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Functional Output Regression with Infimal Convolution:
Exploring the Huber and e-insensitive Losses

Alex Lambert ' 2 Dimitri Bouche! Zoltin Szab6> Florence d’Alché-Buc !

Abstract

The focus of the paper is functional output re-
gression (FOR) with convoluted losses. While
most existing work consider the square loss set-
ting, we leverage extensions of the Huber and
the e-insensitive loss (induced by infimal convo-
lution) and propose a flexible framework capable
of handling various forms of outliers and sparsity
in the FOR family. We derive computationally
tractable algorithms relying on duality to tackle
the resulting tasks in the context of vector-valued
reproducing kernel Hilbert spaces. The efficiency
of the approach is demonstrated and contrasted
with the classical squared loss setting on both
synthetic and real-world benchmarks.

1. Introduction

Functional data analysis (FDA, Ramsay & Silverman 1997;
Wang et al. 2016) has attracted a growing attention in the
field of machine learning and statistics, with applications
for instance in biomedical signal processing (Ullah & Finch,
2013), epidemiology monitoring and climate science (Ram-
say & Silverman, 2007). The key assumption is that we
have access to densely-measured observations, in which
case functional data description becomes the most natural
and adequate. An important subfield of FDA is functional
output regression (FOR) which focuses on regression prob-
lems where the output variable is a function. There are
numerous ways to tackle the FOR problem family. The
simplest approach is to assume linear dependence between
the inputs and the outputs (Morris, 2015). However, in
order to cope with more complex dependencies, various
nonlinear approaches have been designed. In nonparametric
statistics, Ferraty et al. (2011) proposed a Banach-valued
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Nadaraya-Watson estimator. The flexibility of kernel meth-
ods (Steinwart & Christmann, 2008) and the richness of the
associated reproducing kernel Hilbert spaces (RKHSs; Mic-
chelli et al. 2006) have proven to be particularly useful in
the area, with works involving tri-variate regression problem
(Reimbherr et al., 2018), and approximated kernel ridge re-
gression (KRR) using orthonormal bases (Oliva et al., 2015).
In the operator-valued kernel (Pedrick, 1957; Carmeli et al.,
2010) literature, examples include function-valued KRR
with double representer theorem (Lian, 2007), solvers based
on the discretization of the loss function (Kadri et al., 2010),
purely functional methods relying on approximate inversion
of integral operators (Kadri et al., 2016) or techniques re-
lying on finite-dimensional coefficients of the functional
outputs in a dictionary basis (Bouche et al., 2021).

Most of these works employ the square loss which induces
an estimate of the conditional expectation of the functional
outputs given the input data. However defective sensors
or malicious attacks can lead to erroneous or contaminated
measurements (Hubert et al., 2015), resulting in local or
global functional outliers. The square loss is expected to
be badly affected in those cases and considering alternative
losses is a natural way to obtain reliable and robust pre-
diction systems. For scalar-valued outputs, the Huber loss
(Huber, 1964) and the e-insensitive loss (Lee et al., 2005)
are particularly popular and well-suited to construct outlier-
robust estimators. In the FDA setting, robustness has been
investigated using Bayesian methods (Zhu et al., 2011), trad-
ing the mean for the median (Cadre, 2001), using bounded
loss functions (Maronna & Yohai, 2013), or leveraging prin-
cipal component analysis (Kalogridis & Van Aelst, 2019).

In the operator-valued kernel literature, e-insensitive losses
for vector-valued regression have been proposed by Sang-
nier et al. (2017) for finite-dimensional outputs. The use of
convex optimization tools such as the infimal convolution
operator and parametric duality leads to efficient solvers
and provides sparse estimators. This idea is exploited by
Laforgue et al. (2020) where a generalization of this ap-
proach to infinite-dimensional outputs encompassing both
the Huber and e-insensitive losses is developed.

In this paper, we extend the families of losses considered
by Laforgue et al. (2020) by leveraging specific p-norms in
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functional spaces to handle various forms of outliers (with
Huber loss) and sparsity (with e-insensitive losses). We
study the properties of their Fenchel-Legendre conjugates,
and derive the associated dual optimization problems, which
require suitable representations and approximations adapted
to each situation to be manageable computationally. We
propose tractable optimization algorithms for p € {1,2} in
the Huber loss scenario, and for p € {2, 400} with the e-
insensitive family. Finally, we provide an empirical study of
the proposed algorithms over synthetic and real functional
datasets.

The paper is structured as follows. After introducing the
general problem in Section 2, we focus in Section 3 on a
generalized family of Huber losses and propose loss-specific
tractable optimization schemes, before turning to the family
of e-insensitive losses in Section 4. We illustrate the benefits
of the approach on several benchmarks in Section 5. Proofs
are deferred to the supplement.

2. Problem Formulation

In this section, we introduce the general setting of FOR
in the context of vv-RKHSs, chosen for their modeling
flexibility. To benefit from duality principles, we focus on
losses that can be expressed as infimal convolutions in the
functional output space.

Notations: Let X be an input set, © C R a compact set
endowed with a Borel probability measure y, Y := L?[0, ]
the space of square u-integrable real-valued functions. 1For
pe 1, +oo[and f € Y. let | £]|, = [ [, |F(8)Pdu(®)]* €
[0, +00]; [|-]| , refers to the essential supremum. In both
cases, the norm is allowed to take infinite value ([|-[|, : ¥ —
R U {+00}).! Two numbers p and ¢ € [I,+oc] are
said to be conjugate exponents if % + % = 1, with the
classical 0 = é convention. The ball in Y of radius
€ > 0 and center 0 w.rt. [, is denoted by BZ. The
space of bounded linear operators over Y is £(Y). An
operator-valued kernel (OVK) K: X x X — £L£(Y) is a
mapping such that 37" | >0 (K (i, 2;)yi, y5)y > 0
for all (z;,v:)"; C X x Y and positive integer n. An
OVK K gives rise to a space of functions from X to Y
called vector-valued RKHS (vv-RKHS); it is defined as
Hg :=Span{K (-, z)y : (z,y) € X x Y}, where Span(-)
denotes the linear hull of its argument, - stands for closure,
and K (-,x)y is the function 2’ € X — K(a',2)y € Y
while keeping x € X fixed. The Fenchel-Legendre con-
jugate of a function f:Y — [—o0,+00] is defined as
[*(2) = sup,ey (2,9)y — f(y) where z € Y. Given a
convex set C C Y, tc(+) is its indicator function (¢c(z) =0

