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Abstract

We propose a model to address the overlooked problem of node clustering in simple hy-
pergraphs. Simple hypergraphs are suitable when a node may not appear multiple times in
the same hyperedge, such as in co-authorship datasets. Our model generalizes the stochas-
tic blockmodel for graphs and assumes the existence of latent node groups and hyperedges
are conditionally independent given these groups. We first establish the generic identifia-
bility of the model parameters. We then develop a variational approximation Expectation-
Maximization algorithm for parameter inference and node clustering, and derive a statistical
criterion for model selection.

To illustrate the performance of our R package HyperSBM, we compare it with other node
clustering methods using synthetic data generated from the model, as well as from a line
clustering experiment and a co-authorship dataset.

Keywords: co-authorship network, high-order interactions, latent variable model, line
clustering, non-uniform hypergraph, variational expectation-maximization.

1 Introduction

Over the past two decades, a wide range of models has been developed to capture pairwise
interactions represented in graphs. However, modern applications in various fields have high-
lighted the necessity to consider high-order interactions, which involve groups of three or more
nodes. Simple examples include triadic and larger group interactions in social networks (whose
importance has been recognized early on, see Wolff, 1950), scientific co-authorship (Estrada and
Rodríguez-Velázquez, 2006), interactions among more than two species in ecological systems
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(Muyinda et al., 2020; Singh and Baruah, 2021), or high-order correlations between neurons in
brain networks (Chelaru et al., 2021). To formalize these high-order interactions, hypergraphs
provide the most general framework. Similar to a graph, a hypergraph consists of a set of nodes
and a set of hyperedges, where each hyperedge is a subset of nodes involved in an interaction.

In this context, it is important to distinguish simple hypergraphs from multiset hypergraphs,
where hyperedges can contain repeated nodes. Multisets are a generalization of sets, allowing
elements to appear with varying multiplicities. Recent reviews on high-order interactions can be
found in the works of Battiston et al. (2020), Bick et al. (2023), and Torres et al. (2021).

Despite the increasing interest in high-order interactions, the statistical literature on this topic
remains limited. Some graph-based statistics, such as centrality or clustering coefficient, have
been extended to hypergraphs to aid in understanding the structure and extracting information
from the data (Estrada and Rodríguez-Velázquez, 2006). However, these statistics do not fulfill
the need for random hypergraph models.

Early analyses of hypergraphs have relied on their embedding into the space of bipartite graphs
(see, e.g., Battiston et al., 2020). Hypergraphs with self-loops and multiple hyperedges (weighted
hyperedges with integer-valued weights) are equivalent to bipartite graphs. However, bipartite
graph models were not specifically designed for hypergraphs and may introduce artifacts; we refer
to Section A in the Supplementary Material for more details.

Generalizing Erdős-Rényi’s model of random graphs leads to uniformly random hypergraphs.
This model involves drawing uniformly at random from the set of all m-uniform hypergraphs
(hypergraphs with hyperedges of fixed cardinality m) over a set of n nodes. However, similar
to Erdős-Rényi’s model for graphs, this hypergraph model is too simplistic and homogeneous to
be used for statistical analysis of real-world datasets. In the configuration model for random
graphs, the graphs are generated by drawing uniformly at random from the set of all possible
graphs over a set of n nodes, while satisfying a given prescribed degree sequence. In the context
of hypergraphs, configuration models were proposed in Ghoshal et al. (2009), focusing on tripar-
tite and 3-uniform hypergraphs. Later, Chodrow (2020) extended the configuration model to a
more general hypergraph setup. In these references, both the node degrees and the hyperedge
sizes are kept fixed (a consequence of the fact that they rely on bipartite representations of hy-
pergraphs). The configuration model is useful for sampling (hyper)graphs with the same degree
sequence (and hyperedge sizes) as an observed dataset through shuffling algorithms. Therefore,
it is often employed as a null model in statistical analyses. However, sampling exactly (rather
than approximately) from this model poses challenges, particularly in the case of hypergraphs.
For a comprehensive discussion on this issue, we refer readers to Section 4 in Chodrow (2020).

Another popular approach for extracting information from heterogeneous data is clustering.
In the context of graphs, stochastic blockmodels (SBMs) were introduced in the early eighties
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(Frank and Harary, 1982; Holland et al., 1983) and have since evolved in various directions. These
models assume that nodes are grouped into clusters, and the probabilities of connections between
nodes are determined by their cluster memberships. Variants of SBMs have been developed to
handle weighted graphs and degree-corrected versions, among others. In the context of hyper-
graphs, Ghoshdastidar and Dukkipati (2017) studied a spectral clustering approach based on a
hypergraph Laplacian, and obtained its weak consistency under a Hypergraph SBM (HSBM) un-
der certain restrictions on the model parameters. More recently, Deng et al. (2024) established the
strong consistency of the basic spectral clustering under the degree-corrected HSBM (DCHSBM)
in the sparse regime where the maximum expected hyperdegree might be of order Ω(log n) and
n is the number of nodes. By introducing hypergraphons, Balasubramanian (2021) extended
the ideas of hypergraph SBMs to a nonparametric setting. In a parallel vein, Turnbull et al.
(2021) proposed a latent space model for hypergraphs, generalizing random geometric graphs to
hypergraphs, although it was not specifically designed to capture clustering. An approach linked
to SBMs is presented in Vazquez (2009), where nodes belong to latent groups and participate in
a hyperedge with a probability that depends on both their group and the specific hyperedge.

Modularity is a widely used criterion for clustering entities in the context of interaction
data. It aims to identify specific clusters, known as communities, characterized by high within-
group connection probabilities and low between-group connection probabilities (Ghoshdastidar
and Dukkipati, 2014). However, in the hypergraph context, the definition of modularity is not
unique. In particular, Kamiński et al. (2019) introduced a “strict” modularity criterion, where only
hyperedges with all their nodes belonging to the same group contribute to an increase in modular-
ity. Their criterion measures the deviation of the number of these homogeneous hyperedges from
a new null model called the configuration-like model for hypergraphs, where the average values
of the degrees are fixed. Building upon this, Chodrow et al. (2021) proposed a degree-corrected
hypergraph SBM and introduced two new modularity criteria. Similar to Kamiński et al. (2019),
one of these criteria utilizes an “all-or-nothing” affinity function that distinguishes whether a given
hyperedge is entirely contained within a single cluster or not. In this setup, they established a
connection between approximate maximum likelihood estimation and their modularity criterion.
This work is reminiscent of the work of Newman (2016) in the graph context. However, the
estimators proposed by Chodrow et al. (2021) do not guarantee maximum likelihood estimation,
as the parameter space is constrained by assuming a symmetric affinity function. We refer to
Poda and Matias (2024) for an empirical comparison of these modularity-based methods.

It is important to highlight that the developments presented in Kamiński et al. (2019) and
Chodrow et al. (2021) are specifically conducted in the context of multiset hypergraphs, where
hyperedges can contain repeated nodes with certain multiplicities. The use of multiset hyper-
graphs simplifies some of the challenges associated with computing modularity. However, to the
best of our knowledge, modularity approaches still lack instantiation in the case of simple hyper-
graphs where each node can only appear once in a hyperedge. More specifically, the null model
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used in hypergraph modularity criteria relies on a model for multiset hypergraphs, similar to how
the null model used in classical graph modularity is based on graphs with self-loops. While it is
known in the case of graphs that this assumption is inadequate, as it induces a stronger deviation
than expected and affects sparse networks as well (Massen and Doye, 2005; Cafieri et al., 2010;
Squartini and Garlaschelli, 2011), the assumption of multisets has not yet been discussed in the
context of hypergraph modularity.

In the context of community detection, random walk approaches have also been utilized for
hypergraph clustering (Swan and Zhan, 2021). Additionally, low-rank tensor decompositions have
been explored (Ke et al., 2020). The misclassification rate for the community detection problem
in hypergraphs and its limits have been analyzed in various contexts (see, for instance, Ahn et al.,
2018; Chien et al., 2019; Cole and Zhu, 2020). It is worth mentioning that a recent approach
has been proposed to cluster hyperedges instead of nodes (Ng and Murphy, 2022). However, our
focus in this work is on clustering nodes.

The literature on high-order interactions often discusses simplicial complexes alongside hy-
pergraphs (Battiston et al., 2020). However, the unique characteristic of simplicial complexes,
where each subset of an occurring interaction should also occur, places them outside the scope of
this introduction, which is specifically focused on hypergraphs.

In this article, our focus is on model-based clustering for simple hypergraphs, specifically
studying stochastic hypergraph blockmodels. We formulate a general stochastic blockmodel for
simple hypergraphs, along with various submodels (Section 2.1). We provide the first result on the
generic identifiability of parameters in a hypergraph stochastic blockmodel (Section 2.2). Param-
eter inference and node clustering are performed using a variational Expectation-Maximization
(VEM) algorithm (Section 2.3) that approximates the maximum likelihood estimator. Model se-
lection for the number of groups is based on an integrated classification likelihood (ICL) criterion
(Section 2.4). To illustrate the performance of our method, we conduct experiments on syn-
thetic sparse hypergraphs, including a comparison with hypergraph spectral clustering (HSC)
and modularity approaches (Section 3). Notably, the line clustering experiment (Section 3.4)
highlights the significant differences between our approach and the one proposed by Chodrow
et al. (2021). We also analyze a co-authorship dataset, presenting conclusions that differ from
spectral clustering and bipartite stochastic blockmodels (Section 4). We discuss (Section 5) our
approach, its advantages, current limitations and possible extensions. An R package, HyperSBM,
which implements our method in efficient C++ code, as well as all associated scripts, are available
online (see Section 6). This manuscript is accompanied by a Supplementary Material (SM) that
contains additional information and experiments, as well as the proofs of all theoretical results.
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2 A stochastic blockmodel for hypergraphs

2.1 Model formulation

Let H = (V, E) represent a binary hypergraph, where V = {1, . . . , n} is a set of n nodes and E
is the set of hyperedges. In this context, a hyperedge of size m ≥ 2 is defined as a collection
of m distinct nodes from V. We do not allow for hyperedges to be multisets or self-loops. Let
M = max

e∈E
|e| denote the largest possible size of hyperedges in E , with M ≥ 2 (for graphs, M = 2).

We define the sets of (unordered) node subsets, (ordered) node tuples, and hyperedges of size m

as

V(m) =
{
{i1, . . . , im} : i1, . . . , im ∈ V are all distinct

}
,

Vm =
{
(i1, . . . , im) : i1, . . . , im ∈ V are all distinct

}
,

E(m) =
{
{i1, . . . , im} ∈ V(m) : {i1, . . . , im} ∈ E

}
,

respectively. Obviously E =
⋃M

m=2 E(m) ⊆
⋃M

m=2 V(m). For each node subset {i1, . . . , im} ∈ V(m),
we define the indicator variable:

Yi1,...,im = 1{i1,...,im}∈E =

1 if {i1, . . . , im} ∈ E ,

0 if {i1, . . . , im} /∈ E .

We represent a random hypergraph as Y = (Yi1,...,im)i1,...,im∈V(m),2≤m≤M .
Similar to the formulation of the stochastic blockmodel (SBM) for graphs, we assume that

the nodes in the hypergraph belong to Q unobserved groups. We use Z1, . . . , Zn to denote n

independent and identically distributed latent variables, where Zi follows a prior distribution
πq = P(Zi = q) for each q = 1, . . . , Q. The values πq satisfy πq ≥ 0 and

∑Q
q=1 πq = 1. To simplify

notation, we sometimes represent Zi as a binary vector Zi = (Zi1, . . . , ZiQ) ∈ {0, 1}Q, where only
one element, Ziq, equals 1. We also define Z = (Z1, . . . , Zn). Every m-subset of nodes {i1, . . . , im}
in V(m) is associated to a latent configuration, namely a set {Zi1 , . . . , Zim} = {q1, . . . , qm} of
latent groups to which these nodes belong. The values of the latent groups within a configuration
may be repeated, so that each {q1, . . . , qm} is a multiset. Now, given the latent variables Z, all
indicator variables Yi1,...,im are assumed to be independent and to follow a Bernoulli distribution
whose parameter depends on the latent configuration:

Yi1,...,im |{Zi1 = q1, . . . , Zim = qm} ∼ B(B(m,n)
q1,...,qm), for any {i1, . . . , im} ∈ V(m).

Here B
(m,n)
q1,...,qm = B

(m,n)
q1,...,qm represents the probability that m unordered nodes, with latent configu-

ration {q1, . . . , qm}, are connected into a hyperedge. To simplify notation, we drop the superscript
(m,n). However, the model may account for 2 possible sparse settings. First, as the number of
nodes n increases, it is natural to assume that the probability of a hyperedge may decrease;

5



otherwise, we would only observe dense hypergraphs. Second, it is likely that real data contain
fewer hyperedges of larger size m. Each B is a fully symmetric tensor of rank m, namely

B(m,n)
q1,...,qm = Bqσ(1),...,qσ(m)

, ∀q1, . . . , qm and ∀σ permutation of {1, . . . ,m}. (1)

We denote the parameter vector as θ = (πq, B
(m,n)
q1,...,qm)q,m,q1≤···≤qm and the corresponding proba-

bility distribution and expectation as Pθ,Eθ, respectively.

Lemma 1. The number of different parameters in each tensor B = (B
(m,n)
q1,...,qm)1≤q1≤···≤qm≤Q is(

Q+m−1
m

)
.

As a result, the total number of parameters in our hypergraph stochastic blockmodel (HSBM)
is given by:

(Q− 1) +

M∑
m=2

(
Q+m− 1

m

)
.

As shown in Table 1, the number of B(m,n)
q1,...,qm parameters increases rapidly as the values of Q and m

grow. Note that the number of parameters (of the order O(MQM+Q)) remains small compared to
the number of observations (

∑M
m=2

(
n
m

)
= O(nM )). So we do have enough statistical information

to estimate all parameters. Nonetheless, to reduce the complexity of the model, we introduce
submodels by assuming equality of certain conditional probabilities B

(m,n)
q1,...,qm . In particular, we

consider two affiliation submodels given by

B(m,n)
q1,...,qm =

α(m) if q1 = · · · = qm,

β(m) if there exist at least qi ̸= qj for i ̸= j
(Aff-m)

and

B(m,n)
q1,...,qm =

α if q1 = · · · = qm

β if there exist at least qi ̸= qj for i ̸= j
∀m = 2, . . . ,M. (Aff)

The number of parameters is dropped to (Q − 1) + 2(M − 1) and to (Q − 1) + 2 under As-
sumptions (Aff-m) and (Aff), respectively. These submodels align with the concepts discussed
in Kamiński et al. (2019) and Chodrow et al. (2021), where they propose that only hyperedges
with nodes belonging to the same group should contribute to the increase in modularity. Addi-
tionally, when α(m) > β(m) (resp. α > β) these submodels correspond to the scenarios in which
Ghoshdastidar and Dukkipati (2014, 2017) obtained their results.

A summary of the manuscript notation is given in Table 2.

