 0.678 0.084 Rejected Rejected

Table 7: Statistical test conclusions on testing data. JSD is calculated on testing data before and after
correction, the lower the better. θ is estimated based on the training set and used to correct clustering
probabilities on both training and testing sets.

5 Application on real data
Up to this point, we have assumed that the hidden mixture model and the (G, I) distribution were
known. Of course, this is not always the case in the real world. Indeed, once the model is understood,
no clustering technique is needed.

The goal of this section is to demonstrate that the presented methods are still applicable even when
the true mixture model is hidden, that they can aid in comparing different algorithms, that they can
improve prediction accuracy on test samples for both labeled and unlabeled data, and that they can
aid in selecting the appropriate number of clusters. For each of these purposes, specific examples are
provided.

5.1 Supervised learning, improving classification accuracy
We consider here a supervised classification task. We show that the proposed fuzziness correction of
Section 4, together with a standard estimation of some bandwidth parameter, improve the clustering
accuracy of most fuzzy clustering algorithms, on an unlabeled test sample. To do so, we look into
possible estimation procedures for comparing clustering fuzziness to an estimated probabilistic model.

As an application of our approach, we use an open source data from the UCI Machine Learning
Repository, Dua and Graff (2017), available at https://archive.ics.uci.edu/ml/datasets/Breast+
Cancer+Wisconsin+%28Diagnostic%29.

This data classifies n = 569 individuals in either malignant (M) or benign (B) breast cancer
using 30 numeric features characterizing each person. I.e., a space of dimension R569×30, labeled into
I = {1 = ”M”, 2 = ”B”} cluster indexes. Therefore, assuming that we are in the context of a mixture
distribution G, the probability that a given observation x is sampled from the underlying rv Xi can
be estimated for any i ∈ I, by for example:

p̂i (x) =
α̂if̂ i (x)∑

j∈I α̂j f̂ j (x)
, (6)

with, f̂ i (·) the kernel density estimation (KDE) of the observations generated by the underlying
rv Xi (i.e., observations in the cluster of index i). In other words it is an estimation of the pdf of
the rv Xi. Note that, practically one can use kernel density estimation (KDE) functions, already
implemented in statistical software, to compute these values. The quantity α̂i is the proportion of
observations in the same cluster, i.e.,

α̂i =
Number of observations in cluster i

n
.

In this application, we used a standard KDE of the R software, provided by the kde function, corre-
sponding here to a plug-in bandwidth as defined in Chacón and Duong (2010). Results would naturally
differ for other bandwidths, but we show here that this classical KDE helps improving the clustering
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Training set
JSD(θ = 1) θ̂ JSD

(
θ̂
)

Fanny 1 0.001 1
FKM 0.989 9.883 0.249
GMM 0.0834 1.652 0.0556

Table 8: Comparison of JSD: original vs corrected on training data. θ is estimated on the training set
and used to compute JSD (the lower the better) on both training and testing sets.

Testing set
JSD(θ = 1) θ̂ JSD

(
θ̂
)

Fanny 1 0.001 1
FKM 1 9.883 0.352
GMM 0.0709 1.652 0.0827

Table 9: Comparison of JSD: original vs corrected on testing data. θ is estimated on the training set
and used to compute JSD (the lower the better) on both training and testing sets.

accuracy on a test sample.

For the three different soft clustering methods introduced previously, we compare the impact of the
parametric correction proposed in Equation (4) on the quality of the clustering by first estimating the
optimal value of θ, on a training set representing 80% of the considered data set, and then calculating
the corresponding JSD on both training and testing sets. Results are in Tables 8 and 9.

Considering clustering fuzziness, Fanny is the worst clustering method for the considered data,
even after the correction it is affecting the same probability for both clusters (1 and 2) without any
discrimination power. On the other hand, the performance of FKM and GMM is improving enormously
after the correction with a preference to the GMM method. The significant impact of the parametric
correction on FKM and GMM can be seen also when comparing the cdf of the entropies before and
after correction in Figures 11 and 12. Note that, the impact of the correction for the GMM is limited
because even before correction GMM is performing well on reconstructing original labels. In addition,
one can remark that the estimated value of θ for the FKM is far higher than one which is equivalent to
say that FKM has a higher fuzziness level than the original mixture of the considered cancer data set.
However, the fuzziness index θ̂ for GMM is close to one, which is reasonable because GMM is already
performing well on discrimination level even before the correction.