!This assumption is natural in convex optimization which is
designed to handle functions taking infinite values.

if z € C, and 1¢(z) = oo otherwise), and Proj.(+)
is the orthogonal projection on C when C is also closed.
Given two functions f,g: Y — ]—o0,+oo|, their infi-
mal convolution is defined as fOg (y) = infy ey f(y —
y') + g(y’) for y € Y and the proximal operator of f
(when f is convex, lower semi-continuous) is prox;(y) =
argmin, cy 3 ||y — y’||; + f(y') forally € Y. For a
positive integer n, let [n] = {1,...,n}. Forp € [1,00],
the p-norm of a vector v € R™ is denoted by [|v||, =

(Z;ﬂ:l |vj|p) ” and [[V]|oo = max;cpm |vj|. Given a ma-
trix A € R™™ and p, s € [1, +oc], [|[A[], , is the s-norm
of the p-norms of the rows of A. The positive part of x € R
is denoted by |z|; = max(z, 0).

Next we introduce the FOR problem in vv-RKHSs. Recall
that X is a set and Y = L?[O, p], the latter capturing the
functional outputs. Assume that we have i.i.d. samples
(4, Ys)ie[n) from a random variable (X,Y) € XxY. Givena
proper, convex lower-semicontinuous loss function L: Y —
R and a regularization parameter A > 0, we consider the
regularized empirical risk minimization problem

) 1 A2

W 2D Ll — b)) + S Al O
1€[n]

where K : X x X — £(Y) is a decomposable OVK of the
form K = kxTj. Here kyx: XxX — Rand kg: ©Ox0O —
R are continuous real-valued kernels, and Ty, € £(Y) is
the integral operator associated to kg, defined for all f €
Yas (T f)(0) = [o k(6,0")f(0)du(0’) where 6 € ©.
Similarly to the scalar case (Wahba, 1990), the minimizer of
Problem 1 enjoys a representer theorem (Micchelli & Pontil,
2005) and writes as

. 1 )
h== D ke wi) Tho s

i€[n]

for some coefficients {&;};cn) C Y. However, the func-
tional nature of these parameters renders the problem ex-
tremely challenging, with quite few existing solutions. Par-
ticularly, even in the case of the square loss

L) = 1005 = 5 [ £02auto),

the value of {&; } ;¢ can not be computed in closed form,
and some level of approximation is required. For instance in
Lian (2007), L is approximated as a discrete sum, allowing
for a double application of the representer theorem and
yielding tractable models. In Kadri et al. (2016), the integral
operator is traded for a finite rank approximation based
on its eigendecomposition, providing a computable closed-
form expression for the coefficients. Aiming at robustness,
Laforgue et al. (2020) propose a Huber loss based on infimal
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convolution, yet limited to a narrow choice of kernels kg.
Moreover, the lack of flexibility in the definition of the loss
prevents the resulting estimators from being robust to a large
variety of outliers.

The goal of this work is (i) to widen the scope of the FOR
problem (Problem 1) by considering losses capable of han-
dling different forms of outliers and sparsity, and (ii) to
design efficient optimization schemes for the resulting tasks.
The proposed two loss families are based on infimal convo-
lution and can be written in the form

1
5 1115 B9 )

for appropriately chosen functions g: Y —]—o0, +00]. The
key property which allows one to handle these convoluted
losses from an optimization perspective is the fact that

L, .2 ol e
(311800) =58+

as it makes the associated Problem 1 amenable for dual
approaches. The losses with the proposed dedicated opti-
mization schemes are detailed in Section 3 and Section 4,
respectively.

The starting point for working with convoluted losses in
vv-RKHSs is the following lemma.

Lemma 2.1 (Dualization for convoluted losses; Laforgue
et al. 2020). Let L be a loss function defined as L =
1 ||||; Og for some g: Y —] — 0o, +0]. The solution
of Problem 1 is given by

| R
== k(i) Tho i, 3)
i€[n]
with (&;)icin) € Y™ being the solution of the dual task

; 1
inf Z [ ||a,|@ — (i, yi)y + g% ()
(ai)ie[n]ey”ie[n] 2
1 “)
T 5w Z ko (@, 25) (i T )y -

i,j€[n]

Solving Problem 4 in the general case for various g and kg
raises multiple challenges which have to be handled simul-
taneously. Problem 4 is often referred to as a composite
optimization problem, with a differentiable term consisting
of a quadratic part added to a non-differentiable term in-
duced by g*. The first challenge is to be able to compute
the proximal operator associated to g*. The second and
third difficulties arise from the fact that the dual variables
are functions (o; € Y) and hence managing them compu-
tationally requires specific care. Particularly, evaluation of
(i, Tho O‘j>‘d can be non-trivial. In addition, one has to

design a finite-dimensional description of the dual variables
that is compatible with T}, and the proximal operator of g*.
The primary focus and technical contribution of the paper is
to handle these challenges, after which proximal gradient
descent optimization can be applied. We detail our proposed
solution in the next section.

3. Learning with Y-Huber Losses

In this section, we propose a generalized Huber loss on
Y based on infimal convolution, followed by an efficient
dual optimization approach to solve the corresponding Prob-
lem 1. This loss (as illustrated in Section 5) shows robust-
ness against different kind of outliers. Our proposed loss on
Y relies on functional p-norms where p € [1, +00].

Definition 3.1 (Y-Huber loss). Let x > 0 and p € [1, +00].
We define the Huber loss with parameters (k, p) as
P Loz
HE =S My B,
Notice that in the specific case of Y = R, HP reduces to

the classical Huber loss on the real line for arbitrary p. Our
following result describes the behavior of HE.

Proposition 3.2. Let k > 0, p € [1, 400, and q the conju-
gate exponent of p. Then for all f € Y,

H2(f) = 5 [Proisy (DI} + | — Proiag (], -

Remark: For general p, the value of H?(f) can not be
computed straighforwardly due to the complexity of the pro-
jection on BZ. As we show however using a dual approach
Problem 1 is still computationally manageable. For p = 2,
one gets back the loss investigated by Laforgue et al. (2020).