2.2 Parameter identifiability

We first establish the generic identifiability of the parameter in a HSBM that is restricted to simple
m-uniform hypergraphs for any m ≥ 2. In a parametric context, generic identifiability implies
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Table 1: Number
(
Q+m−1

m

)
of connectivity parameters B(m,n)

q1,...,qm of the full HSBM for given values
of Q (number of latent groups) and m (hyperedge size).

Q

m 2 3 4 5 6 7

3 4 10 20 35 56 84
4 5 15 35 70 126 210
5 6 21 56 126 252 462
6 7 28 84 210 462 924
7 8 36 120 330 792 1716

Table 2: Notation summary.

H = (V, E) hypergraph with V = {1, . . . , n} set of nodes and E collection
of (simple) hyperedges

M,Q largest hyperedge size and number of clusters
V(m) node subsets (unordered) of size 2 ≤ m ≤ M

Vm node tuples (ordered) of size 2 ≤ m ≤ M

E(m) hyperedges of size 2 ≤ m ≤ M

Y = (Yi1,...,im){i1,...,im}∈V(m),2≤m≤M observations (presence/absence of a hyperedge at each node
subset)

Z = (Z1, . . . , Zn) latent configurations (latent clusters), each Zi ∈ {1, . . . , Q}
πq = P(Zi = q) ∈ [0, 1] clusters proportions, such that

∑Q
q=1 πq = 1

B
(m,n)
q1,...,qm ∈ [0, 1] probability of a hyperedge at a size-m node subset with la-

tent configuration {q1, . . . , qm}, for 1 ≤ q1 ≤ · · · ≤ qm ≤ Q

θ = (πq, B
(m,n)
q1,...,qm)q,m,q1≤···≤qm model parameter

α(m), β(m) (resp. α, β) within-clusters and between-clusters probabilities in the af-
filiation sub-model (Aff-m) (resp. (Aff))

Qτ (·) variational distribution on the latent configurations Z

τiq ∈ [0, 1] variational probability that node i belongs to cluster q, such
that

∑Q
q=1 τiq = 1 for all i ∈ {1, . . . , n}

f(y, b) Bernoulli density at y with parameter b

J (θ, τ) evidence lower bound (ELBO)
H(·),KL(·||·) entropy and Kullback-Leibler divergence
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that the distribution Pθ of a hypergraph over a set of n nodes uniquely defines the parameter
θ, except possibly for some parameters in a subset of dimension strictly smaller than the full
parameter space. In other words, if we randomly select a parameter θ ∈ Θ according to the
Lebesgue measure, the distribution Pθ uniquely characterizes the parameter θ, for a large enough
number of nodes n. Identifiability is established up to label switching on the node groups, as
is common in discrete latent variable models. For the case of m = 2, the identifiability result
corresponds to Theorem 2 in Allman et al. (2011). Our proof follows similar principles, building
upon a key result by Kruskal (1977). In our case, we crucially additionally rely on a sufficient
condition for a sequence of nonnegative integers to represent the degree sequence of a simple
m-uniform hypergraph, as established by Behrens et al. (2013).

Theorem 2. For any m ≥ 2 and any integer Q, the parameter θ = (πq, B
(m,n)
q1,...,qm)1≤q≤Q,1≤q1≤···≤qm≤Q

of the HSBM restricted to m-uniform simple hypergraphs over n nodes, is generically identifiable,

up to label switching on the node groups, as soon as n ≥ Q2
(
m!Qm+m− 1

)2/(m−1)
. Moreover,

the result remains valid when the group proportions πq are fixed.

This result does not provide specific insights into the identifiability in the affiliation cases
(Aff-m) and (Aff). Indeed, it does not explicitly characterize the subspace of the parameter
space where identifiability may not hold, although we know that its dimension is smaller than
that of the full parameter space (and that the possible restrictions apply only on the part of the
parameter space concerning the probabilities of connection B

(m,n)
q1,...,qm).

The result we have established for m-uniform hypergraphs also implies a similar result for
non-uniform simple hypergraphs, as shown in the following corollary.

Corollary 3. For any integer Q, the parameter θ = (πq, B
(m,n)
q1,...,qm)1≤q≤Q,1≤q1≤···≤qm≤Q,2≤m≤M of

the HSBM for simple hypergraphs over n nodes is generically identifiable, up to label switching

on the node groups, as soon as n ≥ Q2
(
M !QM +M − 1

)2/(M−1)
.

Our proof of Corollary 3 relies on the assumption that all the πq’s are distinct, which is a
generic condition. This condition is not explicitly stated in the corollary, but it is required for
the proof to hold. Consequently, the result of generic identifiability does not bring any insight
in cases where the group proportions are equal, as it is not sufficient to identify the parameters
separately for each value of m.

Additional technical work is thus needed to establish whether a HSBM with equal group
proportions, or whether the affiliation submodels have identifiable parameters.

As a final note, we mention that there is no direct link between parameter identifiability and
detectability thresholds for clusters recovery (Dumitriu et al., 2022; Stephan and Zhu, 2022).While
clusters recovery is an asymptotic result with guarantees when the sample size increases, param-
eter identifiability is a theoretical result stating that the distribution of the observations (for a
minimal sample size) fully characterizes the parameter. It is theoretical in the sense that it does
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not deal with inference, though the property has consequences on inference results. Parameter
identifiability is a basic requirement for consistency results of maximum likelihood estimators to
hold in parametric settings and it is also required for proofs of clusters exact recovery.

2.3 Parameter estimation via variational Expectation-Maximization

The likelihood of the model is given as a marginal distribution

Pθ(Y ) =

Q∑
q1=1

· · ·
Q∑

qn=1

Pθ(Y ,Z = (q1, . . . , qn))

=

Q∑
q1=1

· · ·
Q∑

qn=1

(
n∏

i=1

Pθ(Zi = qi)

)
M∏

m=2

∏
{i1,...,im}∈V(m)

Pθ(Yi1,...,im |Zi1 = qi1 , . . . , Zim = qim)

=

Q∑
q1=1

· · ·
Q∑

qn=1

(
n∏

i=1

πqi

)
M∏

m=2

∏
{i1,...,im}∈V(m)

(B(m,n)
qi1 ,...,qim

)Yi1,...,im (1−B(m,n)
qi1 ,...,qim

)1−Yi1,...,im .

(2)

The computation of the model likelihood is generally intractable. Equation (2) involves a sum-
mation over all possible Qn different latent configurations of the nodes, which becomes compu-
tationally prohibitive when n and Q are large. In the context of latent variable models, the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is commonly used to address
this issue. However, the EM algorithm cannot be directly applied to SBMs. This is because the
E-step, which involves computing the conditional posterior distribution of the latent variables
P (Z|Y ), is itself intractable in SBMs (see, e.g., Matias and Robin, 2014). One possible solu-
tion is to employ variational approximations of the EM algorithm, known as Variational EM (VEM,
Jordan et al., 1999). Below, we recall the classical approach for the VEM algorithm.

We denote the density of the Bernoulli distribution with parameter b as

∀y ∈ {0, 1}, f(y, b) := y log b+ (1− y) log(1− b). (3)

Then, the complete data log-likelihood is

ℓcn(θ) = logPθ(Y ,Z) = logPθ(Z) + logPθ(Y |Z) (4)

=

Q∑
q=1

n∑
i=1

Ziq log πq +
M∑

m=2

Q∑
q1=1

· · ·
Q∑

qm=1

∑
{i1,...,im}∈V(m)

Zi1q1 · · ·Zimqmf(Yi1...im , B
(m,n)
q1,...,qm)

=

Q∑
q=1

n∑
i=1

Ziq log πq +
M∑

m=2

∑
q1≤q2≤···≤qm

∑
(i1,...,im)∈Vm

Zi1q1 · · ·Zimqmf(Yi1...im , B
(m,n)
q1,...,qm).

Note that the final equality ensures that each parameter value appears only once. The key
principle underlying the variational method is to adopt the same iterative two-step structure
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as the EM algorithm but replace the intractable posterior distribution Pθ(Z|Y ) with the best
approximation, in terms of Kullback-Leibler divergence, from a class of simpler distributions,
often factorized. We introduce a class of probability distributions Qτ over Z = (Z1, . . . , Zn) that
factorize over the set of nodes, thus given by

Qτ (Z) =

n∏
i=1

Qτ (Zi) =

n∏
i=1

Q∏
q=1

τ
Ziq

iq ,

where the variational parameter τiq = Qτ (Zi = q) ∈ [0, 1] satisfies
∑Q

q=1 τiq = 1 for any i =

1, . . . , n. The expectation under distribution Qτ is denoted as EQτ , and H(Qτ ) represents the
entropy of Qτ . Now we define the evidence lower bound (ELBO):

J (θ, τ) = EQτ [logPθ(Y ,Z)] +H(Qτ ) (5)

= EQτ [logPθ(Y ,Z)]− EQτ [logQτ (Z)]

=

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+
M∑

m=2

∑
q1≤q2≤···≤qm

∑
(i1,...,im)∈Vm

τi1q1 · · · τimqmf(Yi1...im , B
(m,n)
q1,...,qm).

It can be observed that J (θ, τ) satisfies the following relation:

J (θ, τ) = logPθ(Y )− KL(Qτ (Z)||Pθ(Z|Y )), (6)

where KL(·||·) denotes the Kullback-Leibler divergence. Equation (6) is at the core of the EM

algorithm and its variational approximation. In the classical EM approach, at the t-th iteration
of the algorithm, the variational distribution Qτ is chosen as the distribution Pθ(t)(Z|Y ) of the
latent variables given the observations at the current parameter value θ(t). This cancels the
Kullback-Leibler term and the ELBO equals the log-likelihood. When the distribution Pθ(Z|Y )

is not factorized, such a choice would prevent from an efficient computation of the expectation
EQτ [logPθ(Y ,Z)] of the complete log-likelihood under Qτ appearing in Equation (5). Thus, the
variational approximation searches for the best approximation of the true Pθ(Z|Y ) in a class
of simplified (in general, factorized) variational distributions. As a consequence, the Kullback-
Leibler divergence term in (6) is non null in general and the ELBO J serves as a lower bound for
the model log-likelihood logPθ(Y ). The VEM algorithm iterates between the following two steps
until a suitable convergence criterion is met:

• VE-Step maximizes J (θ, τ) with respect to τ

τ̂ (t) = argmax
τ

J (θ(t−1), τ), s.t.
∑Q

q=1 τ̂
(t)
iq = 1 ∀i = 1, . . . , n. (7)

This step involves finding the best approximation of the conditional distribution Pθ(Z|Y )

by minimizing the Kullback-Leibler divergence term in (6).
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• M-Step maximizes J (θ, τ) with respect to θ

θ̂(t) = argmax
θ

J (θ, τ (t−1)), s.t.
∑Q

q=1 π̂
(t)
q = 1. (8)

This step updates the values of the model parameters πq and B
(m,n)
q1,...,qm .

In the following we provide the solutions of the two maximization problems in Equations (7)
and (8).

Proposition 4 (VE-Step). Given the current model parameters θ = (πq, B
(m,n)
q1,...,qm)q,m,q1≤···≤qm at

any iteration of the VEM algorithm, the corresponding optimal values of the variational parameters
(τ̂iq)i,q defined in Equation (7) satisfy the fixed point equation:

log τ̂iq = log πq+
M−1∑
m=1

∑
1≤q1≤···≤qm≤Q

∑
(i1,...,im)∈Vm

s.t.{i,i1,...,im}∈V(m+1)

τ̂i1q1 · · · τ̂imqmf(Yii1...im , B
(m+1,n)
qq1...qm )+ci, (9)

for any 1 ≤ i ≤ n and 1 ≤ q ≤ Q and where ci are normalising constants such that
∑

q τ̂iq = 1.

Equation (9) relates the variational probability τ̂iq that a node i belongs to a cluster q to the
other variational parameters (as well as the observations and current parameter value θ). The
sum starts at m = 1 and deals with (m + 1)-tuples of nodes {i, , i1, . . . , im} that contain node i

and whose latent configuration is given by some multiset {q, q1, . . . , qm}.

Remark. From Proposition 4, the τi’s are obtained using a fixed point algorithm. Although in all
the situations we experienced, the algorithm converged in a reasonable number of iterations, we
have no guarantee about existence nor uniqueness of a solution to (9).

Proposition 5 (M-Step). Given the variational parameters (τiq)i,q at any iteration of the VEM

algorithm, the corresponding optimal values of the model parameters (π̂q, B̂q1...qm)q,m,q1≤···≤qm

defined in Equation (8) are given by

π̂q =
1

n

n∑
i=1

τiq and B̂q1...qm =

∑
(i1,...,im)∈Vm τi1q1 . . . τimqmYi1...im∑

(i1,...,im)∈Vm τi1q1 . . . τimqm

.

We now express the solutions of the M-Step under the submodels given by (Aff-m) and (Aff).
Note that the VE-Step is unchanged under these settings.

Proposition 6 (M-Step, affiliation setups). In the particular affiliation submodels given by (Aff-m)
and (Aff) respectively, given variational parameters (τiq)i,q, at any iteration of the VEM algorithm,
the corresponding optimal values of (α̂(m), β̂(m))m and α̂, β̂ maximising J as in Equation (8) are
given by
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• Under Assumption (Aff-m),

α̂(m) =

∑Q
q=1

∑
i1<···<im

τi1q . . . τimqYi1...im∑Q
q=1

∑
i1<···<im

τi1q . . . τimq

,

β̂(m) =

∑
q1≤···≤qm

|{q1,...,qm}|≥2

∑
(i1,...,im)∈Vm τi1q1 . . . τimqmYi1...im∑

q1≤···≤qm
|{q1,...,qm}|≥2

∑
(i1,...,im)∈Vm τi1q1 . . . τimqm

.

• Under Assumption (Aff),

α̂ =

∑M
m=2

∑Q
q=1

∑
i1<···<im

τi1q . . . τimqYi1...im∑M
m=2

∑Q
q=1

∑
i1<···<im

τi1q . . . τimq

,

β̂ =

∑M
m=2

∑
q1≤···≤qm

|{q1,...,qm}|≥2

∑
(i1,...,im)∈Vm τi1q1 . . . τimqmYi1...im∑M

m=2

∑
q1≤···≤qm

|{q1,...,qm}|≥2

∑
(i1,...,im)∈Vm τi1q1 . . . τimqm

.

Algorithm initialization. We choose to begin the algorithm with its M-step, which requires an
initial value for τ . This allows us to leverage smart initialization strategies based on a preliminary
clustering of the nodes. Specifically, we employ three different initialization strategies and select
the best result that maximizes the ELBO criterion J :

Random initialization: This naive method involves drawing each (τiq)1≤q≤Q uniformly from
(0, 1) for every node i and normalizing the vector τi.

“Soft” spectral clustering : We utilize Algorithm 1 from Ghoshdastidar and Dukkipati (2017)
combined with soft k-means. In this approach, we compute a hypergraph Laplacian and construct
the column matrix X consisting of its leading Q orthonormal eigenvectors. The rows of X are
then normalized to have unit norm (following steps 1 to 3 in Algorithm 1 from Ghoshdastidar
and Dukkipati, 2017). We subsequently perform a soft k-means algorithm on the rows of X to
obtain τiq, which represents the posterior probability of node i belonging to cluster q.