Finally, the illustrations show that the correction of clustering weights, together with the use of a
standard bandwidth parameter, significantly improve the clustering accuracy on a test sample. The
definition of the fuzziness level, at the origin of the proposed correction, appears here to be of practical
interest, even when the hidden mixture model is unknown.

Now, by focusing only on FKM and GMM we can also compute the accuracy of each clustering
method before and after the parametric correction based on the approach described in Equation (5).
Here also θ̂ is estimated on the training set and used to compute the clustering accuracy for both
training and testing sets. Results are in Tables 10 and 11. On both training and testing datasets
one may remark that the clustering accuracy of the FKM method is improving significantly after the
correction of the corresponding probabilities. However, the correction has no impact on the accuracy
of the GMM. This is also reflected by the value of θ̂ which is close to one, indicating that the fuzziness
level of the GMM is acceptable and is capturing well the original labels of the clusters. This may be
explained by the possibility that the underlying distribution of the considered dataset is following a
gaussian mixture distribution.
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(a) real data, FKM without correction (b) real data, FKM with correction

Figure 11: cdf of different entropies for FKM algorithms. On the left without modified probabilities,
on the right with modified probabilities, applied on cancer data

(a) real data, GMM without correction (b) real data, GMM with correction

Figure 12: cdf of different entropies for GMM algorithms. On the left without modified probabilities,
on the right with modified probabilities, applied on cancer data

Clustering method Accuracy before correction Accuracy after correction θ̂

FKM 0.7 0.91 9.883
GMM 0.937 0.937 1.652

Table 10: Accuracy of different clustering methods based on training data, the higher the better. θ is
estimated on the training set and used to compute JSD on both training and testing sets.
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Clustering method Accuracy before correction Accuracy after correction θ̂

FKM 0.683 0.89 9.883
GMM 0.957 0.955 1.652

Table 11: Accuracy of different clustering methods based on testing data, the higher the better. θ is
estimated on the training set and used to compute JSD on both training and testing sets.

This simple illustrative example could be extended in several ways, that are let as future work.

Firstly, we considered here a supervised learning problem. For unsupervised learning, one option is
to perform hard clustering of the data, obtain labels for each point, and then estimate the entropy as
in a supervised setting. Repeating the procedure for several hard clusterings would account for both
the uncertainty of the initial hard clustering and the uncertainty caused by the intrinsic overlapping
of cluster densities for a given labelling and bandwidth.

Secondly, this illustration was heavily depending on the choice of bandwidth parameter. Intuitively,
a larger bandwidth results in more fuzziness, hence impacting the correction parameter. Here, a
standard bandwidth estimator helped improving the accuracy of the clustering algorithm, but the
choice of other bandwidths would be possible.

5.2 Unsupervised learning, finding clusters number
In the context of selecting the optimal number of clusters in unsupervised analysis, several state-of-the-
art methods exist. These include the Elbow Method, which identifies the point of maximum curvature
in the within-cluster sum of squares plot (Thorndike, 1953); the Silhouette Coefficient, which measures
the compactness and separation of clusters (Rousseeuw, 1987); the Gap Statistic (Tibshirani et al.,
2001), which compares within-cluster dispersion to that of reference data; methods using the Bayesian
Information Criterion (BIC), which balances model fit and parameter complexity (Zhao et al., 2008);
and more other approaches like the Davies-Bouldin Index for cluster validation (Davies and Bouldin,
1979). Notable recent references on these methods include studies by Milligan and Cooper (1985)
on cluster validity indices, Rousseeuw (1987) on silhouettes, Tibshirani et al. (2001) on data-driven
approaches, Sugar and James (2003) for an information theoretic approach, and Halkidi and Kout-
sopoulos (2019) for advancements in clustering techniques and validation methods. Software packages
are also available, see e.g. Charrad et al. (2014).

Our work proposes a novel approach that considers the fuzziness level generated by each cluster
method, incorporating the degree of uncertainty into the evaluation of the optimal number of clusters
for a more comprehensive analysis. In this application, we show that measuring the fuzziness level of
a clustering algorithm may help choosing the right number of clusters.