The following proposition is a key result of this work that
allows to leverage p-norms as suitable candidates for g in
(2). It extends to Y the well-known finite-dimensional case
that can e.g. be found in Bauschke et al. (2011).
Proposition 3.3. Let p,q € [1, +00] such that % + % =1
Then

1115 = es ().

Our next result provides the dual of Problem 1, and shows
the impact of the parameters (p, x).

Proposition 3.4 (Dual Huber). Let k > 0, p € [1,+00)],
and % + é = 1. The dual of Problem 1 with loss HE writes

n

. 1 2
in > lailly = (ai, i
Wzleyn;[2| 15~ (o

Ly 5)
*mzzkx(%%)mi,ﬂ@aj)y

i=1 j=1

st [lagll, <K, i€ [n]
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Remarks:

o Influence of x and p: The difference between using the
square loss and the Huber loss HZ lies in the constraint
on the g-norm of the dual variables. The parameter p
influences the shape of the ball via the dual exponent g
(||evi]l,) defining the admissible region for dual variables,
and « determines its size (|||, < k). As k grows, the
constraint becomes void and we recover the solution of
the classical ridge regression problem. In Appendix C,
we explore how different choices of p can affect the sen-
sitivity of the loss to two different types of outliers.

e Partially observed data: The observed data (y;);c[n] €n-
ter into Problem 5 only via their scalar product with the
dual variables (c;);c[,). However in real life scenarii one
never fully observe the y; functions and these inner prod-
ucts are to be estimated. One can instead assume access
to a sampling at some locations (6;)72; which can be
used to approximate the inner products (see Section 3.1).

Let us now recall the challenges to be tackled to solve
Problem 5. Firstly, as Y is infinite-dimensional no finite
parameterization of the dual variables can be assumed a
priori. Secondly, even computing the different terms of
the objective function is non-trivial. Indeed, computing
the quadratic term corresponding to the regularization is
not straightforward as it involves the terms (v, Tj )y,
which require the knowledge of the action of the integral
operator T}, . The third difficulty comes from handling the
constraints. Gradient-based optimization algorithms will
require the projection of the dual variables on the feasible
set BZ C Y, which can be intractable to evaluate for some
choices of ¢ depending on the chosen representation.

The next proposition ensures the tractability of the projec-
tion step for specific choices of g.

Proposition 3.5 (Projection on BY). Let x > 0. The projec-
tion on BY is tractable for ¢ = 2 and q = oo and can be
expressed for all (o,0) € Y x O as

[
(Projise (@) (6) = sign (a(6)) min (s, la(®)]). (7

Projg: (@) = min (1, H)a, (6)
" o,

The projection operator for p = ¢ = 2 in Equation (6)
simply consists of a multiplication by a scalar involving the
2-norm of the dual variable. In the p = 1 case (i.e., ¢ = 00),
the projection Equation (7) involves a pointwise projection.
A suitable representation must guarantee the feasibility of
this projection, which requires a pointwise control over the
dual variables.

In order to solve Problem 5, we propose to use two different
representations. In Section 3.1, we advocate representing
the dual variables by linear splines and approximating the

action of T, by Monte-Carlo (MC) sampling. Splines
allow pointwise control of the dual variable which is well-
suited to both p = 1 and p = 2. Our alternative approach
(elaborated in Section 3.2) relies on a finite-rank approxima-
tion of T}, using its eigendecomposition. This method is
applicable when p = 2 with the complementary advantage
of performing dimensionality reduction.

3.1. The Linear Spline Based Approach

In this section we introduce a linear spline based representa-
tion for the dual variables to tackle the challenges outlined.

Linear splines represent an easy-to-handle function class
which provides pointwise control over the dual variables as
they are encoded by their evaluations at some knots. While
the class lacks smoothness, the dual variables are smoothed
out by T}, in the estimator expression from Equation (3).
Indeed, given that the kernel kg is 2s-times continuously
differentiable, the RKHS K, (where T}, maps) consists of
s-times continuously differentiable functions (Zhou, 2008),
a desirable property in many settings making linear splines
good candidates for modeling the dual variables.

A linear spline is a piecewise linear curve which can be
encoded by a set of ordered locations or anchor points
(0)jerm) € ©™, and by a vector of size m correspond-
ing to the evaluation of the spline at these points. We choose
the anchors to be distributed i.i.d. according to u; in prac-
tice, we often take the locations to be those of the available
sampling of the observed data (y;)ic[n) € Y™

Fixing the anchors, the n dual variables are encoded by the
matrix of evaluations A = [a;];c[n) = [@i(0;)]ic[n],jeim] €
R™*™ with a; being the i*" row of A. The action of T},
on a function o € Y is then approximated using MC approx-
imation as

1
Thoa m — > kel 0;)a(8)),
j€[m]
resulting in the estimator
1
1€ JEIM

Using this A parameterization of h, the different terms in
Problem 5 are approximated as follows.

e Squared norm of the dual variables: We approximate
the squared norm of the dual variables using MC sampling
with locations (6;) je[m):

1 1
_62[:] 3 ||ai||§ b Tr (ATA).

e Scalar product with the data: We encode the evalu-
ations of the observed functions (y;);c[n) at locations
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Table 1: Correspondence between the quantities involved in Problem 4 depending on the representation.

Linear splines

Eigenvectors of T},

> icin 3 luilly |
Zie[n] (s, yi)y ‘
>ijerm kx (@i, x) (i, Thg o))y

m 2

(05)je(m) in a matrix Y = [y;(0;)]ic(n), jepm) € R,
and again use MC approximation

> iy

1€[n]

~ 1 T
NmTr(AY )

o Regularization term: Encoding the dual variables as lin-
ear splines hinders the exact computation of the quadratic
terms (o, The )y, Which we propose to approximate
using a MC approximation of Tj,. Letting Ky €
R™*" Kg € R™*™ be the Gram matrices respectively
associated to the data (;);¢,) and kernel kx, and to the
locations (6;) je[m] and kernel kg, the regularization term
can be rephrased as Mmz Tr (KxAK@AT).

e Constraints: The constraints ||a;||, < « can be handled
similarly. Particularly, let o; € 8, with associated eval-
uations vector a; € R and ¢ € [1, +00[. We trade the
integral expression in the norm for an MC sum, resulting

< m7 k. This expression also

< wiff. ||la;||, < K

in the constraint | a;||
holds for ¢ = 400, as [|a||

Gathering the different terms (summarized in Table 1) yields
the following relaxation of Problem 5:

inf

1
Tr (AAT AY ' + KxAK@AT>
AER"X"L 2

2\n
A, . < mik.

q,00 —
®)
Remark: The decomposable assumption on the kernel K
plays a role in the regularization. It has the effect of disen-

tangling the action of both Gram matrices Ky and Kg.