Graph-component absolute spectral clustering : This strategy focuses on edges in the hyper-
graph (m = 2) and the corresponding adjacency matrix. We apply the absolute spectral clustering
method (Rohe et al., 2011) to this adjacency matrix. The absolute spectral clustering method
introduces a graph Laplacian with both positive and negative eigenvalues and focuses on the
ones with largest magnitude, thus capturing both communities and dis-assortative structures. It
should be noted that this initialization only uses information from hyperedges of size m = 2, ex-
cluding hyperedges with larger sizes. However, absolute spectral clustering is considered superior
to spectral clustering as it captures disassortative groups.

In Section F.2 from the SM, we include a comparison of different initialization strategies. In
general, there won’t be an initialization strategy that is always superior, so we recommend always
using different strategies and selecting the best criteria.
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Fixed point. The VE-Step is achieved through a fixed-point algorithm. In practice, at iteration
t of the VEM algorithm, starting from the previous values of the variational and model parameters
τ
(t−1)
iq and θ(t−1) respectively, we iterate over some index u to compute the values of τ (t,u)iq accord-

ing to Equation (9). This generates a sequence of values τ
(t,u)
iq . We terminate these iterations

either when we reach the maximum number of fixed-point iterations (u > Umax) or when the
variational parameters have converged (max

iq
|τ (t,u−1)
iq − τ

(t,u)
iq | ≤ ε), where ε is a small tolerance

threshold.

Stopping criteria. The iterations of the VEM algorithm should be terminated when the ELBO
J and the sequence of model parameter vectors θ(t) = (θ

(t)
s )s have converged. However, in

practice, we have observed that sometimes the algorithm stops prematurely when the VE-Step
still requires a few iterations to reach a fixed point. In such cases, continuing with the VEM

iterations often leads to higher values of the ELBO function and better parameter estimates. To
address this, we enforce the condition that the fixed point in the VE-Step is reached in its first
iteration. This reduces the chance of converging to local maxima of J . If these convergence
conditions are not met, we stop the algorithm if the maximum number of iterations has been
reached. To summarize, we stop the algorithm whenever:{

|J (θ(t−1))− J (θ(t))|
|J (θ(t))|

≤ ε and max
s

|θ(t−1)
s − θ(t)s | ≤ ε and max

iq
|τ (t,0)iq − τ

(t,1)
iq | ≤ ε

}
or {t > Tmax}.

Section E in SM contains additional details about the algorithm’s implementation.

Algorithm complexity and choice of M . The complexity of our algorithm is of the order
O(nQM

(
n
M

)
), which can be quite prohibitive for large datasets, especially when M becomes large.

It is important to emphasize that when analyzing a dataset, the value of M is not necessarily
the maximum observed size of the hyperedges, but rather a modeling choice. Indeed, while
an occurring hyperedge Yi1,...,im with node clusters {q1, . . . , qm} contributes logB

(m,n)
q1,...,qm to the

likelihood, a non occurring one contributes log(1−B
(m,n)
q1,...,qm) and the statistical information that

they bring to the parameter is the same (see Equations (3) and (4)). Now let’s consider for
e.g. a co-authorship dataset where we observe n authors and at most 3 co-authors per paper.
The absence of hyperedges of size 4 provides as much information for a HSBM as if all possible
size-4 hyperedges were present. Similarly, the information contained in a dataset with all but
5 possible size-4 hyperedges present is the same as the information contained in a dataset with
only 5 occurring size-4 hyperedges. In other words, 0 and 1 values play a symmetric role.

As a consequence, the choice of M is left to the discretion of the statistician, depending on the
characteristics of the dataset and the available computational resources. In particular, if there
are hyperedges with very large sizes M , the statistician may decide not to consider them, just
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as it is justified not to take into account the absence of hyperedges of size M + 1, where M is
the largest observed size. It is important to note that choosing M > 2 already represents an
improvement in terms of considering more information compared to a graph analysis of the data.

Therefore, for large datasets, we recommend limiting the analysis to smaller values of M , such
as M = 3 or M = 4, to reduce computational burden and improve efficiency.

2.4 Model selection

While Ghoshdastidar and Dukkipati (2017) propose a method for selecting the number of groups
based on the spectral gap, our approach relies on a statistical framework to construct a model
selection criterion.

After obtaining the estimated parameters θ̂ and (τ̂i)i from the VEM algorithm, we assign each
node i to its estimated group Ẑi = argmaxq τ̂iq. We then define the integrated classification
likelihood (ICL, Biernacki et al., 2000) for the full model and the submodels (Aff-m) and (Aff)
as follows:

ICLfull(q) = logPθ̂(Y , Ẑ)− 1

2
(q − 1) log n− 1

2

M∑
m=2

(
q +m− 1

m

)
log

(
n

m

)
,

ICLaff-m(q) = logPθ̂(Y , Ẑ)− 1

2
(q − 1) log n− (M − 1)

M∑
m=2

log

(
n

m

)
,

ICLaff(q) = logPθ̂(Y , Ẑ)− 1

2
(q − 1) log n−

M∑
m=2

log

(
n

m

)
.

These criteria are constructed as the complete log-likelihood (computed at the estimated param-
eter value and clusters), penalized by a BIC-like term that accounts for the number of parameters
and the corresponding “effective” sample size (n for the parameters related to the nodes and

(
n
m

)
for the size-m interaction parameters B

(m,n)
q1,...,qm). ICL criteria have been widely used in the con-

text of SBMs. Their theoretical properties have never been established, though they exhibit very
good empirical results on synthetic SBMs datasets (e.g. Daudin et al., 2008). Recently, Cerqueira
and Leonardi (2020) obtained a first consistency result for a related criterion in the graph SBM,
relying on a penalized version of the exact ICL (Côme and Latouche, 2015), also known in the
information theory literature as Krichevsky-Trofimov (KT) estimator. While the literature of
order estimation focuses on minimal penalties as these will lead to minimum underestimation
probability (see for e.g. van Handel, 2011), these KT penalties are generally heavier than what is
thought to be sufficient to consistently estimate the number of groups. We determine the number
of groups q̂ as the value that maximizes the corresponding ICL criterion: q̂ = argmaxq ICL(q).
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3 Synthetic experiments

3.1 Synthetic data

We conducted a simulation study to evaluate the performance of the HyperSBM package. We
generated hypergraphs under the HSBM with two or three latent groups (Q = 2 or Q = 3). The
group proportions were non-uniform, with π = (0.6, 0.4) for Q = 2 and π = (0.4, 0.3, 0.3) for
Q = 3. We set the largest hyperedge size M to 3, and we considered different numbers of nodes,
n ∈ {50, 100, 150, 200}.

To simplify the latent structure, we assumed the (Aff-m) submodel, and we parametrized
the model through the ratios ρ(m) of within-group size-m hyperedges over between-groups size-
m hyperedges (assumed constant with n, see Section F.1 in SM for details). We analyzed two
different scenarios:

A. Communities: in this scenario, we focus on community detection and consider the case of
more within-group than between-groups size-m hyperedges ρ(m) > 1 for m = 2, 3.

B. Disassortative: in this scenario, we focus on disassortative behaviour and consider the case
of less within-group than between-groups size-m hyperedges ρ(m) < 1 for m = 2, 3.

Each setting is a combination of a scenario (X=A,B) and number of groups (Q = 2, 3) and is
denoted XQ. In each setting, values of α(m) = α(m,n) and β(m) = α(m,n) (we here emphasize the
dependence on the number of nodes n) decrease with increasing n so as to maintaining constant
the quantities nα(2,n) and nβ(2,n) as well as n2α(3,n) and n2β(3,n). This implies that the number
of size-m hyperedges (both within and between groups) grows linearly with n. We have explored
a total of 5 different settings, denoted by A2, A3, B2, B3 and A3’ and we present below the
most striking results. In the case of scenarios A (communities) with Q = 3 groups, we pushed
the limits and explore two different settings (namely settings A3 and A3’), with setting A3 being
highly sparse, i.e. sparser than the already sparse setting A3’. Details of the parametrization,
specific parameter values and number of hyperedges are fully given in Section F.1 in SM, while
Section F.2 in SM contains additional results.

For each setting and each value of n, we randomly draw 50 different hypergraphs. We estimate
the parameters using the full HSBM formulation with our VEM algorithm, relying on soft spectral
clustering (for Scenario A) and graph-component absolute spectral clustering (for Scenario B)
initializations (see paragraph “Algorithm initialization” above).

3.2 Clustering and estimation under HSBM with a fixed number of groups

In this part we focus on clustering and parameter estimation with a known number of groups.
The performance of HyperSBM is evaluated based on its ability to accurately recover the true
clustering and estimate the original parameters. We also compare our results with hypergraph
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spectral clustering, relying on Algorithm 1 from Ghoshdastidar and Dukkipati (2017), denoted
HSC below.

Clustering results. The performance of correct classification is evaluated using the Adjusted
Rand Index (ARI, Hubert and Arabie, 1985). The ARI measures the similarity between the
true node clustering and the estimated clustering. It is upper bounded by 1, where a value of 1
indicates perfect agreement between the clusterings, and negative values indicate less agreement
than expected by chance.

Scenario B2 Scenario B3

Scenario A2 Scenario A3

50 100 150 200 50 100 150 200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

n

A
R

I

Algorithm

HyperSBM

HSC

Figure 1: Boxplots of Adjusted Rand Indexes for different settings XQ (where X=A, B is the
scenario and Q = 2, 3 is the number of groups), number of nodes n (along x-axis) and 2 methods:
our HyperSBM (left boxplot) and HSC (right boxplot). First row (resp. first column) shows scenario
A with communities (resp. Q = 2) while second row (resp. second column) shows scenario B with
disassortative behaviour (resp. Q = 3).

Figure 1 displays the boxplot values of the ARI for settings A2 to B3. It is evident that our
HyperSBM consistently outperforms HSC, obtaining higher ARI values overall and significantly
lower variances in most cases, except for setting B3, where HyperSBM exhibits a larger variance
but still yields substantially better results compared to HSC. We also observe that increasing the
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number of nodes n does not appear to significantly enhance the clustering results of HyperSBM.
This behavior could be attributed to our simulation setting, where the numbers of size-m hy-
peredges (m = 2, 3) are kept linearly increasing with n. However, it is worth noting that the
variances of the ARI obtained by HyperSBM tend to decrease with an increasing number of nodes
n. One final comment pertains to the relatively poor clustering performance obtained by both
methods in setting B3: this setting appears to be particularly challenging.

Parameter estimation accuracy. We also evaluate the accuracy of parameter estimation. As
the parameter values may be extremely small (see Section F.1 in SM), we choose to compute the
Mean Squared Relative Error (MSRE) between the true parameters (in the full model) and the
estimated values, both for the prior probabilities πq and the probabilities of hyperedge occurrence
B

(m)
q1,...,qm . Specifically, we compute the aggregated MSRE over all the components of θ using the

following formula:

MSRE =
1

nrep

nrep∑
i=1

{Q−1∑
q=1

( π̂i
q − πq

πq

)2
+

M∑
m=2

∑
q1≤···≤qm

(B̂i
q1,...,qm −B

(m,n)
q1,...,qm

B
(m,n)
q1,...,qm

)2}
,

where (π̂i
1, . . . , π̂

i
Q−1, {B̂i

q1,...,qm}m,q1,...,qm) is the set of free parameters estimated on the i-th
dataset by the full model and nrep = 50 is the number of replicates.

The corresponding results are summarized through the boxplots in Figure 2. The relative
errors are rather small, decreasing and showing a lower variance as the number of nodes increases.
Note that the absolute values of MSRE cannot be compared between the cases Q = 2 (first
column) and Q = 3 (second column), with very different scales on the y-axis. Indeed, in the first
case, the relative error is cumulated over a total of 1+3 +4=8 free parameters (in the full model),
while this increases to 2+ 6+10=18 free parameters when Q = 3.

3.3 Performance of model selection

In this section we assess the performance of ICL as a model selection criterion. The simulated
data is fitted with our HyperSBM with a number of latent states ranging from 1 to 5.

In Table 3 we show the frequency of the selected number of groups for setting A3’. The
correct model is selected in 74% of cases for n = 50, in 98% of cases for n = 100 and in 100% of
cases for n = 150, 200. We also compute the value of ARI of the classification obtained with 3
clusters depending on the selected number of latent groups. This value is always equal to 1 when
the correct model is recovered, thus confirming the optimal behavior of HyperSBM already shown
in Section 3.2.
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Scenario B2 Scenario B3
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Figure 2: Boxplots of Mean Squared Relative Errors between true and estimated model param-
eters for different settings XQ (where X=A, B is the scenario and Q = 2, 3 is the number of
groups) and number of nodes n (along x-axis). First row (resp. first column) shows scenario A
with communities (resp. Q = 2) while second row (resp. second column) shows scenario B with
disassortative behaviour (resp. Q = 3).

Table 3: Frequency (as a percentage) of the selected number of groups Q for setting A3’. Model
selection is carried out by means of the ICL criterion. Results are computed over 50 samples for
each value of n.

Q n = 50 n = 100 n = 150 n = 200

1 0% 0% 0% 0%

2 26% 2% 0% 0%

3 74% 98% 100% 100%

4 0% 0% 0% 0%

5 0% 0% 0% 0%
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3.4 Line clustering through hypergraphs

Following Leordeanu and Sminchisescu (2012); Kamiński et al. (2019) and earlier references, we
here explore the use of hypergraphs to detect line clusters of points in R2. Similarly to the
construction of pairwise similarity measures, we here resort on third order affinity measures to
detect alignment of points since pairwise measures would be useless to detect alignment. Thus,
for any triplet of points {i, j, k}, we use the mean distance to the best fitting line as a dissimilarity
measure d(i, j, k) and transform this through a Gaussian kernel to a similarity measure.

We performed two different experiments, with either 2 or 3 lines. In each setting, we randomly
generate the same number of points per line in the range [−0.5, 0.5]2 and perturbed with centered
Gaussian noise with standard deviation 0.01. We then add noisy points, generated from uniform
distribution on [−0.5, 0.5]2. The particular settings of each experiment are described in Table 4
and Figure 3 shows the resulting sets of points.

Table 4: Description settings for the line clustering experiments.

Number of points
per line

Number of
noisy points

Total number
of points

Mean number
of hyperedges

2 lines 30 40 100 1070.84
3 lines 30 60 150 587.70

2 Lines 3 Lines
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Figure 3: Sets of points from the line clustering experiments. Left: 2 lines (green dots and red
triangles) plus noise (black crosses). Right: 3 lines (green dots, red triangles and blue diamonds)
plus noise (black crosses).

