Functional Output Regression with Infimal Convolution: Exploring the Huber and -insensitive Losses - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Functional Output Regression with Infimal Convolution: Exploring the Huber and -insensitive Losses

Résumé

The focus of the paper is functional output regression (FOR) with convoluted losses. While most existing work consider the square loss setting, we leverage extensions of the Huber and the-insensitive loss (induced by infimal convolution) and propose a flexible framework capable of handling various forms of outliers and sparsity in the FOR family. We derive computationally tractable algorithms relying on duality to tackle the resulting tasks in the context of vector-valued reproducing kernel Hilbert spaces. The efficiency of the approach is demonstrated and contrasted with the classical squared loss setting on both synthetic and real-world benchmarks.
Fichier principal
Vignette du fichier
lambert22a.pdf (2.23 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03807108 , version 1 (09-10-2022)

Identifiants

  • HAL Id : hal-03807108 , version 1

Citer

Alex Lambert, Dimitri Bouche, Zoltan Szabo, Florence d'Alché-Buc. Functional Output Regression with Infimal Convolution: Exploring the Huber and -insensitive Losses. International Conference on Machine Learning - 2022, Jul 2022, Baltimore, United States. ⟨hal-03807108⟩
54 Consultations
33 Téléchargements

Partager

More