We propose to tackle Problem 8 using accelerated prox-
imal gradient descent (APGD), where the proximal step
amounts to projecting the coefficients on the ¢-ball of ra-
dius m'/%k. The technique is summarized in Algorithm 1.
The gradient stepsize v can be computed exactly from the
parameters of the problem. Indeed, for guaranteed con-
vergence, one must set y < % where C' is the Lipschitz
constant associated to the gradient of the objective function;
here C <1+ |\Kx|| |Kell,p - The initialization can

either be the null matrix A(O) = Ognxm or the solution
of the unconstrained optimization problem which can be
obtained in closed form. This solution (i) can dramatically
reduce the number of iterations for small € or large «, and
(i) can be computed in O(n> +m?) time exploiting the Kro-
necker structure inherited from the separable kernel with a

|
5= Tr(AAT) | Tr(JAAT)
LTr (AYT) | Tr(ART)
Tr(KxAK@AT | Tr (KxAAAT)

Algorithm 1 APGD with linear splines

input : Gram matrices Ky, Kg, data matrix Y, regular-
ization parameter A, loss parameters (k, p) or (€, p),
gradient step y

init :AO AED =0 ecR*™

for epoch t fromOtoT — 1 do
// gradient step

V=A® i% (A(t) — A(tfl))

U=V -7 (V+1-KxVKe - Y)

// projection step

if p = 2 then

for row i € [n] do
2™V = min (—Im )i /) ie 12
(t+1) _ | _ ) . 2
a; - ’1 \/EHLHHQ ’+uz /) Atk
else
for row i € [n] do
for column j € [m] do
aE;Jrl) = sign(u;;) min (k, [ui;|) // if H}
t+1 . € . oo
az(.j ) = sign (uy )Huij\ - %|+ /] if L2

return A (D)

Sylvester equation solver (Sima, 1996; Dinuzzo et al., 2011).
Since the objective function in Problem 8 is the sum of two
functions, one convex and differentiable with Lipschitz con-
tinuous gradient (the quadratic form) and one convex and
lower semi-continuous (the indicator function of the con-
straint set), the optimal worst case complexity is O (75)
(Beck & Teboulle, 2009). The time complexity per iteration
is dominated by the computation of the matrix Koy VKg
which is O(n?m + m?n).

3.2. The Eigendecomposition Approach

In this section, we propose an alternative finite-dimensional
description of the dual variables relying on an approximate
eigendecomposition of Ty, when p = 2. The rationale
of this approach is to decrease the number of parameters
needed to represent the estimator by selecting directions
well-suited to T}, namely the dominant r eigenvectors
of T}, . As computing the eigendecomposition of T, is
generally intractable, we propose an approximation detailed
in the following.

Let us consider the problem of finding a continuous eigen-
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vector v of a sampled version of the integral operator T}
with eigenvalue § > 0 (Hoegaerts et al., 2005):

% > ke(8,0,)1(0;) = v(6) for V0 € ©.

J€[m]

By evaluating it at points (0;);c[m), one gets that
(0m, 1 (0;) jcm)) form the eigensystem of the Gram matrix
Ko € R™*™. These can be computed using for instance
singular value decomposition, and by substitution one ar-
rives at an approximated eigenbasis of dimension at most m;
this can be used as a proxy instead of the true eigenvectors
of Tj,,. By using the first r of these vectors for some r < m
we are able to lower the size of the parameterization of the
model. We store in a diagonal matrix A € R"*" the first r
eigenvalues.

The problem is now parameterized by a matrix A =
[ai]ie[n) € R™™" with each row a; € R" encoding the
coefficients of the dual variable c; on the (1;) ¢, basis.
The estimator then reads as

i€[n], j€[r]
We store in R = [Rijlicn),jeiry € R™" the scalar

products between the observed data and the eigenbasis:
R;; = (vi,%;)y. The correspondence between the dif-
ferent optimization terms are summarized in Table 1; the
optimization reduces to

1 1
info Tr(-AAT —AR" + —KyAAA"
AERnXT 2 2\n

s.t. HAHQ,OO < k. 9

Again, one can use APGD to solve this task; the resulting
computations are deferred to Algorithm 2 in the supplement.

Remark: For « large enough, the solution reduces to that
of Kadri et al. (2016). However, our approximation allows
handling a wide range of kernels in contrast to the analytical
knowledge imposed for the eigensystem of 7}, by Kadri
et al. (2016); Laforgue et al. (2020).

4. Learning with e-insensitive Losses

In this section, we propose a generalized e-insensitive ver-
sion of the square loss on Y involving infimal convolution,
and derive tractable dual optimization algorithm to solve
Problem 1. This loss induces sparsity on the matrix of
coefficients as illustrated in Section 5.

Definition 4.1 (e-insensitive loss). Let ¢ > 0 and p €
[1,4+00]. We define the e-insensitive version of the square
loss with parameters (e, p) as

T2
0= 5 ||'||y DLBE(')«

When Y = R, the loss reduces to the classical e-insensitive
version of the square loss regardless of p. The following
proposition (counterpart of Proposition 3.2) sheds light on
the effect of the infimal convolution on the square loss.

Proposition 4.2. Let e > 0 and p € [1,+0oc]. Then for all

fed .
2(8) = 5 |1f = Projs (1) - (10)

Remark: Proposition 4.2 means that (2(f) = 0 when
[ f]l, < €, i.e. small residuals do not contribute to the risk.
For general p, ¢P( f) is not straightforward to compute due
to the complexity of Projz» (f). As we however use a dual
approach, Problem 1 can still be tackled computationally.

The next result shows how to dualize Problem 1 when the
proposed e-insensitive loss is used.