For both settings, we generated 100 different 3-uniform hypergraphs using the following pro-
cedure. We randomly selected 3 points {i, j, k} and calculated the mean distance d(i, j, k) to the
best-fitting line. We then measured their similarity using a Gaussian kernel exp(−d(i, j, k)2/σ2)
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with σ2 = 0.04. If the similarity was greater than a threshold ϵ = 0.999, we constructed a hy-
peredge {i, j, k}. This procedure resulted in both signal hyperedges, where all points belonged
to the same line cluster, and noise hyperedges, where the points were sufficiently aligned without
belonging to the same line. The signal-to-noise ratio of hyperedges was set to 2 for each hy-
pergraph. We specifically simulated sparse hypergraphs, and the average number of hyperedges
is presented in Table 4. Additionally, isolated nodes in the hypergraph were excluded from the
clustering analysis.

We applied our HyperSBM algorithm to cluster the nodes of these 3-uniform and sparse hyper-
graphs, and we compared the results with three different modularity-based approaches. The first
two approaches, referred to as Chodrow_Symm and Chodrow_AON, are from Chodrow et al.
(2021) and are based on their general symmetric and all-or-nothing modularity, respectively. The
third approach, referred to as Kaminski, is from Kamiński et al. (2019). The modularity-based
methods automatically select the number of groups, and for HyperSBM, we performed model
selection using Q ∈ {1, . . . , 6}.

Figure 4 displays the ARI obtained from the clustering results. We can observe that the
modularity-based methods fail to accurately recover the true original line clusters, resulting in
lower ARIs. In contrast, HyperSBM shows good performance in this task, achieving higher ARIs.
This difference in performance can be attributed to the tendency of modularity-based methods,
especially the one by Kamiński et al. (2019), to select a larger number of groups in this particular
context, as evidenced in Figure 5.
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Figure 4: Boxplots of the ARI obtained by the different clustering methods on the line clustering
problem. Left: 2 lines, right: 3 lines.
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Figure 5: Estimated number of groups Q̂ on the line clustering problem. Left: 2 lines (true value
of Q is 3), right: 3 lines (true value of Q is 4).

This experiment highlights the distinct behavior of HyperSBM compared to the modularity-
based clustering methods, including the approach proposed by Chodrow et al. (2021), despite both
methods being based on a Stochastic Block Model (SBM) framework with a maximum-likelihood
approach.

4 Analysis of a co-authorship dataset

4.1 Dataset description

We analyze a co-authorship dataset available at http://vlado.fmf.uni-lj.si/pub/networks/
data/2mode/Sandi/Sandi.htm. The dataset originates from the bibliography of the book “Prod-
uct Graphs: Structure and recognition” by Imrich and Klavzăr and is provided as a bipar-
tite author/article graph. To construct the hypergraph, following the approach of Estrada and
Rodríguez-Velázquez (2006), we consider authors as nodes and create hyperedges that link authors
who have collaborated on the same paper. Further details regarding the dataset pre-treatment
can be found in Section G of the SM, along with additional analyses. In our analysis, we set
M = 4 and focused on the main connected component of the hypergraph, which consists of 79
authors and 76 hyperedges. Among these hyperedges, 68.5% have a size of 2, while 29% have a
size of 3, and 2.5% have a size of 4.
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4.2 Analysis with HyperSBM

We conducted an analysis of this dataset using our HyperSBM package. The model selection based
on the ICL criterion determined that there are 2 groups (Q̂ = 2). One group consists of only
8 authors, while the remaining 71 authors belong to the second group. Table 5 displays the
distribution of the number of distinct co-authors per author. Within the first group of 8 authors,
6 of them have the highest number of distinct co-authors, while the remaining 2 authors each
have 4 distinct co-authors.

Table 5: Distribution of the number of distinct co-authors per author. The first group contains
the 6 authors having the largest number of distinct co-authors (between 7 and 12) plus 2 authors
with 4 co-authors each.

Nb co-authors 1 2 3 4 5 6 7 8 10 11 12

Count 23 27 13 6 2 2 1 1 2 1 1

Coming back to the bipartite graph of authors and (co-authored) papers, we looked at the
degree distribution of the authors, given in Table 6. This corresponds to the distribution of the
number of co-authored papers per author. We observed that 5 of the 8 authors from our first
group are the ones that co-published the most, the three others having also high degree (one
of degree 5 and two of degree 4). Thus, our first group is made of authors (among) the most
collaborative ones, which are also (among) the most prolific ones.

Table 6: Degree distribution of authors in the bipartite graph. Our first group contains the 5
most collaborating authors, one of the sixth, plus 2 authors with degree equal to 4.

Author degree 1 2 3 4 5 6 7 8 10 13

Count 44 14 6 6 4 1 1 1 1 1

Neither the first nor the second group inferred by HyperSBM are communities. Indeed we
obtained the following estimated values from the size-2 hyperedges: B̂11 ≃ 4.2% is of the same
order as B̂12 ≃ 5.1% while B̂22 ≃ 0.8% is around five times smaller. This means that the first
group contains authors that have written with authors from the two groups while the second
group is made of authors who have less co-authored papers with people of their own group.
Looking now at size-3 hyperedges, we get that B̂111 ≃ 2 · 10−4 ; B̂112 ≃ 18 · 10−4 ; B̂122 ≃ 7 · 10−4

and B̂222 ≃ 0.6 ·10−4. The most important estimated frequency is B̂112 that concerns 2 authors of
the small first group co-authoring a paper with one author of the large second group. The second
most important estimated frequency is B̂122 and is obtained for one author from small first group
co-authoring a paper with two authors of the large second group. The remaining frequencies of
size-3 hyperedges are negligible. This characterizes further the first groups as being composed by
authors that do co-author with their own group as well as with authors from the second one.
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Finally, looking now at size-4 hyperedges, the only non negligible estimated frequency is
obtained for B̂1222 ≃ 4 · 10−6. We note here that the frequencies B̂’s with m = 3 or 4 are
intrinsically on different scales, as also happens with m = 2 or 3. So again, authors from group
1 co-authored with the others authors. (Note that the first group is not large enough for a size-4
B̂ frequency with at least 2 authors in that group 1 to be non negligible).

4.3 Comparison with 2 other methods

We first compared our approach with the hypergraph spectral clustering (HSC) algorithm pro-
posed in Ghoshdastidar and Dukkipati (2017). Let us recall that spectral clustering does not come
with a statistical criterion to select the number of groups. Looking at the partition obtained with
Q = 2 groups, spectral clustering output groups with sizes 24 and 55, respectively. These groups
are neither characterized by the number of co-authors nor their degrees in the bipartite graph
(see details in SM). Indeed, in our case the best clusters are not communities and their sizes are
very different, while we recall that spectral clustering tends to: i) extract communities ; ii) favor
groups of similar size.

We then analysed the same dataset as a bipartite graph of authors/papers with the R package
SBM through the function estimateBipartiteSBM (Chiquet et al., 2022). This method infers a
latent blockmodel (that in fact corresponds to a SBM for bipartite graphs) and automatically
selects a number of groups on both parts (authors and papers). The method relies on the same
core VEM algorithm as ours, adapted to the bipartite graphs context. Hereafter, we refer to this
method as the Bipartite-SBM implementation. Let us underline here that while the bipartite
stochastic blockmodel can be written as a particular case of a HSBM, the converse is not true
(see Section A.3 in the SM). In particular, our hypergraph SBM is not constrained by the need
to cluster the set of hyperedges.

The Bipartite-SBM also selected 2 groups of authors (and 1 group of papers). There was one
small group with 4 authors, entirely contained in our first small group; it corresponds to authors
that have the highest degree in the bipartite graph and the highest number of co-authors. So,
Bipartite-SBM output a very small group of the most prolific and the most collaborative authors
in this dataset. Further details about the distinctions between these groups and the ones obtained
by HyperSBM are given in SM.

As a conclusion, we see that while the outputs of Bipartite-SBM and HyperSBM may seem
close on this specific dataset, they are nonetheless different. On the other hand, and still on this
specific dataset, the spectral clustering approach outputs results that are completely different
from those of HyperSBM.
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5 Discussion

We have proposed a hypergraph stochastic block model for simple hypergraphs and general
clusters types, i.e. our work is not limited to community detection and/or equally-sized clus-
ters. This is in sharp contrast with most existing approaches. For example, Ghoshdastidar and
Dukkipati (2014, 2017) obtained error bounds that converge to zero only for the (Aff-m) model
with equally-sized groups and assuming moreover that α(m) > β(m). Moreover, references such as
Ke et al. (2020); Ahn et al. (2018); Chien et al. (2019) primarily focus on community detection,
which means they only identify clusters that correspond to communities. Our inference procedure
is based on a maximum-likelihood approach, which should in principle provide some statistical
guarantees. While consistency and asymptotic normality of the variational and the maximum
likelihood estimators in our HSBM is left for future work, we believe that such results could be
obtained following approaches used in the context of graphs SBMs (Celisse et al., 2012; Bickel
et al., 2013). It is worth noting that while Chodrow et al. (2021) initially employ a maximum
likelihood approach, they deviate from that setting for their inference procedure. In contrast,
our method retains the maximum likelihood framework throughout the inference process. The
maximum likelihood approach also enables the use of a penalized criterion for model selection.
The SBM for hypergraphs presented in Balasubramanian (2021) is highly general. However,
their least-squares estimator for a hypergraphon model is computationally infeasible. Addition-
ally, their Algorithm 1 is dedicated to community detection and does not provide general cluster
recovery.

Our model can accommodate self-loops without significant changes by allowing for m = 1.
Furthermore, it can be easily extended to handle multiple hypergraphs (with or without self-loops)
by incorporating a zero-inflated or deflated Poisson distribution on the conditional distribution
of the hyperedges. In a more general setting, the conditional Bernoulli distribution can be
replaced with any parametric distribution to handle weighted hypergraphs, and it could also
easily incorporate covariates. This flexibility allows for the adaptation of our model to various
types of hypergraph data.

While an important challenge is to reduce the complexity of our approach, some gain could
be provided by constraining the parameter set. For instance, Contisciani et al. (2022) consider
a Poisson HSBM, where the connectivity parameter is non-zero only between nodes in the same
cluster. While this assumption is quite restrictive, it is mitigated by the introduction of over-
lapping clusters. In the same way, Ruggeri et al. (2023) propose a similar model where the
connectivity parameter is the sum of nodes-pairs contributions, resulting in a model that differs
from what could be obtained through a clique reduction graph (namely, the graph obtained from
hyperedges transformed into cliques). In both cases, these constraints on the parameters con-
siderably reduce the complexity of the inference procedure which is based on a variational-like
approach (but does not rely on an evidence lower bound). We believe that similar techniques
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could be useful in our case and plan to explore that in future works.

6 Codes availability

The algorithm implementation in C++ is available as an R package called HyperSBM at https://

github.com/LB1304/HyperSBM. The Supplementary Material, the files to reproduce the synthetic
experiments and the dataset analysis are available at
https://github.com/LB1304/Hypergraph-Stochastic-Blockmodel.
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Supplementary Material to: Model-based clustering in simple hypergraphs
through a stochastic blockmodel

By Luca Brusa & Catherine Matias

All non-alphabetic references are concerned with the main text.

A Limits of the bipartite graphs representation of hypergraphs

A.1 Bipartite graphs and multiple hypergraphs with self-loops equivalence

Some early analyses of hypergraphs rely on the embedding of the former into the space of bipartite
graphs (see for e.g. Battiston et al., 2020). Indeed, any hypergraph H = (V, E) where V is the
set of nodes and E the set of hyperedges may be represented as a bipartite graph with two parts.
The top part is simply the set V of hypergraph nodes, while the bottom part is the set E of
hyperedges and there is a link between v ∈ V and e ∈ E whenever node v belongs to hyperedge
e in the original hypergraph H.

Now, it is possible to define a “converse” application from bipartite graphs to hypergraphs.
Indeed, any bipartite graph can be projected into two distinct hypergraphs, by choosing one of
the two parts as the nodes set and forming a hyperedge with any set of nodes that are neighbors
(in the bipartite graph) of the same node (belonging to the second part). A major difference
appears whether we consider simple hypergraphs or multiple hypergraphs with self-loops. In
multiple hypergraphs (not to be confused with multiset hypergraphs) hyperedges may appear
several time so that these are weighted hypergraphs with integer valued weights. We also allow
for self-loops, i.e hyperedges of cardinality 1. Then, this application from bipartite graphs to
hypergraphs slightly differs depending on whether we allow the image of a bipartite graph to be a
multiple hypergraphs with self-loops or a simple hypergraph. In the first case, all the information
from the bipartite graph will be encoded in the multiple hypergraphs with self-loops; while in the
second case, part of the information will be lost. This is illustrated on a toy example in Figure 6.

The embedding of the simple hypergraphs space into the bipartite graphs space is not the
inverse of the natural projection of bipartite graphs into simple hypergraphs. Thus, models of
bipartite graphs are inappropriate to handle simple hypergraphs, as the former generally put mass
on any bipartite graph, notwithstanding the fact that not all of these may be realized as the image
of a simple hypergraph. For the same reason, preferential attachment models of bipartite graphs
(Guillaume and Latapy, 2004) may not be directly used for simple hypergraphs as they would
produce unconstrained bipartite graphs that do not necessarily come from simple hypergraphs.
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Bipartite graphs space Hypergraphs space

a b c

(a)

a b c

(b)

a b c

(c)

a b c

(d)

Figure 6: (a) A bipartite graph G; (b) Projection of G into the multiple hypergraphs with self-loops
space, choosing the top nodes as the new set of nodes. Hyperedges are {a}, {a, b}, {a, b}, {a, b, c}.
The applications from (a) to (b) are invertible bijections, one being the inverse of the other; (c)
Projection of G on the simple hypergraphs subspace. Hyperedges are {a, b}, {a, b, c}. (d) Embedding
of the simple hypergraph in (c) in the bipartite graphs space. Note that (a) and (d) are not the
same bipartite graph.
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A.2 Artifacts induced by bipartite graphs models

In order to view a bipartite graph as a hypergraph, one first needs to select the top and bottom
parts. Swapping the role of the two parts will in general give another hypergraph. Statistical
models of bipartite graphs handle the two parts symmetrically and do not differentiate between
a top and a bottom part. They are thus inadequate for modeling hypergraphs.

One may also note that most random bipartite graphs models are designed for fixed parts
sizes, which induces, on top of a fixed number of nodes, a fixed number of hyperedges in the
corresponding hypergraph model, an artifact which is not always desirable. For instance the
uniformly random hypergraphs model allows for any possible density on the hyperedges.

A last example of inadequacy is given by configuration models on bipartite graphs that induce
configuration models on hypergraphs. In these models, the degree distributions in each part are
kept fixed. When projected in the hypergraphs space, that means that the degrees of the nodes
and the sizes of the hyperedges are kept fixed. Then, relying on shuffling algorithms to explore
the space of this configuration model, one will loose the labels on the bottom part (the hyperedges
part) as these are automatically induced by the new edges of the bipartite graph and the labelling
of the top part (the nodes part). As a consequence, if a specific node tends to take part in large
size hyperedges, this information is lost in the configuration model issued from bipartite graphs.

To our knowledge, there is no configuration model on hypergraphs that only keeps the nodes
degrees sequence fixed. We mention that Section 4 from Chodrow (2020) provides a discussion
about the limitations of the embedding approach in terms of the types of hypergraph null models
from which we can conveniently sample. In particular, Chodrow (2020) establishes that there is
no obvious route for vertex-label sampling in hypergraphs through bipartite random graphs.