Intuitively, the fuzziness level is related to the right number of clusters: any segmentation of a
true cluster in two parts tends to create some fuzziness areas, so that the proposed number of clusters
cannot be too high. Proposing a smaller number of clusters may be reasonable when it leads to fuse
true clusters, but it is clearly inappropriate when it leads to cut true cluster in parts, creating fuzziness.
Based on this idea, we will use the distribution of the empirical entropy to choose the right number of
clusters.

For the sake of clarity, let us consider first a toy example. Let G be a Gaussian mixture distribution
in one dimension with a pdf :

fG (x) = 0.25fN (0,1)(x) + 0.25fN (3,0.1)(x) + 0.2fN (6,1)(x) + 0.2fN (8,0.5)(x) + 0.1fN (10,1)(x).

where fN (.,.) denotes the pdf of a Gaussian rv with indicated parameters. Associated labels are lost,
so that the setting is similar to an unsupervised clustering algorithm.
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(a) pdf of the mixture distribution G (b) entropy HI(G)

Figure 13: Gaussian mixture distribution. Left: pdf of the mixture distribution G, right: entropy HI(G)
representing the variation of the labeling difficulty.

The left side of Figure 13 represents the pdf of G, while the right side illustrates the function HI .
Remark that this is a difficult example: even when the pdf is known, the number of clusters is here
difficult to find, the truth is five clusters, but the values of entropy indicate the presence of a gray
zone, where the level of fuzziness reaches its peak around the center of the given mixture distribution.

The right side of Figure 13 represents the entropy HI(G). Once again, one can remark that the
labeling is perfectly accurate when the values x of G are far from the central area of the distribution
(i.e. left and right queues of the mixture distribution). However, the difficulty of cluster labeling is
higher for central values where the region is fuzzy in terms of distribution selection.

As the maximal value of the entropy depends on the cluster number, we use here a rescaled versions
of the empirical entropy, so that all rescaled entropies are belonging to [0, 1]:

H̃Jn(x) =
1

log2(card(J ))
HJn(x)

Now, for FKM algorithm, we draw the distribution of H̃Jn(Gn), with n = 25000, for different
numbers of clusters, varying from 2 to 8. Table 12 shows that by considering the number of clusters
that minimizes the mean and the 75th percentile the preference goes to five clusters which fits with
the simulated underlying mixture distribution. In other words, one selects the number of clusters with
the lowest level of uncertainty for more than 75% of the available data. On the other hand, based on
Figure 14 the entropies H̃Jn(Gn) show that with 5 clusters, the entropy tends to be smaller, which is
another hint on the optimal number of clusters.
Now, beyond considering the entropy mean as a primary indicator, it is valuable to delve into addi-
tional insights provided by the 95th percentile which is an extreme percentile. This extreme percentile
can shed light on situations where a higher number of clusters may be justified.
In conclusion, while the mean of the entropy typically serves as a good indicator, examining non-
extreme percentiles, e.g. 75th, can provide useful information. However, taking into account extreme
percentiles of the entropy can offer also valuable insights, particularly in situations where the com-
plexity of the data warrants a more nuanced approach to cluster analysis. This multifaceted analysis
enhances the decision-making process, allowing for a more informed determination of the optimal
number of clusters in various cluster analysis applications.

The example here is chosen to be very clear to understand and visualize, but as the dimension d
increases, the visual assessment of the right number of clusters is very difficult, whereas the considered
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Number of clusters Mean of H̃Jn(Gn) 75th percentile of H̃Jn(Gn) 95th percentile of H̃Jn(Gn)

2 0.307 0.398 0.886
3 0.236 0.412 0.796
4 0.248 0.469 0.658
5 0.201 0.365 0.612
6 0.214 0.399 0.619
7 0.209 0.386 0.587
8 0.250 0.400 0.599

Table 12: Empirical mean, 75th percentile and 95th percentile of H̃Jn
(Gn) for different number of

clusters based on fanny algorithm.

Figure 14: Mean, 75th and 95th percentile of entropies H̃Jn(Gn) for different number of clusters based
on FKM algorithm and using simulated data
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Number of clusters Mean of H̃Jn
(Gn) 75th percentile of H̃Jn

(Gn) 95th percentile of H̃Jn
(Gn)

2 0.823 0.937 0.996
3 0.879 0.946 0.997
4 0.900 0.956 0.991
5 0.906 0.956 0.991
6 0.919 0.961 0.993

Table 13: Empirical mean, 75th percentile and 95th percentile of H̃Jn(Gn) for different number of
clusters based on FKM algorithm and applied on real data.