Proposition 4.3 (Dual e-insensitive). Let ¢ > 0,p €
[1,4+00], and % + % = 1. The dual of Problem 1 writes as

1 2
5[5l = sy + sl

i€[n]

1
+%Z

i€[n], j€[n]

1
(@i)iem) €EY™
kx (s, 25) (o, Tkeaj>y :

(1)

Remark (influence of € and p): Compared to the square
loss, £¥ induces an additional term 3~ € |||, in the
dual. Setting € = 0 recovers the square loss case.

The challenges involving the representation of the dual vari-
ables, and the computability of the different terms compos-
ing Problem 11 are similar to those evoked in Section 3. We
have however traded the constraints on the g-norms of the
dual variables against an additional non-smooth term. As
for the Huber loss family in Section 3, we address this con-
vex non-smooth optimization problem through the APGD
algorithm. The proximal step involves the computation of
PrOX ||| for a suitable gradient stepsize v > 0, which is
the focus of the next proposition.

Proposition 4.4 (Proximal g-norm). Let € > 0. The proxi-
mal operator of € |||, is computable for ¢ = 1 and q = 2,
and given for all (o, 0) €'Y x O by

(prox,y.p, (@) (0) = sign (a(0)) lla(@)| el (12)

1—
lexlly

13)

prox., (@) = o .
+
We recognize in Equation (12) a pointwise soft threshold-

ing, and in Equation (13) an analogous to the block soft
thresholding, both are known to promote sparsity.

To solve Problem 11 we rely on the two kinds of finite
representations introduced previously. In Section 4.1, we
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tackle the p = 2 and p = oo case with the linear splines
based method from Section 3.1, before using dimensionality
reduction from Section 3.2 for the case p = 2 in Section 4.2.

4.1. The Linear Spline Based Approach

Similarly to what was presented in Section 3.1, we use linear
splines to represent the dual variables (v;);[n) as they allow
a pointwise control over the dual variable and thus give rise
to computable proximal operators. Keeping the notations,
the optimization boils down to

AcRnxm 2 Anm

€
+ 1 Z ||a'lHq

ms i€[n]

1 1
inf Tr (ZAAT —AYT + KxAK@AT>

We use APGD to solve it with steps detailed in Algorithm 1.
When ¢ = 1, the proximal operator is the soft thresholding
operator, akin to promote sparsity in the dual coefficients.

4.2. The Eigendecomposition Approach

We mobilize the eigendecomposition technique from Sec-
tion 3.2 to solve Problem 11 in the case p = 2. Using the
same notation as in Problem 9, we get the following task:

AERnxr 2A\n

i€ [n]
APGD is applied to tackle this problem; the details are
deferred to Algorithm 2 in the supplement. Notice that the
proximal operator in this case is the block soft thresholding
operator, known to promote structured row-wise sparsity.

5. Numerical Experiments

In this section, we demonstrate the efficiency of the pro-
posed convoluted losses. The implementation is done in
Python, and is available in the form of an open source pack-
age at https://github.com/allambert/foreg.

The experiments are centered around two key directions:

1. The first goal is to understand the accuracy-sparsity trade-
offs of the e-insensitive loss as a function of the regular-
ization A and insensitivity parameter €.

2. Our second aim is to quantify the robustness of the Huber
losses w.r.t. different forms of outliers with a particular
focus on global versus local ones. To gain further insight
into the robustness w.r.t. corruption, we designed 3 types
of functional outliers with distinct characteristics.

Our proposed losses are investigated on 3 benchmarks: a
synthetic one associated to Gaussian processes, followed by
two real-world ones arising in the context of neuroimaging
and speech analysis. We investigate both questions on the

1 1
inf Tr <2AAT— AR+ KxAAAT)+€ Z llaill, -

synthetic data, and provide further insights for the first and
the second question on the neuroimaging and the speech
dataset, respectively.

We now detail the 3 functional outlier types used in our
experiments on robustness to study the effect of local and
global corruption. Local outliers affect the functions only
on small portions of © whereas global ones contaminates
them in their entirety. To corrupt the functions (y;);c[n], we
first draw a set I C {0,...,n} of size | 7n| corresponding
to the indices to contaminate; 7 € [0, 1] being the propor-
tion of contaminated functions. Then, we perform different
kinds of corruption:

e Type 1: Let w be the permutation defined for j € [||] as
w(l;) = Ijy1if j < |I] and w({ ;) = Iy, then for i € I,
the data point (;, ;) is replaced by (x5, =y, (s))-

e Type 2: Given covariance parameters ¢ € R” and an
intensity parameter ( > 0, we draw a Gaussian process
ge ~ GP(0,k,,) for ¢ € [r] where k,, is the Gaussian
covariance function with standard deviation .. Then, for
1 € I, we replace (z;,y;) with (;vi, Zce[r] aicgc> where
the coefficients a;. are drawn i.i.d. from a uniform distribu-
tion U ([—0.5¢, 0.5¢]).

e Type 3: For each ¢ € I, a randomly chosen fraction
€ € [0, 1] of the discrete observations for y; is replaced by
random draws from a uniform distribution U ([—bpmax, bmax)),
where by, 1= n}z}x|yl(ﬁj)| The corruptions of Type 1 and

2 are global ones whereas Type 3 is a local one. In terms of
the characteristics of the different corruptions, for Type 1
the properties of the outlier functions remain close to those
of the non-outlier ones, whereas with Type 2 they become
completely different. Finally, for corrupted data in the hy-
perparameter choice using cross-validation the mean was
replaced with median.

For the losses H.! and /2 we solve the problem based on
the representation with linear splines (see Section 3.1 and
Section 4.1 respectively); this is the only possible approach.
However for the losses H2 and /2 we exploit the representa-
tion using a truncated basis of approximate eigenfunctions
(see Section 3.2 and Section 4.2 respectively), in doing so
we reduce the computational cost compared to the linear
splines approach. Concerning optimization, we deployed
the APGD method (Beck & Teboulle, 2009) with backtrack-
ing line search, and adaptive restart (O’Donoghue & Candes,
2015). The initialization in APGD was carried out with the
closed-form solution available for the square loss using a
Sylvester solver.