A.3 HSBM is not a bipartite SBM

In this section, we briefly outline that (i) while the bipartite stochastic blockmodel can be seen
as a particular case of HSBM, (ii) the converse is not true in general. The main point here is
that hypergraph SBMs are more general than bipartite SBMs because they are not constrained
by the assumption of the existence of a finite clustering on the hyperedges.

To see point (i), let us consider a bipartite SBM on a graph G with nodes divided in 2 parts,
say V = {1, . . . , n} and U = {1, . . . , e}. The model has Q groups (resp. R groups) on the subset
of nodes V (resp. U), with group proportions π (resp. η). We let Z1, . . . , Zn (resp. W1, . . . ,We)
denote the latent groups of nodes V (resp. U).

The model is also given by a connectivity matrix M of size Q×R whose entries Mqr are the
conditional probabilities that a node in V from group q connects a node in U from group r. In
other words Mqr = P(Xiu = 1|Zi = q,Wu = r) where X = (Xiu) is the n× e incidence matrix of
G.

Now consider the hypergraph H constructed on the set of nodes V and whose hyperedges are
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obtained by looking at the set of nodes in V connected to a same node in U . (A similar construction
could be made with swapping the roles of V and U). Then, the probability distribution of H
under the induced bipartite SBM is exactly a HSBM with Q groups, with group proportions π

and parameters

B(m,n)
q1,...,qm = P(Yi1,...,im = 1|Zi1 = q1, . . . , Zim = qm)

= P(Xi1,u = 1, . . . , Xim,u = 1|Zi1 = q1, . . . , Zim = qm)

=
R∑

r=1

P(Xi1,u = 1, . . . , Xim,u = 1,Wu = r|Zi1 = q1, . . . , Zim = qm)

=
R∑

r=1

ηr

qm∏
q=q1

Mqr,

where u is the node that connects {i1, . . . , im} into a hyperedge. So we see that the bipartite
SBM induces a HSBM with constrained connection probabilities.

Let us now explain why (ii) the converse is not true in general. We start from a HSBM with
Q groups and parameters (π, (B

(m,n)
q1,...,qm)q1,...,qm)2≤m≤M on a hypergraph H with set of nodes V.

Considering U = {1, . . . , e} where e is the number of hyperedges in H, we construct a bipartite
graph G with nodes V×U and links between any i ∈ V and any u ∈ U whenever node i belongs to
hyperedge u in the hypergraph H. Now, if there is a bipartite SBM on G with same distribution
as our HSBM, then necessarily it has Q groups on V, with group proportions given by π. We let
R denote the number of groups on such a model on U , together with η the corresponding group
proportions, and M the Q × R matrix of connection probabilities. Then we observe that η and
M should satisfy the relations:

∀2 ≤ m ≤ M, ∀q1, . . . , qm ∈ {1, . . . , Q}m, B(m,n)
q1,...,qm =

R∑
r=1

ηr

qm∏
q=q1

Mqr. (10)

Here, we first remark that the bipartite SBM fit on the co-authorship dataset (from Section 4)
selected R = 1, thus inducing hyperedges connectivity parameters with a product form

B(m,n)
q1,...,qm =

qm∏
q=q1

Mq1.

Our fitted HSBM on this same dataset did not result in hyperedges connectivity parameters with
a product form, which establishes that the models are clearly different.

Now, more generally, we could ask whether for given parameters (B(m,n)
q1,...,qm)2≤m≤M , there exist

some values of R, η and M such that (10) is satisfied. The answer is: not always. To see this,
consider for instance Q = 2 and remark the relation between the two quantities

B
(2,n)
11 =

R∑
r=1

ηrM
2
1r and B

(3,n)
111 =

R∑
r=1

ηrM
3
1r, (11)
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so that B
(2,n)
11 and B

(3,n)
111 cannot be chosen independently.

B The need for simple hypergraphs models

In this section, we discuss modeling differences between multiset hypergraphs where multiset
hyperedges are allowed, versus simple hypergraphs where hyperedges are subsets of nodes. We
recall that multiset hypergraphs allow for repeated nodes in a same hyperedge, the latter being
defined as a multiset of nodes. Multiset hyperedges generalize in some sense the notion of self-
loops in graphs and thus are a natural extension to consider. However, they are not appropriate
in all contexts. For instance, a co-authorship dataset cannot contain hyperedges with repeated
nodes (but may contain a self-loop of a unique author). In the same way, a social interaction
hypergraph does not contain multisets hyperedges; triadic interactions are restricted to 3 different
individuals and self-loops are not allowed. In the meantime, they are natural in other contexts;
consider, e.g., chemical reaction hypergraphs where the multiplicity plays the role of the stoichio-
metric coefficients (Flamm et al., 2015). We first argue that multisets-hypergraph models are
inappropriate for analysing simple hypergraphs.

B.1 A motivating example

Let us first focus on parameter estimates rather than on clustering. For the sake of simplicity,
we restrict our attention to 3-uniform hypergraphs on a set of n nodes and consider two different
models. The first one, denoted as MH, acts on 3-uniform multiset hypergraphs and draws a
hyperedge between any 3 nodes, not necessarily distinct, with probability pMH. The second one,
denoted as SH, acts on 3-uniform simple hypergraphs and draws a hyperedge between any 3
distinct nodes with probability pSH.

Now, we consider a toy example of observing a simple hypergraph H with n = 3 nodes and
only one hyperedge e = {1, 2, 3}. This dataset could correspond to observing for instance one
publication with 3 authors. When analysed under the MH model, the density of our observed
hypergraph is estimated by

p̂MH = 1/27

because there are n3 = 27 possible size-3 multiset hyperedges under this model, and just one of
these is observed. On the contrary, when analysed under the SH model, we infer a density of

p̂SH = 1

because the only possible size-3 hyperedge is observed. As a consequence, the statistical con-
clusions drawn on this dataset will highly differ depending on whether we restrict attention to
simple hypergraphs or work with more general multiset hypergraphs. This choice of the ambient
space has to be made according to the specificities of the dataset. This simple and elementary
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example shows that it is not possible to statistically analyse a simple hypergraph with a multiset
hypergraphs model without erroneous conclusions.

B.2 Null model for multiset hypergraphs in modularity computations

The main technical difference between multiset hypergraphs and simple hypergraphs analysis
comes from the enumeration of size-m subsets of nodes. In the multiset hypergraphs setting,
the summations over multisets of nodes {i1, . . . , im} ∈ {1, . . . , n}m factorize into m indepen-
dent sums. On the contrary, in the simple hypergraph setting, the summations involve sets of
nodes {i1, . . . , im} that are constrained to be distinct. As a consequence, such a factorization is
impossible.

Let us consider a concrete example. We already emphasized the fact that modularity criteria
for hypergraphs have been proposed only in the multiset hypergraphs setting (Kamiński et al.,
2019; Chodrow et al., 2021). Modularities are generally constructed as deviation measures of
the number of hyperedges from their expected number under a null model. For instance in the
graphs context, the Newman and Girvan modularity of a partition (C1, . . . , CQ) of the nodes into
Q clusters is computed as

Modularity(C1, . . . , CQ) =
1

2|E|

Q∑
q=1

∑
i,j∈Cq

(
Aij −

didj
2|E|

)

=
1

2|E|

Q∑
q=1

∑
i,j∈Cq

Aij −
1

2|E|

Q∑
q=1

∑
i,j∈Cq

didj
2|E|

,

where A = (Aij)i,j is the graph adjacency matrix, di is the degree of node i, and 2|E| =
∑

i di is
twice the number of edges. While the first part of these criteria enumerates only the occurring
hyperedges, a quantity that is small in general as most hypergraph datasets are sparse, the second
part needs to account for all subset of nodes in the graph (or at least in the same group Cq). In
the case of graphs allowing self-loops, this second term factorizes to

1

2|E|

Q∑
q=1

∑
i,j∈Cq

didj
2|E|

=
1

2|E|

Q∑
q=1

(
∑

i∈Cq
di)(

∑
j∈Cq

dj)

2|E|
=

Q∑
q=1

Vol(q)2

(2|E|)2
,

where the computation of the volume Vol(q) =
∑

i∈Cq
di has time complexity of O(n). Similarly,

for multiset hypergraphs the modularity computed in Chodrow et al. (2021) uses two main terms:
the first is a cut term that depends only on occurring hyperegdes while the second relies on volumes
of latent configurations of the nodes (see Eq. (12) and (13) in Chodrow et al., 2021). On the
contrary, in the simple hypergraph setting, enumerating all subsets of nodes constrained to be
distinct requires enumerating

M∑
m=2

(
n

m

)
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elements for a hypergraph with n nodes and maximum hyperedge size M . This quantity is huge
and represents the main computational limit when analysing hypergraphs (our approach to this
issue is detailed in Section E from SM).

C Proof of Theorem 2

The proof closely follows the structure of the proof for Theorem 2 in Allman et al. (2011) for
the SBM on simple graphs, with the generalization to simple m-uniform HSBM. For the sake of
completeness, we provide here the complete proof of Theorem 2. Note that the key element that
distinguishes our proof from the one in Allman et al. (2011) is clearly identified below.

The strategy relying on Kruskal’s result. The proof strongly relies on an algebraic result
from Kruskal (1977) that appeared to be a powerful tool to establish identifiability results in
various models whose common feature is the presence of discrete latent groups and at least three
conditionally independent random variables. We first rephrase Kruskal’s result in a statistical
context. Consider a latent random variable V with state space {1, . . . , r} and distribution given
by the column vector v = (v1, . . . , vr). Assume that there are three observable random variables
Uj for j = 1, 2, 3, each with finite state space {1, . . . , κj}. The Ujs are moreover assumed to
be independent conditional on V . Let Mj , j = 1, 2, 3 be the stochastic matrix of size r × κj

whose ith row is mj
i = P(Uj = · | V = i). Then consider the 3-dimensional array (or tensor)

with dimensions κ1 × κ2 × κ3 denoted [v;M1,M2,M3] and whose (s, t, u) entry (for any 1 ≤ s ≤
κ1, 1 ≤ t ≤ κ2, 1 ≤ u ≤ κ3) is defined by

[v;M1,M2,M3]s,t,u =

r∑
i=1

vim
1
i (s)m

2
i (t)m

3
i (u)

=
r∑

i=1

P(V = i)P(U1 = s|V = i)P(U2 = t|V = i)P(U3 = u|V = i)

= P(U1 = s, U2 = t, U3 = u).

Note that [v;M1,M2,M3] is left unchanged by simultaneously permuting the rows of all the Mj

and the entries of v, as this corresponds to permuting the labels of the latent classes. Knowledge
of the distribution of (U1, U2, U3) is equivalent to knowledge of the tensor [v;M1,M2,M3].
Now, the Kruskal rank of a matrix M , denoted rankK M , is the largest number I such that every
set of I rows of M are independent. Note that for any matrix M , its Kruskal rank is necessarily
less than its rank, namely rankK M ≤ rankM , and equality of rank and Kruskal rank does not
hold in general. However, in the particular case when a matrix M of size p× q has rank p, it also
has Kruskal rank p. Now, let Ij = rankK Mj . Kruskal (1977) established the following result. If

I1 + I2 + I3 ≥ 2r + 2, (12)
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then the tensor [v;M1,M2,M3] uniquely determines v and the Mj , up to simultaneous per-
mutation of the rows. In other words, the set of parameters {(v,P(Uj = · | V ))} is uniquely
identified, up to label switching on the latent groups, from the distribution of the random vari-
ables (U1, U2, U3).

Now, to obtain generic identifiability, it is sufficient to exhibit a single parameter value for
which (12) is satisfied. Indeed, the set of parameter values for which rankK Mj is fixed can be
expressed through a Boolean combination of polynomial inequalities ( ̸=, or rather non-equalities)
involving matrix minors in those parameters. In the same way, the converse condition of (12),
namely inequality I1 + I2 + I3 ≤ 2r + 1 is the finite Boolean combination of polynomial non-
equalities on the model parameters. This means that this set of parameters is an algebraic variety.
But an algebraic variety can only be either the whole parameter space (in which case exhibiting a
single value where (12) is satisfied would not be possible) or a proper subvariety, thus a subspace
of dimension strictly lower than that of the whole parameter space.

The strategy of the proof for showing identifiability of certain discrete latent class models
developed in Allman et al. (2011) and other papers by the same authors is to embed these models
in the context of Kruskal’s result just described. Applying Kruskal’s result to the embedded
model, the authors derive partial identifiability results on the embedded model, and then, using
details of the embedding, relate these to the original model.

Embedding the HSBM into Kruskal’s setup. For some number of nodes n (to be specified
later), we let V = (Z1, Z2, . . . , Zn) be the latent random variable, with state space {1, . . . , Q}n

and denote by v the corresponding vector of its probability distribution. The entries of v are
of the form πn1

1 · · ·πnQ

Q for some integers nq ≥ 0 and such that
∑

q nq = n. We fix m ≥ 2 and
consider simple m-uniform hypergraphs on the set of nodes V = {1, . . . , n}. Recall that V(m)

is the set of all distinct m-tuples of nodes in V and {Yi1,...,im ; {i1, . . . , im} ∈ V(m)} the set of
all indicator variables corresponding to possible (simple) hyperedges of a m-uniform hypergraph
over V. Now, we will construct below subsets H1, H2, H3 ⊂ V(m) of distinct m-tuples of nodes
such that Hi ∩Hj = ∅ for any i ̸= j. Then, we choose the 3 observed variables Uj (1 ≤ j ≤ 3) as
the vectors of indicator variables Uj = (Yi1,...,im){i1,...,im}∈Hj

. This induces that κj = 2|Hj | (where
|Hj | is the cardinality of Hj). As the subsets H1, H2, H3 do not share any m-tuple of nodes, the
random variables Uj are conditionally independent given V . We are in the statistical context of
Kruskal’s result.

The goal is now to construct the 3 subsets Hj of m-tuples such that their pairwise intersections
are empty and such that condition (12) is satisfied (for at least one parameter value of the
embedded model and thus generically for this embedded model). This construction of the Hj ’s
proceeds in two steps: the base case and an extension step.

Starting with a small set V0 = {1, . . . , n0} of nodes, we define a matrix A of dimension
Qn0 ×2(

n0
m). Its rows are indexed by latent configurations v ∈ {1, . . . , Q}n0 of the nodes in V0, its
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columns by the set of all possible states of the vector of indicator variables (Yi1,...,im){i1,...,im}∈V0
,

and the entries of A give the probability of observing the specified states of the vector of indicator
variables, conditioned on the latent configurations v. Thus each column index corresponds to a
different simple m-uniform hypergraph on V0. The base case consists in exhibiting a value of
n0 such that this matrix A generically has full row rank. Then, in an extension step, relying
on n = n2

0 nodes, we construct the subsets H1, H2, H3 with the desired properties (namely their
pairwise intersections are empty and (12) is generically satisfied).

From Kruskal’s theorem, we obtain that the vector v and the matrices M1,M2,M3 are gener-
ically uniquely determined, up to simultaneous permutation of the rows from the distribution of
a simple m-uniform HSBM.