Figure 15: Boxplots of entropies H̃Jn
(Gn) for different number of clusters based on FKM algorithm

and using real data

entropies are still real-valued distributed.

Now, the same methodology is applied on the real dataset considered in Subsection 5.1. Based on
FKM algorithm, we draw the distribution of H̃Jn(Gn), for different numbers of clusters, varying from
2 to 5. Table 13 shows that by considering the number of clusters that minimizes the empirical mean
and the 75th percentile of H̃Jn

(Gn) we get n = 2, which is matching the data separated into two classes
M and B.
On the other hand, based on Figure 15 the box-plots of entropies H̃Jn

(Gn) show that with 2 clusters,
the entropy tends to be smaller, which is another hint on the optimal number of clusters. It is im-
portant to note that we are observing a similar pattern as in the previous example with simulated
data, where the extreme percentile (95th percentile) also highlights a preference for a higher number
of clusters.

As a third application in the same unsupervised context, we propose to apply our method for
selecting the optimal number of clusters to the MNIST dataset, aiming to demonstrate, once again,
its effectiveness in extracting meaningful information within the data.
In fact, the MNIST dataset is a widely recognized benchmark in the field of machine learning and
computer vision. It stands for Modified National Institute of Standards and Technology database and
is a collection of handwritten digits, from 0 to 9, commonly used for training and evaluating various
classification algorithms. The dataset consists of a total of 70,000 grayscale images, each measuring
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Number of clusters Mean of H̃Jn
(Gn) 75th percentile of H̃Jn

(Gn) 95th percentile of H̃Jn
(Gn)

5 0.956 0.992 0.999
6 0.955 0.992 0.999
7 0.952 0.990 0.999
8 0.941 0.984 0.999
9 0.940 0.983 0.998
10 0.939 0.982 0.998
11 0.941 0.985 0.998
12 0.942 0.985 0.998
13 0.943 0.986 0.998
14 0.945 0.987 0.998
15 0.946 0.988 0.998

Table 14: Empirical mean, 75th percentile and 95th percentile of H̃Jn(Gn) for different number of
clusters based on FKM algorithm and using MNIST data.

Figure 16: Mean, 75th percentile and 95th percentile of entropies H̃Jn
(Gn) for different number of

clusters based on FKM algorithm and using MNIST data

28x28 pixels. These images are evenly divided into 60,000 training samples and 10,000 test samples.
The MNIST dataset has become a standard reference for researchers and practitioners due to its
simplicity, availability, and relevance to real-world applications.
Let us discuss the experimental results and outcomes obtained by applying the previous methodology
to the MNIST dataset. We started by selecting a random sample of 25,000 observations from the
training set of the MNIST dataset. Based on FKM algorithm, we draw the distribution of H̃Jn(Gn),
for different numbers of clusters, varying from 5 to 15. Once again, Table 14 shows that by considering
the number of clusters that minimizes the mean and the 75th percentile the preference goes to ten
clusters which is matching the data classified into ten digits. On the other hand, based on Figure 16
the entropies H̃Jn

(Gn) show that with 10 clusters, the entropy distribution tends to be skewed more
to the left.
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6 Conclusion
This paper introduced an innovative metric, based on Shannon’s entropy for assessing the quality
of clustering algorithms in terms of fuzziness level. The proposed metric can be used to compare the
performance of two clustering algorithms in a way to conclude which one is more over/under confident.
In addition, a statistical test has been constructed, based on the introduced fuzziness level metric. It
helps to make a decision about accepting or rejecting a clustering algorithm. Moreover, a parametric
adjustment of the underlying probabilities of a clustering algorithm has been introduced in order to
improve the fuzziness level of the corresponding clustering method. According to many numerical
simulations and real world data applications, it was noticed that the proposed methodology helps
users significantly in getting better discrimination power from a given clustering method. Applications
to find the optimal number of clusters were also proposed.
So far, a first perspective of this work is to try to develop a theoretical proof of the probability
distribution of the proposed metric. A second perspective is to adapt the proposed methodology on
data of higher level of complexity (i.e., data of mixed typology).
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