Regarding the performance measure applied for evaluation,
let ((yi(0i;)) je[m,])icin) be the set of observed discretized
functions and let (4;(6;)) je[m.])ic[n) be an estimated set
of discretized functions, where (6;;) j[m,] denotes the ob-
servation locations for y;. We used the mean squared error
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Table 2: MSEs and sparsity on the DTI dataset

XA METRIC a5 H? H} 02 0

1072 MSE (1071 2.540.19 2.21+0.31 2.214+0.31 2.41+0.26 2.54+0.23
SPARSITY - - - 27.44+17.2% 85.94+10.7%

1073 MSE (1071) 2.184+0.27 2.23+0.32 2.214+0.32 2.240.29 2.18+0.28
SPARSITY - - - 34469% 12.7£10.5%
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Figure 1: Interaction between regularization A and insensi-
tivity e for the loss ¢ (1st row) and ¢>° (2nd row).

defined as
1 ~
MSE := — DY lwibi) — 6i(6:))°
i€[n] j€[m;]
When m; = m for all 7, we normalize it by m and define
NMSE:= L MSE.

5.1. Experiments on the synthetic dataset

The impact of the different losses are investigated in detail
on a function-to-function synthetic dataset whose construc-
tion is detailed in Appendix B.2. The kernels kx and kg
are chosen to be Gaussian and the experiments are averaged
over 20 draws with training and testing samples of size 100.

e-insensitive loss: To study the interaction between A and e
and the resulting sparsity-accuracy trade-offs, we added i.i.d.
Gaussian noise with standard deviation 0.5 to the observa-
tions of the output functions. The resulting MSE values are
summarized in Fig. 1. For both the ¢ and the />° loss, one
can reduce , increase € and get a fair amount of sparsity
while making a small compromise in terms of accuracy.

Huber loss: We investigate the robustness of the Huber loss
to different types of outliers while selecting both A\ and
through robust cross validation. The resulting MSE values
are summarized in Fig. 2. As it can be seen in the first row
of the figure, the losses H} and H? are significantly more
robust to global outliers than the square loss, both when the
outliers’ intensity ¢ and the proportion 7 of contaminated

— =0.1 __]--t-- (=3 - _,1.__,__4
o ’ ,r—*"k‘l i | 10 {/’f"* 1 1 A
w X,/f’A oL L A _t I
= //////__—'_-_4 . /AT |

=107 b I e 1 | |

/
/

1 2 3 4 0.00 0.05 0.10 0.15 0.20
Type 2 global outliers (¢) Type 2 global outliers ()

= £=0.1 1/}[_47—}—-4"* L|F=1 oy —+— H!

2 J-1- 10 e I

g |1 RN

2] / /! 2

s S 14 / H?

210 A A o e
0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2 0.3

Type 3 local outliers () Type 3 local outliers (&)

Figure 2: Robustness to different types of outliers.

samples vary. The second row of the figure shows that
when dealing with local outliers, the closer one gets to the
whole sample being contaminated (7 = 1), the less robust
H? becomes. On the other hand, H} shows remarkable
robustness as it can be observed at the bottom right panel
(in case of 7 = 1). One can interpret this phenomenon by
noticing that the loss H?2 can penalize less big discrepancy
between functions in the ||.||y norm sense, but if all samples
are contaminated locally a little, the outliers are meddled in
the norm and so H? becomes inefficient.

5.2. Experiments on the DTI dataset

In our next experiment we considered the DTI benchmark?.
The dataset contains a collection of fractional anisotropy
profiles deduced from diffusion tensor imaging scans, and
we take the first scans of the n = 100 multiple sclerosis
patients. The profiles are given along two tracts, the corpus
callosum and the right cortiospinal. The goal is to predict
the latter function from the former, which can be framed
as a function-to-function regression problem. When some
functions admit missing observations, we fill in the gaps by
linear interpolation, and later use the MSE as metric. We
use a Gaussian kernel for ky and a Laplacian one for kg
and average over 10 runs with Ny, = 70 and ney = 30.

Similarly to our experiences gained on the synthetic dataset,
a compromise can be made between the two parameters A

and e to get increased sparsity, as can be observed in Table 2.

This dataset was collected at the Johns Hopkins University
and the Kennedy-Krieger Institute.
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Table 3: MSEs on speech data

VT Yelfl§ HE

Hy £ £

LP 6.58+0.62 6.594+0.62
LA 4.65+0.55 4.65+0.55
TBCL 4.26+0.46 4.26+0.46
TBCD 4.67+0.37 4.68+0.38
VEL 2.94+0.5 2.9440.5
GLO 7.25+0.65 7.26£0.65
TTCL 3.76+0.21 3.76+0.21
TTCD 5.93+0.34 5.94+0.34

6.59+0.64 6.58+0.62 6.58+0.62
4.66+0.55 4.64+0.55 4.64+0.55
4.27+0.46 4.26+0.46 4.26+0.46
4.7£0.38 4.67+0.38 4.67+0.38
2.95+0.5 2.94+0.5 2.94+0.5
7.25+0.64 7.25+0.65 7.25+0.65
3.74+£0.2 3.73+0.21 3.73£0.21
5.93+0.35 5.92+0.34 5.92+0.34

Table 4: MSEs on contaminated speech data

VT

TYPE 1 OUTLIERS (7 = 0.1) TYPE 3 OUTLIERS (7 = 0.1, £ = 0.1)

Y|l H;; H,

Vollllj HR H,

LP 9.4+0.75 9.440.66 9.19+0.79 7.53+0.58 7.62+0.59 7.0+ 0.59
LA 5.72+£0.76  5.63£0.71 5.52+0.69 5.06+0.6 5.11+0.6 5.09£0.55
TBCL 6.71+£0.96 6.14£0.97 5.98+0.93 5.06+0.51 5.164+0.48 4.72+ 0.54
TBCD 5.8+0.41 5.86+0.44 5.83+0.44 5.184£0.4 5.26+0.41 5.08+ 0.4
VEL 4.37+0.56 3.76£0.62 3.76+0.59 3.524+0.57 3.5440.58 3.41+ 0.57
GLO 9.61£0.87 9.51+0.86 9.53+0.84 7.94+0.61 8.02£0.61 7.76+ 0.61
TTCL 15.06%£2.22 9.51£0.63 9.48+0.6 5.89+0.43 5.914+0.45 6.62+0.66
TTCD 8.15+0.48 7.96+£0.49 8.02+0.51 6.63+0.44 6.74+0.42 6.36=+ 0.39

Moreover, we highlight that even for optimal regularization
with respect to the square loss A = 1072, one gets a fair
amount of sparsity while getting the same score with £2°
and a very small difference with ¢2.