With these embedded parameters v,M1,M2,M3 in hand, it is still necessary to recover the
initial parameters of the simple m-uniform HSBM: the group proportions πq and the connectivity
matrix B(m) = (B

(m,n)
q1,...,qm)1≤q1≤···≤qm≤Q. This will be done in the conclusion.

Base case. In the following, we let B̄q1,...,qm = 1−Bq1,...,qm . The initial step consists in finding
a value of n0 such that the matrix A of size Qn0 ×2(

n0
m) containing the probabilities of any simple

m-uniform hypergraph over these n0 nodes, conditional on the hidden node states, generically
has full row rank.

The condition of having full row rank can be expressed as the non-vanishing of at least one
Qn0 × Qn0 minor of A. Composing the map sending the parameters {Bq1,...,qm} → A with
this collection of minors gives polynomials in the parameters of the model. To see that these
polynomials are not identically zero, and thus are non-zero for generic parameters, it is enough
to exhibit a single choice of the {Bq1,...,qm} for which the corresponding matrix A has full row
rank. We choose to consider parameters {Bq1,...,qm} of the form

Bq1,...,qm =
sq1sq2 . . . sqm

sq1sq2 . . . sqm + tq1tq2 . . . tqm
, so B̄q1,...,qm =

tq1tq2 . . . tqm
sq1sq2 . . . sqm + tq1tq2 . . . tqm

,

with sq, tl > 0 to be chosen later. However, since the property of having full row rank is unchanged
under non-zero rescaling of the rows of the matrix A, and all entries of A are monomials with total
degree

(
n0

m

)
in Bq1,...,qm , B̄q1,...,qm}, we may simplify the entries of A by removing denominators,

and consider the matrix (also called A) with entries in terms of Bq1,...,qm = sq1sq2 . . . sqm and
B̄q1,...,qm = tq1tq2 . . . tqm .

The rows of A are indexed by the composite node states v ∈ {1, . . . , Q}n0 , while its columns
are indexed by the m-uniform hypergraphs H = (yi1,...,im){i1,...,im}∈V0

∈ {0, 1}(
n0
m). For any

composite hidden state v ∈ {1, . . . , Q}n0 and any node i ∈ {1, . . . , n0}, let v(i) ∈ {1, . . . , Q}
denote the state of node i in the composite state v. With our particular choice of the parameters
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Bq1,...,qm , the (v,H)-entry of A is given by

∏
{i1...im}∈V(m)

0

B
yi1,...,im
v(i1),...,v(im)B̄

1−yi1,...,im
v(i1),...,v(im) =

n0∏
i=1

sdiv(i)t
n0−1−di
v(i) ,

where
di =

∑
{i1...im}∈V(m)

0
i∈{i1...im}

yi1,...,im

is the degree of node i in the hypergraph H = (yi1,...,im){i1,...,im}∈V0
. With this choice of param-

eters {Bq1,...,qm}, the entries in a column of A are entirely determined by the degree sequence
d = (di)1≤i≤n0 of the hypergraph under consideration. Two different hypergraphs may result
in the same degree sequence, thus the same values in the two columns of A. For any degree
sequence d = (di)1≤i≤n0 arising from a simple m-uniform hypergraph on n0 nodes, let Ad denote
a corresponding column of A. In order to prove that the matrix A has full row rank, it is enough
to exhibit Qn0 independent columns of A. To this aim, we introduce polynomial functions whose
independence is equivalent to that of corresponding columns.

For each node i ∈ {1, . . . , n0} and each latent group q ∈ {1, . . . , Q}, introduce an indetermi-
nate Xi,q and a Qn0-size row vector X = (

∏
1≤i≤n0

Xi,v(i))v∈{1,...,Q}n0 . For each degree sequence
d, we have

XAd =
∑

v∈{1,...,Q}n0

∏
1≤i≤n0

sdiv(i)t
n0−1−di
v(i) Xi,v(i) =

∏
1≤i≤n0

(
sdi1 tn0−1−di

1 Xi,1 + · · ·+ sdiQ tn0−1−di
Q Xi,Q

)
.

Now, independence of a set of columns {Ad} is equivalent to the independence of the corre-
sponding set of polynomial functions {XAd} in the indeterminates {Xi,q}. For a set D of degree
sequences, to prove that the polynomials {XAd}d∈D are independent, we assume that there exist
scalars ad such that ∑

d∈D
adXAd ≡ 0, (13)

and show that necessarily all ad = 0. This will be given by the following lemma from Allman
et al. (2011). This lemma is originally formulated for a set D of degree sequences. However it
is not specific to degree sequences; it applies for any sets D of sequences of integers indexed by
{1, . . . , n0} and thus we phrase it in this way. We refer to Allman et al. (2011) for its proof.

Lemma 7. (Lemma 18 in Allman et al. (2011).) Assume n0 ≥ Q. Let D be a set of n0-length
integer sequences such that for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has
cardinality at most Q. Then for generic values of sq, tl, for each i and each d⋆ ∈ {di | d ∈ D}
there exist values of the indeterminates {Xi,q}1≤q≤Q that annihilate all the polynomials XAd for
d ∈ D except those for which di = d⋆.

The next step is to construct a set D of n0-length integer sequences that satisfies
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• for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has cardinality at most Q

(condition in Lemma 7);

• any d ∈ D may be the degree sequence of a simple m-uniform hypergraph;

• |D| ≥ Qn0 .

With such a set at hand, by choosing one column of A associated to each degree sequence in D, we
obtain a collection of |D| ≥ Qn0 different columns of A. These columns are independent since for
each sequence d⋆ ∈ D, by Lemma 7 we can choose values of the indeterminates {Xi,q}1≤i≤n0,1≤q≤Q

such that all polynomials XAd vanish, except XAd⋆ , leading to ad⋆ = 0 in equation (13). Thus,
exhibiting such a set D is the last step to prove that A has generically full row rank.

A construction specific to the hypergraphs case. Now, this is where our proof strongly
differs from the one of Theorem 2 in Allman et al. (2011). Indeed, the characterizations of degree
sequences for graphs and simple m-uniform hypergraphs are completely different.

Consider the following set of integer-valued sequences

D =
{
d = (d1, . . . , dn0) | for 1 ≤ i ≤ n0, di ∈ {m, 2m, 3m, . . . , Qm}

}
.

Lemma 8. The set D of n0-length integer sequences satisfies

(i) for each i ∈ {1, . . . , n0}, the set of i-th coordinates {di | d ∈ D} has cardinality at most Q;

(ii) For large enough n0 (depending on Q,m), any d ∈ D is the degree sequence of a simple
m-uniform hypergraph over n0 nodes;

(iii) |D| ≥ Qn0 .

Note that conditions (i), (iii) imply that {di | d ∈ D} should have cardinality exactly Q and
that |D| = Qn0 .

Proof of Lemma 8. Points (i), (iii) are a consequence of the definition of D. For any integer
sequence d, a necessary condition for d to be a degree sequence of a simple m-uniform hypergraph
over n0 nodes is that m divides

∑
i di. Here, we rather need sufficient conditions in order to prove

(ii). We rely on Corollary 2.2 in Behrens et al. (2013).

Corollary 2.2 in Behrens et al. (2013). Let d be an integer-valued sequence with maximum
term ∆ and let p be an integer such that ∆ ≤

(
p−1
m−1

)
. If m divides

∑
i di and

∑
i di ≥ (∆−1)p+1

then d is the degree sequence of a simple m-uniform hypergraph.

Fix some d ∈ D. Note that by construction, m divides
∑

i di. Let ∆ be the maximum value
of this sequence and note that ∆ ≤ Qm. Thus we choose p an integer such that Qm ≤

(
p−1
m−1

)
.

Moreover,
∑

i di ≥ mn0 and (∆− 1)p+ 1 ≤ ∆p ≤ Qmp. Then by choosing n0 ≥ Qp, we obtain
the desired result.
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With Lemma 8 at hand, we have exhibited a set D with the desired properties, and thus
established that A has generically full row rank.

The extension step. The extension step builds on the base case, in order to construct a larger
set of n = n2

0 nodes and subsets H1, H2, H3 ⊂ V(m) of distinct m-tuples of nodes in V = {1, . . . , n}
with the desired properties. This step was first stated as Lemma 16 in Allman et al. (2009) in
the context of simple graphs SBM and we extend it below to our case.

Let us recall that we want to construct H1, H2, H3 ⊂ V(m) that are pairwise disjoint. Then,
with notation from above, we choose the 3 observed variables Uj (1 ≤ j ≤ 3) as the vectors
of indicator variables Uj = (Yi1,...,im){i1,...,im}∈Hj

. As the subsets H1, H2, H3 do not share any
m-tuple of nodes, the random variables Uj are conditionally independent given V = (Z1, . . . , Zn).
We let Mj denote the Qn × 2|Hj | matrix of conditional probabilities of Uj given Z.

Lemma 9. Suppose that for some number of nodes n0, the matrix A of size Qn0 × 2(
n0
m) defined

above has generically full row rank. Then with n = n2
0 there exist pairwise disjoint subsets

H1, H2, H3 ⊂ V(m) of m-tuples of nodes in V = {1, . . . , n} such that for each j the Qn × 2|Hj |

matrix Mj has generically full row rank (Qn).

Proof of Lemma 9. Let us describe the construction of Hj . We will partition the n2
0 nodes into

n0 groups of size n0 in three different ways, each way leading to one Hj . Then each Hj will be
the union of the n0 sets of all m-tuples made of some n0 nodes. Thus each Hj has cardinality
n0

(
n0

m

)
.

Labeling the nodes by (u, v) ∈ {1, · · · , n0} × {1, · · · , n0}, we picture the nodes as lattice
points in a square grid. We take as the partition leading to H1 the rows of the grid, as the
partition leading to H2 the columns of the grid, and as the partition leading to H3 the diagonals.
In other words, H1 is the union over n0 rows of all m-tuples of nodes within each row. The
same with columns and diagonals. Explicitly, we define two functions u, v that associate to any
i ∈ {1, . . . , n0} its coordinates (u(i), v(i)) on the n0×n0 grid. Then, the Hj are m-tuple of nodes
defined as

H1 = ∪n0
u=1H1(u) = ∪n0

u=1{{i1, . . . , im} ∈ V(m) | ∀k, u(ik) = u, v(ik) ∈ {1, · · · , n0}},

H2 = ∪n0
v=1H2(v) = ∪n0

v=1{{i1, . . . , im} ∈ V(m) | ∀k, v(ik) = v, u(ik) ∈ {1, · · · , n0}},

H3 = ∪n0
s=1H3(s)

= ∪n0
s=1{{i1, . . . , im} ∈ V(m) | ∀k, u(ik) = s, v(ik) = s+ tmodn0 for some t ∈ {1, · · · , n0}}.

The Hj are pairwise disjoints as required.
The matrix Mj of conditional probabilities of Uj given Z has Qn rows indexed by composite

states of all n = n2
0 nodes, and 2n0(n0

m) columns indexed by m-tuples in Hj .
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Observe that with an appropriate ordering of the rows and columns (which is dependent on
j), Mj has a block structure given by

Mj = A⊗A⊗ · · · ⊗A (n0 factors). (14)

(Note that since A is Qn0 × 2(
n0
m), the tensor product on the right is (Qn0)n0 ×

(
2(

n0
m)
)n0

which

is Qn2
0 × 2n0(n0

m), the size of Mj .) That Mj is this tensor product is most easily seen by noting
the partitioning of the n2

0 nodes into n0 disjoint sets (rows, columns and diagonals of the grid)
gives rise to n0 copies of the matrix A, one for each set of all simple m-uniform hypergraphs over
n0 nodes. The row indices of Mj are obtained by choosing an assignment of states to the nodes
in Hj(u) for each u independently, and the column indices by the union of independently-chosen
simple m-uniform hypergraphs subgraphs on Hj(u) for each u. This independence in both rows
and columns leads to the tensor decomposition of Mj .

Now since A has generically full row rank (Qn0), equation (14) implies that Mj does as well
(i.e has row rank Qn2

0 = Qn).

Next, with v,M1,M2,M3 defined by the embedding given in the previous paragraphs, we
apply Kruskal’s Theorem to the table [v;M1,M2,M3]. By construction of the Mj , condition (12)
is generically satisfied since 3Qn ≥ 2Qn +2. Thus the vector v and the matrices M1,M2,M3 are
generically uniquely determined, up to simultaneous permutation of the rows from the distribution
of a simple m-uniform HSBM.

It now remains to recover the original parameters of the simple m-uniform HSBM: the group
proportions πq and the connectivity matrix (B

(m,n)
q1,...,qm)1≤q1≤qm≤Q.

Conclusion for the original model. The entries of v are of the form πn1
1 · · ·πnQ

Q with
∑

nq =

n, while the entries of the Mj contain information on the B
(m,n)
q1,...,qm . Although the ordering of the

rows of the Mj is arbitrary, crucially we do know how the rows of Mj are paired with the entries
of v.

By focusing on one of the matrices, say M1, and adding appropriate columns of it, we can
obtain marginal conditional probabilities of single hyperedge variables, namely a column vector
with values (Pθ(Yi1,...,im = 1|(Z1, . . . , Zn) = v))v for any m-tuple {i1, . . . , im}. Indeed, this vector
is obtained by summing all the columns of M1 corresponding to simple m-uniform hypergraphs
with Yi1,...,im = 1. Thus, we recover the set of values {B(m,n)

q1,...,qm}1≤q1≤···≤qm≤Q, but without order.
Namely, we still do not know the B

(m,n)
q1,...,qm up to a permutation on {1, . . . , Q} only, but rather up

to a permutation on {1, . . . , Q}n.
In the following, we assume without loss of generality, as it is a generic condition, that all

{B(m,n)
q1,...,qm}1≤q1≤···≤qm≤Q are distinct.
We look at the first (m + 1) nodes V1 = {1, . . . ,m,m + 1} and consider the m + 1 different

m-tuples {i1, . . . , im} ∈ V(m)
1 that can be made from these nodes (ik ∈ V1). Again, for each of
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these m-tuples, adding appropriate columns of M1, we can jointly obtain the vectors of conditional
marginal probabilities (Pθ(Y{i1,...,im} = 1|(Z1, . . . , Zn) = v))v. Jointly means that all those vectors
share the same ordering over the index v ∈ {1, . . . , Q}n. In other words, we recover the sets of
values

∀v ∈ {1, . . . , Q}n, Rv = {B(m,n)
vi1 ,...,vim

; {i1, . . . , im} ∈ V(m)
1 }.

