Model-based clustering in simple hypergraphs through a stochastic blockmodel - Archive ouverte HAL
Article Dans Une Revue Scandinavian Journal of Statistics Année : 2024

Model-based clustering in simple hypergraphs through a stochastic blockmodel

Résumé

We propose a model to address the overlooked problem of node clustering in simple hypergraphs. Simple hypergraphs are suitable when a node may not appear multiple times in the same hyperedge, such as in co-authorship datasets. Our model generalizes the stochastic blockmodel for graphs and assumes the existence of latent node groups and hyperedges are conditionally independent given these groups. We first establish the generic identifiability of the model parameters. We then develop a variational approximation Expectation-Maximization algorithm for parameter inference and node clustering, and derive a statistical criterion for model selection. To illustrate the performance of our R package HyperSBM, we compare it with other node clustering methods using synthetic data generated from the model, as well as from a line clustering experiment and a co-authorship dataset.
Fichier principal
Vignette du fichier
HSBM_preprint_v3.pdf (933.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03811678 , version 1 (12-10-2022)
hal-03811678 , version 2 (09-08-2023)
hal-03811678 , version 3 (17-05-2024)

Identifiants

Citer

Luca Brusa, Catherine Matias. Model-based clustering in simple hypergraphs through a stochastic blockmodel. Scandinavian Journal of Statistics, 2024, ⟨10.1111/sjos.12754⟩. ⟨hal-03811678v3⟩
244 Consultations
320 Téléchargements

Altmetric

Partager

More