5.3. Speech data

In this section, we focus on a speech inversion problem
(Mitra et al., 2009). Particularly, our goal is to predict a
vocal tract (VT) configuration that likely produced a speech
signal (Richmond, 2002). This benchmark encompasses
n = 413 synthetically pronounced words to which 8 VT
functions are associated: LA, LP, TTCD, TTCL, TBCD,
TBCL, VEL, GLO. This is then a time-series—to—function
regression problem. We predict the VT functions separately
in eight subproblems.

Since the words are of varying length, we use the MSE as
metric and extend symmetrically the signals to match the
longest word for in training. We encode the input sounds
through 13 mel-frequency cepstral coefficients (MFCC) and
normalize the VT functions’ values to the range [-1, 1]. We
average over 10 train-test splits taking ng,;n = 250 and
nwest = 163. Finally we take an integral Gaussian kernel
on the standardized MFCCs (see Appendix B for further
details) as k¢ and a Laplace kernel as kg.

We first compare all the losses on untainted data in Table 3.
Then to evaluate the robustness of the Huber losses, we ran
experiments on contaminated data with two configurations.
In the first case, we added Type 1 (global) outliers with

7 = 0.1 and in the second one, we added Type 3 (local)
outliers with 7 = 0.1 and £ = 0.1. The results are displayed
in Table 4. In the contaminated setting, one gets results
similar to ones obtained on the synthetic dataset. The loss
H works especially well for local outliers whereas the loss
H?2 is robust only to global outliers.

6. Conclusion

In this paper we introduced generalized families of loss
functions based on infimal convolution and p-norms for
functional output regression. The resulting optimization
problems were handled using duality principles. Future
work could focus on extending these techniques to a wider
choice of p using iterative techniques for the proximal steps.
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The supplement is structured as follows. We present the proofs of our results in Appendix A. Appendix B complements the
main part of the paper by providing additional algorithmic and experimental details. Finally, Appendix C includes additional
plots and insights about the loss functions.

A. Proofs

In this section, we present the proofs of our results. In Appendix A.1 we recall some definitions from convex optimization
used throughout the proofs, with focus on Fenchel-Legendre conjugation and proximal operators, followed by the proofs
themselves (Appendix A.2-A.8).

A.1. Reminder on Convex Optimization

Recall that Y := L?[O, ;1] where © C R is a compact set endowed with a probability measure /.

Definition A.1 (Proper, convex, lower semi-continuous functions). We denote by I'g(Y) the set of functions J: Y —
]—o00, +0o0] that are

1. proper: dom(J) :={f €Y : J(f) < o0} # &,
2. convex: J(tf + (1 —t)g) <tJ(f)+ (1 —1t)J(g) forVf,g € Y,Vt € [0,1], and

3. lower semicontinuous: lim,, _, , J(g) > J(f) for Vf € Y, where lim denotes limit inferior.

Definition A.2. The Fenchel-Legendre conjugate of a function J: Y — [—00, +00] is defined as

J*(f) =sup (f,9)y —J(9), f€Y.

geY

The Fenchel-Legendre conjugate of a function J is always convex. It is also involutive on I'g(Y), meaning that (J*)* = J
for any J € T'g(Y). We gather in Table 5 examples and properties of Fenchel-Legendre conjugates.

We now introduce the infimal convolution operator following Bauschke et al. (2011).

Definition A.3 (Infimal convolution). The infimal convolution of two functions L, J: Y — ]—oo, +0o0] is

Y — [—00, +0]
LOJ: (fH;ggL(ngJ(g)) '

One key property of the infimal convolution operator is that it behaves nicely under Fenchel-Legendre conjugation, as it is
detailed in the following proposition.

Lemma A.4 (Bauschke et al. 2011, Proposition 13.24). Let L, J: Y — |—00, +00|. Then
(LOJ)y*=L*+J".

We now define the proximal operator, used as a replacement for the classical gradient step in the presence of non-differentiable
objective functions.

Definition A.5 (Proximal operator, Moreau 1965). The proximal operator (or proximal map) is defined as

1
prox ;(f) := argergin J9)+ 51 - glly . for (J, f) € To(Y) x Y. (14)
g

One advantage of working with functions in I'g(Y) is that the proximal operator is always well-defined. Its computation is
doable for various losses thanks to the following lemma.

Lemma A.6 (Moreau decomposition, Moreau 1965). Let J € T'o(Y) and v > 0. Then

Id = prox, ; (*) + v prox ./ (-/7), (15)

where 1d stands for the identity operator.
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Table 5: Properties of Fenchel-Legendre conjugate, for any J, L: Y — [—o00, +00] and p, q € [1, +o0] s.t. % + % =1.

Function  Fenchel-Legendre conjugate

SIS 2N

[I-1l, LB

eJ eJ*(:) forall e > 0
J(-—1y) J* 4+ (,y)y forally € Y
LgJ L+ J*

We remind the reader that we want to solve

o1 A b2
. %:] Mo =) 5 b 1o
7 n

where K: X x X — £(Y) is a decomposable OVK of the form K = kxT},. Here kx: X x X - Randkg: © x © - R
are continuous real-valued kernels, and T, € £(Y) is the integral operator associated to ke, defined for all « € Y by

(Tho @) () = /@ k(0,0 )c(0)du(0') for all 6 € ©.

We also remind the reader to the dual of Problem 16 when the loss writes as an infimal convolution.
Lemma A.7 (Dualization for convoluted losses, Laforgue et al. 2020). Let L be a loss function defined as L = 1 ||- ||§ Og
Sor some g: Y —| — 00, +00|. Then the solution of Problem 16 is given by

1

ﬁ = m Z kx(')xi)Tk)@&ia (17)

i€[n]

with (&) icpn) € Y™ being the solution of the dual task

1 1
> {2 ol = (@i, i)y +g*(ai)} +5m D @i my) (o Tho @)y - (18)

1
@;)ien]€Y™ L
(@i)iein i€[n] i,j€[n]

A.2. Proof of Proposition 3.3

Before going through the proof, let us recall Holder’s inequality.