Now, we assumed the B’s are all distinct so the cardinalities of the sets Rv will help us discriminate
the different parameters (up to a permutation on {1, . . . , Q} only). Indeed, there are exactly Q

sets Rv with cardinality exactly one. These correspond to the cases were v = (q, q, . . . , q) for
some 1 ≤ q ≤ Q. From this, we can distinguish the parameters of the form {B(m,n)

q,...,q ; 1 ≤ q ≤ Q}
from the complete set of parameters. Note that the corresponding entries of v are given by πm

q .
So we also recover the paired values {(πq, B(m,n)

q,...,q ); 1 ≤ q ≤ Q}. Then, we continue with the sets
Rv with cardinality two: these are of the form {B(m)

q,...,q;B
(m,n)
q,...,q,l} for some 1 ≤ q ̸= l ≤ Q. As

we already identified the parameters {B(m,n)
q,...,q ; 1 ≤ q ≤ Q} and all B’s are distinct, this enables

us to identify the set of parameters {B(m,n)
q,...,q,l; 1 ≤ q ̸= l ≤ Q}. By induction, we recover the set

of parameters {B(m,n)
q,...,q,l,l′ ; 1 ≤ q, l, l′ ≤ Q and q, l, l′ distinct} et caetera, ending with the set of

parameters {B(m,n)
q1,...,qm ; 1 ≤ q1 < q2 < · · · < qm ≤ Q}. This means that we finally have obtained

the parameters {πq, B(m,n)
q1,...,qm}1≤q≤Q;1≤q1≤···≤qm≤Q up to a permutation over {1, . . . , Q}.

Finally, note that all generic aspects of this argument, in the base case and the requirement
that the parameters B(m,n)

q1,...,qm be distinct, concern only the B(m,n)
q1,...,qm . Thus if the group proportions

πq are fixed to any specific values, the theorem remains valid.
The requirement on large enough n is more precisely given as n ≥ Q2p2 where p is the smallest

integer such that
(
p−1
m−1

)
≥ Qm. By choosing

(p−m+ 1)m−1 ≥ m!Qm,

we ensure that the condition on p is satisfied. This ensures identifiability as long as

n ≥ Q2
(
m!Qm+m− 1

)2/(m−1)
.

D Other proofs

Proof of Lemma 1. We consider a fixed value of m ≥ 2 and denote by Ja, bK the set of integer
values between a, b. Let us recall that B is a fully symmetric tensor (1), so the number of free
parameters in B is equal to the number of ordered sequences q1 ≤ · · · ≤ qm of elements in
J1, QK. We denote by Q+ this set. Then we define a function f which, to any such sequence
q = (q1, . . . , qm), associates the value l = f(q) defined by f(q) = (q1, q2+1, q3+2, . . . , qm+m−1).
We let L+ denote the set of sequences l = (l1, . . . , lm) with coordinates in J1, Q + m − 1K and
such that l1 < l2 < · · · < lm. Thus, for any q ∈ Q+ we get that f(q) ∈ L+.

43



Conversely, for any l = (l1, . . . , lm) ∈ L+, we can associate the value q = g(l) = (l1, l2−1, l3−
2, . . . , lm −m+ 1). It is easy to see that the image q = g(l) belongs to Q+.

As a consequence, the functions f and g are such that their composition is the identity
function: f ◦ g = g ◦ f = Id. These are one-to-one functions mapping Q+ to L+ and conversely.
This implies that the cardinalities of these two sets are equal. But an element in L+ is exactly a
subset of size m of J1, Q+m− 1K so that the cardinality of L+ is the number of subsets of size
m of J1, Q+m− 1K. This concludes the proof of the lemma.

Proof of Corollary 3. From the probability distribution Pθ over simple hypergraphs H on a set of
n nodes and hyperedges with largest size M , we automatically obtain all the probability distri-
butions Pθ restricted to simple m-uniform hypergraphs Hm on the same set of nodes. Applying
the result of Theorem 2 for all values m is sufficient to obtain the desired result. Indeed, as M

is finite, the union of the finite number of lower-dimensional subspaces where identifiability for
fixed m may not be satisfied gives a lower-dimensional subspace, ensuring generic identifiability.
Moreover, for each value of m, we recover the parameter θ(m) up to a permutation on {1, . . . , Q}.
Now, for any m ̸= m′ it remains to be able to jointly order the parameters θ(m) and θ(m

′) up to
a permutation on {1, . . . , Q}. If all the πq’s are different, which is a generic condition, this can
be easily done because θ(m) and θ(m

′) share the same distinct πq’s.

Proof of Proposition 4. We want to maximize J (θ, τ) with respect to τiq under the constraint∑Q
q=1 τiq = 1 for all i. Using the method of Lagrange multipliers, this is equivalent to maximizing

with respect to τiq the Lagrangian function

Λ(θ, τ, λ) =

n∑
i=1

λi

(
Q∑

q=1

τiq − 1

)
+ J (θ, τ)

=

n∑
i=1

λi

(
Q∑

q=1

τiq − 1

)
+

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+

n∑
i=1

Q∑
q=1

M−1∑
m=1

∑
q1≤···≤qm

∑
V(m) ̸∋i

τiqτi1q1 · · · τimqmf(Yii1...im , B
(m+1,n)
qq1...qm )

Computing the partial derivative of Λ(θ, τ ,λ) with respect to τiq, we obtain the following expres-
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sion

∂Λ

∂τiq
= λi + log

πq
τiq

− 1

+
M−1∑
m=1

∑
q1≤···≤qm

∑
Vm ̸∋i

τi1q1 · · · τimqmf(Yii1...im , B
(m+1,n)
qq1...qm )

= λi + log πq − log τiq − 1

+ log
M−1∏
m=1

∏
q1≤···≤qm

∏
Vm ̸∋i

[
exp(f(Yii1...im , B

(m+1,n)
qq1...qm ))

]τi1q1 ···τimqm
,

which is equal to 0 if

τiq = eλi−1 πq

M−1∏
m=1

∏
q1≤···≤qm

∏
Vm ̸∋i

[
(exp(f(Yii1...im , B

(m+1,n)
qq1...qm ))

]τi1q1 ···τimqm
.

The term eλi−1 = 1∑Q
q=1 τiq

is the normalizing constant such that
∑Q

q=1 τiq = 1 for each i.

Finally, let us remark that the Lagrangian function Λ is concave with respect to each τiq, being the
sum of a concave term (τiq log(πq/τiq)) and linear terms. Thus the critical point is a maximum.

Proof of Proposition 5. For the prior probabilities πq, we want to maximize J (θ, τ) with respect
to πq subject to the constraint

∑Q
q=1 πq = 1. Using again Lagrange multipliers, this is equivalent

to maximizing

Λ(θ, τ, λ) = λ

(
Q∑

q=1

πq − 1

)
+ J (θ, τ)

Noting that the second term of J (θ, τ) does not depend on πq, the computation of the partial
derivative of Λ(θ, τ, λ) reduces to

∂

∂πq

[
λ

( Q∑
q=1

πq − 1

)
+

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

]
= λ+

n∑
i=1

τiq
πq

.

This quantity results equal to 0 if

πq = − 1

λ

n∑
i=1

τiq,

where λ = −n is the normalizing constant in order to satisfy
∑Q

q=1 πq = 1.
Note the Lagrangian function Λ is concave with respect to each πq, being the sum of a concave
term (log(πq/τiq)), of a linear term (λ

∑Q
q=1 πq) and of a constant. The critical point is then a

maximum.
Finally, the partial derivative w.r.t. B

(m,n)
q1,...,qm is

∂J
∂B

(m,n)
q1,...,qm

=
∑
Vm

τi1q1 · · · τimqm

[
Yi1...im

1

Bq1...qm

− (1− Yi1...im)
1

1−Bq1...qm

]
.
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Through some basic algebraic manipulations, this quantity results equal to 0 if

B(m,n)
q1,...,qm =

∑
Vm τi1q1 · · · τimqmYi1...im∑

Vm τi1q1 · · · τimqm

.

Again, the Lagrangian function is the sum of a concave term (logB(m,n)
q1,...,qm) and of some constant

terms, thus being a concave function. The critical point is then a maximum.

Proof of Proposition 6. The following decomposition of J (θ, τ) naturally holds:

J (θ, τ) =

Q∑
q=1

n∑
i=1

τiq log
πq
τiq

+
M∑

m=2

Q∑
q=1

∑
Vm

τi1q · · · τimq

[
Yi1,...,im logα(m) + (1− Yi1,...,im) log(1− α(m))

]

+

M∑
m=2

∑
q1≤···≤qm

|{q1,...,qm}|≥2

∑
Vm

τi1q1 · · · τimqm

[
Yi1,...,im log β(m) + (1− Yi1,...,im) log(1− β(m))

]
.

The partial derivative w.r.t. α(m) is

∂J
∂α(m)

=

Q∑
q=1

∑
Vm

τi1q · · · τimq

[
Yi1...im

1

α(m)
− (1− Yi1...im)

1

1− α(m)

]
,

hence it follows that:

α̂(m) =

∑Q
q=1

∑
{i1,...,im}∈Vm τi1q . . . τimqYi1...im∑Q

q=1

∑
{i1,...,im}∈Vm τi1q . . . τimq

.

Analogously, the partial derivative w.r.t. β(m) is

∂J
∂β(m)

=
∑

q1≤···≤qm
|{q1,...,qm}|≥2

∑
Vm

τi1q1 · · · τimqm

[
Yi1...im

1

β(m)
− (1− Yi1...im)

1

1− β(m)

]
,

and

β̂(m) =

∑
q1≤···≤qm

|{q1,...,qm}|≥2

∑
{i1,...,im}∈Vm τi1q1 . . . τimqmYi1...im∑

q1≤···≤qm
|{q1,...,qm}|≥2

∑
{i1,...,im}∈Vm τi1q1 . . . τimqm

.

This concludes the proof for the formulas under assumption (Aff-m). The expressions for α̂ and
β̂ under assumption (Aff) are computed in the same way.

E Computational details on the algorithm’s implementation

In order to provide an efficient implementation, the whole estimation algorithm is implemented
in C++ language using the Armadillo library for linear algebra. Moreover the implementation
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is made available in R by means of the R packages Rcpp (Eddelbuettel and François, 2011; Ed-
delbuettel, 2013) and RcppArmadillo (Eddelbuettel and Sanderson, 2014). In the following we
consider some of the most relevant computational details.

Dealing with heavy computational cost. Dealing with very large data structures, the main
drawback of the proposed algorithm is the intensive computational effort, in terms of both execu-
tion time needed to converge and required memory space. The most outstanding example regards
the computation of the products τi1q1 · · · τimqm , required both in the VE-Step (see Proposition 4,
for τiq) and in the M-Step (see Proposition 5, for B

(m,n)
q1,...,qm). The huge computational cost of

this calculation derives from the large number of potential unordered node tuples even for rather
small values of n and m; indeed |V(m)| =

(
n
m

)
. A first possibility is to compute all the products

τi1q1 · · · τimqm in a recursive manner at the beginning of each VEM iteration and to store them
in a matrix. Although this is actually very beneficial for the computational time, the resulting
matrix is huge, having number of rows and columns equal to

(
n
m

)
and Qm respectively. Taking

into account that every element requires 8 bytes, we report some examples in Table 7, in order
to better clarify the magnitude of the quantity to store. Stated the impossibility to store a ma-
trix of such size, the computation of the required products τi1q1 · · · τimqm is implemented directly
inside the VE- and M-Steps through nested loops; this process involves an important increase in
the computing times, but on the other hand requires a minimal amount of memory. To handle
the slowness of the computation, both the VE-Step and the M-Step are efficiently implemented in
parallel through the RcppParallel package (Allaire et al., 2022).

Table 7: Memory size of the matrix containing the products τi1q1 · · · τimqm for given values of n
(number of nodes), Q (number of latent groups) and m (hyperedge size).

n m Q Memory size n m Q Memory size

50 3 2 ≈ 1.25 MB 150 3 2 ≈ 35.28 MB

50 3 3 ≈ 4.23 MB 150 3 3 ≈ 119.08 MB

100 3 2 ≈ 10.34 MB 200 3 2 ≈ 84.05 MB

100 3 3 ≈ 34.93 MB 200 3 3 ≈ 283.69 MB

Floating point underflow. Another crucial aspect is the possible occurrence of numerical
instability deriving from the multiplication of many small values in the computation of τ̂iq. A
simple remedy is provided by the calculation of log τ̂iq instead of τ̂iq. So, denoting biq = log(τ̂iq)−
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ci, we compute τ̂iq relying on

τ̂iq =
exp(biq − bmax,i)∑Q
p=1 exp(biq − bmax,i)

,

where bmax,i = max
q=1...Q

biq prevents the denominator to grow excessively large, thus avoiding new

potential numerical issues related to the floating point underflow.

F HSBM simulations details and additional analyses

F.1 Settings

We generated hypergraphs under the HSBM with two or three latent groups (Q = 2 or Q = 3).
The group proportions were non-uniform, with π = (0.6, 0.4) for Q = 2 and π = (0.4, 0.3, 0.3) for
Q = 3. We set the largest hyperedge size M to 3, and we considered different numbers of nodes,
n ∈ {50, 100, 150, 200}. To simplify the latent structure, we assumed the (Aff-m) submodel,
and we parameterized the model through the ratios ρ(m) of within-group size-m hyperedges over
between-groups size-m hyperedges. More precisely, we let E

(m,n)
within (resp. E

(m,n)
between) denote the

number of within-group (resp. between-groups) size-m hyperedges. We have that

E
(m,n)
within =

(
n

m

)
α(m,n)

∑
q

πm
q and E

(m,n)
between =

(
n

m

)
β(m,n)(1−

∑
q

πm
q )

where the notation α(m,n) (resp. β(m,n)) underlines the dependency of the parameter α(m) (resp.
β(m)) to the sample size n. We also obtain the ratio

ρ(m,n) =
E

(m,n)
within

E
(m,n)
between

=
α(m,n)

∑
q π

m
q

β(m,n)(1−
∑

q π
m
q )

.

To simulate sparse hypergraphs, we choose the values α(2,n), β(2,n) (resp. α(3,n), β(3,n)) to be
constant divided by n (resp. constant divided by n2). This implies that the numbers of within
and between-groups size-m hyperedges grow linearly with n. We thus constrain the parameters
with the following forms:

α(2,n) = α0 × 50/n, α(3,n) = cα0 × 50/n2,

β(2,n) = β0 × 50/n, β(3,n) = β0 × 50/n2,

for some constant c to be specified. With these choices, we get that the ratio ρ(m,n) does not
depend on n and equals:

ρ(m) = cm−2
α0
∑

q π
m
q

β0(1−
∑

q π
m
q )

.
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To choose the parameter values of our scenarios, we thus start by setting α0 and a constant ratio
ρ that will be used both for pairwise and three-wise interactions (m = 2, 3). Then we simply
obtain

β0 =
α0

ρ

∑
q π

2
q

1−
∑

q π
2
q

and c =

∑
q π

2
q

1−
∑

q π
2
q

×
1−

∑
q π

3
q∑

q π
3
q

.

The initial choices of α0, ρ in each setting are reported in Table 8. The resulting parameter
values and number of expected hyperedges are reported in Tables 9 and 10. Note that while
settings A2 and A3’ have same α0, ρ parameter values, they differ through the number of groups
Q.

Table 8: Description of the simulated scenarios: scenarios A exhibit community structure (ρ > 1)
while scenarios B exhibit disassortative behaviours (ρ < 1). The numbering of the settings (e.g
“2” in A2) indicates the number of groups Q.

Scenarios A Scenarios B

A2 A3 A3’ B2 B3
(Q = 2) (Q = 3) (Q = 3) (Q = 2) (Q = 3)

α0 0.70 0.30 0.70 0.30 0.40
ρ 1.20 1.70 1.20 0.50 0.25

Hyperparameters settings. All the experiments were made with the following hyperparame-
ters. Concerning the soft spectral clustering initialization, the k-means algorithm (on the rows of
the column leading eigenvectors matrix) is run with 100 initializations. The tolerance threshold
ϵ used to stop the fixed point and the VEM algorithm is set to 10−6. The maximum numbers
of iterations for the fixed point and the VEM algorithm were set to Umax = 50 and Tmax = 50,
respectively.

F.2 Additional synthetic results

In this section, we provide additional synthetic results and comments.

Additional scenario A3’. First, we explore clustering estimation in scenario A3’. Figure 7
shows boxplots of the ARI for both our method HyperSBM and HSC. We observe that while
HyperSBM again outperforms HSC (obtaining higher ARI values overall and significantly lower
variances), both methods obtain very good results in this setting (with ARI always larger than
0.9). Thus this setting, while being sparse (see values of E(m,n) in Table 9) appears to be an easy
one from the clustering point of view. This is why we chose to push the limits and introduced
setting A3 that is sparser than the sparse scenario A3’. Indeed, the ratio between the number of
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Table 9: Resulting parameter values (within-group α(m,n) and between-groups β(m,n), rounded at
the fifth decimal) and expected number E(m,n) of size-m hyperedges (rounded at integer value) for
Scenarios A and either Q = 2 (setting A2) or Q = 3 (settings A3 and A3’).

Setting A2 n = 50 n = 100 n = 150 n = 200

α(2,n) 0.70000 0.35000 0.23333 0.17500
β(2,n) 0.63194 0.31597 0.21065 0.15799
α(3,n) 0.03900 0.00975 0.00433 0.00244
β(3,n) 0.01264 0.00316 0.00140 0.00079

E(2,n) 817 1652 2486 3320
E(3,n) 392 809 1226 1643

Setting A3 n = 50 n = 100 n = 150 n = 200

α(2,n) 0.30000 0.15000 0.10000 0.07500
β(2,n) 0.09091 0.04545 0.03030 0.02273
α(3,n) 0.02310 0.00578 0.00257 0.00144
β(3,n) 0.00182 0.00045 0.00020 0.00011

E(2,n) 198 401 603 806
E(3,n) 85 175 265 355

Setting A3’ n = 50 n = 100 n = 150 n = 200

α(2,n) 0.70000 0.35000 0.23333 0.17500
β(2,n) 0.30051 0.15025 0.10017 0.07513
α(3,n) 0.05391 0.01348 0.00599 0.00337
β(3,n) 0.00601 0.00150 0.00067 0.00038

E(2,n) 535 1080 1625 2171
E(3,n) 229 471 714 957
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Table 10: Resulting parameter values (within-group α(m,n) and between-groups β(m,n), rounded
at the fifth decimal) and expected number E(m,n) of size-m hyperedges (rounded at integer value)
for Scenarios B and either Q = 2 (setting B2) or Q = 3 (setting B3).

Setting B2 n = 50 n = 100 n = 150 n = 200

α(2,n) 0.30000 0.15000 0.10000 0.07500
β(2,n) 0.65000 0.32500 0.21667 0.16250
α(3,n) 0.01671 0.00418 0.00186 0.00104
β(3,n) 0.01300 0.00325 0.00144 0.00081

E(2,n) 573 1158 1743 2328
E(3,n) 275 568 860 1153

Setting B3 n = 50 n = 100 n = 150 n = 200

α(2,n) 0.40000 0.20000 0.13333 0.10000
β(2,n) 0.82424 0.41212 0.27475 0.20606
α(3,n) 0.03080 0.00770 0.00342 0.00193
β(3,n) 0.01648 0.00412 0.00183 0.00103

E(2,n) 833 1683 2533 3383
E(3,n) 356 735 1113 1492
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hyperegdes E(n,m) in setting A3’ and A3 is equal to 2.7. In this much sparser regime that we call
highly sparse below, we have shown that clustering still works with HyperSBM while it fails with
HSC.

Scenario A3'

50 100 150 200

0.900

0.925

0.950

0.975

1.000

n

A
R

I
Algorithm

HyperSBM

HSC

Figure 7: Boxplots of Adjusted Rand Indexes for setting A3’, for different number of nodes n

(along x-axis) and with 2 methods: our HyperSBM (left boxplot) and HSC (right boxplot).

However, setting A3 appears to be too sparse for model selection. Indeed, Table 11 shows the
results of model selection in that setting, where we can see that our ICL criterion performs badly:
we always under-estimate the number of groups. It is out of the scope of the present work to
further explore the reasons for that nor the characterization of highly sparse wrt sparse regimes.
At this point, we conclude that ICL performs well in dense settings (data not shown) as well as
sparse ones, but might not in highly sparse regimes.

Table 11: Frequency (as a percentage) of the selected number of groups Q for scenario A3’ (true
number of groups Q = 3). Model selection is carried out by means of the ICL criterion. Results
are computed over 50 samples for each value of n.

Q n = 50 n = 100 n = 150 n = 200

1 16% 2% 0% 0%

2 84% 90% 66% 54%

3 0% 8% 34% 46%

4 0% 0% 0% 0%

5 0% 0% 0% 0%
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Using only m-uniform hypergraphs. As an additional experiment, we ran our HyperSBM

algorithm on the same datasets but relying i) only hyperedges of size 2; ii) only hyperedges of
size 3. The results on ARI appear in Figure 8; we do not provide Mean Squared Relative Error
plots here, as the estimated parameters are different among the three models. We obtain that in
all scenarios but B3, relying only on size-2 or only on size-3 hyperedges to reconstruct the clusters
performs either worse or similarly than with the original non-uniform hypergraph. However, in
the dis-assortative scenario B3, relying only on the size-2 hyperedges improves the clustering.
This is not surprising as in this case, there are Q = 3 different clusters. Observing only size-2
hyperedges, the algorithm learns that any time there is an edge between 2 nodes, they most
likely belong to different clusters. Now coming to size-3 hyperedges, the signal is less clear: any
time a hyperedge occurs, the algorithm learns that the corresponding nodes most likely either
belong to 3 different clusters or that 2 of these nodes can be in one cluster and the last one in
another cluster. This situation is more difficult to entangle and the clustering quality degrades.
Note however that as the statistician does not have the knowledge that the dataset comes from
a dis-assortative scenario with more than 2 groups, she cannot decide to drop the information of
the size-3 hyperedges to improve the clustering.

Scenario B2 Scenario B3

Scenario A2 Scenario A3

50 100 150 200 50 100 150 200
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0.50
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m Î{2, 3}

m = 2

m = 3

Figure 8: Boxplots of Adjusted Rand Indexes for settings A2, A3, B2 and B3, for different
number of nodes n (along the x-axis) and with HyperSBM applied on 3 different types of data:
the original hypergraphs (m ∈ {2, 3}, left boxplot), using only size-2 hyperedges (m = 2, center
boxplot) and using only size-3 hyperedges (m = 3, right boxplot).
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Figure 9: Boxplots of Adjusted Rand Indexes for settings A2, A3, B2 and B3, for different
number of nodes n (along the x-axis) and with 2 versions of our HyperSBM algorithm: relying on
on the (Aff-m) submodel (left boxplot) or on the full HSBM (right boxplot).

Using the specific (Aff-m) submodel. Given that our synthetic datasets were generated
under the (Aff-m) submodel, we here compare the version of our algorithm restricted to this
case with its full version (whose results were presented in the main manuscript). Figure 9 shows
the boxplots of the corresponding ARIs, while Figure 10 shows the Mean Squared Relative Error
(MSRE) of the estimated parameters. We observe that in all scenarios but B3, the results are
similar for both versions of our algorithm. In scenario B3 (disassortative with Q = 3 groups),
both the ARIs and MSREs become very bad for the (Aff-m) version of the algorithm. We
already observed that this setting is more difficult and apparently, inferring an unconstrained
model seems to be a slightly better strategy in this case.

Using different initializations. In this experiment, we explore the impact of the initializa-
tion choice on the results of our procedure. Let us recall that the results presented in the main
manuscript rely on soft spectral clustering (for Scenario A) and graph-component absolute spec-
tral clustering (for Scenario B) initializations (see paragraph “Algorithm initialization” in the
main manuscript). We here compare 3 different initializations: spectral clustering (SC), soft
spectral clustering (SCC) and graph-component absolute spectral clustering (ASC) in the 4 set-
tings A2, A3, B2, B3. Figures 11 and Figure 12 present the results of the boxplots of the ARI
and the MSRE in these different settings, respectively. We observe that while SC and SSC give
rather similar results, ASC behaves differently. More precisely and as expected, in the assortative
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Figure 10: Boxplots of Mean Squared Relative Error for settings A2, A3, B2 and B3, for
different number of nodes n (along the x-axis) and with 2 versions of our HyperSBM algorithm:
relying on on the (Aff-m) submodel (left boxplot) or on the full HSBM (right boxplot).

scenarios SC and SSC are better than ASC, while in the dis-assortative scenarios B, the converse
happens. When analyzing a dataset, as the scenario is not known a priori, we recommend using
many different strategies and select the one with highest optimized ELBO.

G Analyses on the co-authorship dataset

The original dataset has 274 papers and 314 authors, with 1 paper having 6 authors and 1 paper
having 5 authors. We decided to consider M = 4 and discard these 2 papers with more than 5
authors. Then, we looked at the largest connected component of the resulting graph. It resulted
in 76 papers and 79 authors.

We ran HyperSBM with Q ranging from 2 to 5, with 2 different initialisations: 1 random and
1 relying on the soft spectral clustering. The random initialisation always gave the best result.
The results were robust to different tries. ICL selected Q = 2 groups, as shown in Figure 13.

We obtained a first small group with only 8 authors (the remaining 71 authors being in the
second large group). Inspecting more closely the variational parameters τiq for all the nodes, we
found that a total of 4 nodes could be considered as ambiguously classified, while all other nodes
had posterior probabilities to belong to one of the group larger than 0.8. More precisely, in the
first small group, 2 nodes had posterior probabilities to belong to that group equal to 0.54 and
0.63, respectively; while in the second large group, 2 nodes had posterior probabilities to belong
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Figure 11: Boxplots of Adjusted Rand Indexes for settings A2, A3, B2 and B3, for different
number of nodes n (along the x-axis) and with 3 different initializations of our HyperSBM algo-
rithm: relying on spectral clustering (SC, left boxplot), on Soft Spectral Clustering (SSC, center
boxplot) or on graph-component absolute spectral clustering (ASC, right boxplot).
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Figure 12: Boxplots of Mean Squared Relative Error for settings A2, A3, B2 and B3, for
different number of nodes n (along the x-axis) and with 3 different initializations of our HyperSBM
algorithm: relying on spectral clustering (SC, left boxplot), on Soft Spectral Clustering (SSC,
center boxplot) or on graph-component absolute spectral clustering (ASC, right boxplot).
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Figure 13: Integrated Classification Likelihood index resulting from fitting the HSBM to the
co-authorship dataset with number of latent groups ranging from 2 to 5.

to that group equal to 0.56 and 0.72, respectively.
We discussed in the main text the number of co-authors and degrees in the bipartite graph

(i.e. number of co-published papers) of the first small group of authors. We noticed that the 2
authors in this group that had smallest number of co-authors (namely 4) and smallest number
of degrees (also 4) are the ones that are ambiguously clustered in this group. While the 2 other
authors ambiguously clustered in the second large group have a number of co-authors of 6 and 4,
respectively; and both a degree of 4. This reinforces the conclusion that on this dataset, HyperSBM
has grouped apart the authors which are both the most collaborative and the most prolific ones.

Then we ran the spectral clustering algorithm on our dataset. We looked at the spectral gap,
that indicated 15 groups but the gap is not clear. Then we looked at the clustering obtained with
Q = 2 groups. Spectral clustering output groups with sizes 24 and 55, respectively. We recall
that spectral clustering tends to output comparable sizes groups. The small group contains the
only author with 12 co-authors and the remaining authors have a number of co-authors ranging
from 1 to 4. The second large group has a distribution of the number of co-authors ranging from
1 to 11. The small group contains authors with small degree in the bipartite graph, i.e having
few co-published papers (all but one author have degrees less 4 and a last author has degree 7),
while the second large group contains the 3 authors with largest degree, the rest of the authors
having degrees ranging from 1 to 6. Thus, these groups are neither characterized by the number
of co-authors nor by their degrees in the bipartite graph.

Finally, we analyzed the same dataset as a bipartite graph under a Bipartite SBM. We relied
on the R package SBM through the function estimateBipartiteSBM (Chiquet et al., 2022).

The Bipartite-SBM also selected 2 groups of authors (and one group of papers). There was
one small group with 4 authors, which are exactly the ones that have the highest degree in the
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bipartite graph and also correspond to the 4 authors having the highest number of co-authors.
Here, 2 nodes could be considered as ambiguously classified: one node from the first small

(resp. second large) group had posterior probability to belong to that group of 0.73 only (resp.
0.67 only). These 2 nodes where not ambiguously classified by HyperSBM and both appeared in
our first small group.

It is interesting to compare the situation of three particular authors here. Author with index
48 has 7 co-authors (the 6th highest) and 6 co-authored papers (the 5th highest). It is outside the
small first group with Bipartite-SBM method (posterior probability 1 − 0.67 = 0.33 to belong
to that group); while HyperSBM clusters it unambiguously in the first small group. Similarly,
author with index 27 has 12 coauthors (1st highest) and only 7 co-authored papers (the 4th
highest). This node was ambiguously classified by Bipartite-SBM method in the first small
group (posterior probability 0.73 only); while HyperSBM clusters it unambiguously in the first
small group. Now, conversely, author with index 35 has 8 co-authors (the 6th highest) and 5
co-authored papers (also the 5th highest). This author is unambiguously clustered from the two
methods; but while HyperSBM puts it in the first small graph, Bipartite-SBM excludes it from that
group. The examination of these 3 particular tangent cases seem to show that on this dataset,
Bipartite-SBM was more sensible to authors’s degrees in the bipartite graph while HyperSBM

paid more attention to the sizes of the hyperedges (i.e. number of co-authors) an author was
involved in

We also looked at estimated connection probabilities in the bipartite SBM. The authors from
the first small group of Bipartite-SBM have many papers (estimated connection probability with
the unique group pf papers in the bipartite graph is 11.5% whereas only 2.5% for the other large
group). Finally, we computed the parameters values B(m,n)

q1,...,qm obtained with the groups estimated
by Bipartite-SBM. We obtained with m = 2 that B̂

(2)
11 ≃ 16, 6% (to be compared with 4.2% in

HyperSBM); while B̂
(2)
12 ≃ 7% and B̂

(2)
22 ≃ 1% (more similar to the results of HyperSBM, which are

5.1% and 0.8%, respectively). In this case, the first group of authors behaves differently with
respect to within-group connections compared to between-group connections.
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