Lemma A.8 (Holder’s inequality). Let p,q € [1,+00] be conjugate exponents, in other words * + 1 = 1. Let © be a
measurable space enriched with probability measure 1. Then for any f, g : © — R measurable functions one has

/@If(9)9(9)ldu(9) <171, llgllg -

Moreover; if p €]1,+00[, f € LP[O, u] and g € L1[O, p], then equality is attained if and only if | f|” and |g|" are linearly
dependent in L[©, p].
We now introduce a lemma useful to the proof of Proposition 3.3.

Lemma A.9. Let p, q €]1, +00[ be conjugate exponents and f € Y such thar 1 < ||f||q < 400. Then there exist h € Y and
C > 0 such that

(f, By — IInll, > C.

Moreover, one can choose h such that whenever f(0) = 0, h(8) = 0 also holds.
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Proof of Lemma A.9  Let p, ¢ €]1, +oc[ be conjugate exponents and f € J such that 1 < [|f||, < +oo. We know that

Holder’s inequality becomes an equality if and only if | f|? and |g|” are linearly dependent in L'[©, u1]. To that end, let
g: © — R be defined as

g(0) = sign(f(0)) |£(0)]? where € ©. (19)

It is to be noted that g does not necessarily belong to Y, yet it belongs to LP[©, u]. By construction, we have

/ £(0)g(0)du(®) = 111, 9, - (20)

We consider a sequence (g, )nen € Y such that g,,(0) = sign (g(#)) min (|g(0)|,n) with (n,0) € N x ©. As |g,(0)| <n
for all (n,0) € N x © and i is a probability measure, the functions g,, belong to Y. Since (i) g, (0) ——— g(#) for all
6 € O and (ii) |gn(0)| < |g(0)]| for any n € N holds p-almost everywhere, the dominated convergence theorem in L?[O, p]

ensures that |g — gy||,, 7% 0. Consequently, it holds that for all n € N,

- [ 1O, 0)00) -

®)
< £l llg = gnll, -

0)\ ¢ [ 150)160) - 5000
e

In (a) we used that the absolute value of the integral can be upper bounded by the integral of the absolute value, in (b)
n—oo n—oo

the Holder’s inequality was invoked. Thus by |lg — gn |, —— 0and || f[|, < +oc, this means that (f, g,)y ——
Jo £(8)g(8)du(8) ‘= |I£1, llgll,,. and for all e > 0, there exist N' € N such that for all n > N, {f, gu)y > (I f]l, —€) lg]l,-

. 1
In particular for e = HfHQ % llgl,- Then,

> 0, we have (f, gn)y >

f f
(fign)y — ngv\lp > <f,gzv>y - ||g||,, > ” 1A, lgll, = llgll, = il H I -

—,_/
>0

L 1+ .
In (c) we used that [lgn ||, < |lgll,» (d) is implied by (f, gn)y > Hszq lgll,,- Taking h = gy and C' = ”fH H H

yields the announced result, by noticing that (19) shows that f(6) = 0 also implies h(0) = gn(0) = g(0) = 0.

We are now ready to prove Proposition 3.3, which is the building block for dualizing optimization problems resulting from
the generalized Huber and e-insensitive losses whose definition can be found respectively in Definition 3.1 and Definition 4.1.
The proposition is an extension of the well-studied finite-dimensional case to the space Y.

Proposition (3.3). Let p,q € [1,+00] such that Il) + % = 1. Then
Il = esa () (21)

Proof The proof is structured as follows. We first consider the case of p = 1, followed by p €]1, 4], and p = +0c0. The
reasoning in all cases rely heavily on Holder’s inequality. Throughout the proof it is assumed that f € Y.

Case p = 1: The reasoning goes as follows: we show that || f||_ < 1 implies ||-]|] (f) = 0, and || f||, > 1 gives
[[I7 (f) = +o0, which allow one to conclude that ||-||] = ¢z ().

e When | f||, < 1: Exploiting Holder’s inequality, it holds that

(f:90y < lfll llglly  forallg ey

Since || f|| ., < 1, this implies that
(f:9)y —llgll, <0 forallg €Y.

The supremum being attained for g = 0, we conclude that ||-||7 (f) = 0.
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e When ||f|| > 1:Let A = {9 €0 :|f(9)] > %} By the definition of the essential supremum, p(A) > 0.

We define g: © — R to be the function: ¢g(f) = sign (f(0)) if & € A and 0 otherwise. Since g is bounded, g € Y.
Denoting by ¢ > 0 a running parameter, it holds that

<ﬁ@wﬂ@hgﬁmw—wM%ﬁ/f@MWM@—wmg“/U@MM®4MM
(] A

® 1+ -1 5
2 () M e gy = ) e =t oy o
—_———
>0

In (a) we used the definition of g, (b) is implied by the fact that | f(6)| > % forall @ € A. Thus ||-||] (f) = +oo,
which concludes the proof.

Case p €]1, +oo[:  The reasoning proceeds as follows: we show that (i) || f[|, < 1 implies H||; (f)=0aG)1<|fl, <
+00 gives ||-||7 (f) = 400, and (iii) || f||, = 400 results in [|-||> (f) = +o00. This allows us to conclude that ||-[|* = 9 (-).

e When || f||, < 1: By Hélder’s inequality, it holds that

(fr9)y <1 flg llgll, forallg €Y.

Exploiting || f]| g < 1, we get that
(f,9)y — llgll, < Oforallg €Y.

The supremum being reached for g = 0; we conclude that ||- ||; (f)=0.

e When 1 < [[f]|, < +oc: According to Lemma A.9, there exist g € J and C' > 0 such that

(fr9)y —llgll, = C.

Denoting by £ > 0 a running parameter, one arrives at

t—o0

{f:tg)y — lltgll, = 1€ —— +oc.
This shows that ||| (f) = +o0.

e When ||f||, = +oo: We consider the sequence of functions (f,)nen defined as f,(6) = f(0) if [f(0)| < n and
fn(8) = 0 otherwise, where (n,6) € N x ©. Each f, is bounded, thus belongs to L[, u], and the monotone

n—oo

convergence theorem applied to the functions | f,,| states that | f,.||, — [|f||, = +o0o. Thus, there exists N € N
such that || fy ||, > 1. We can then apply Lemma A.9 to get g € Y and C' > 0 such that

(fv, 9y —llgll, = C.
According to Lemma A.9, g(6) = 0 whenever fy(0) = 0, which ensures that

(fs9)y = (N, 9)y.

Taking a running parameter ¢ > 0, this means that

t—o0

(Inotg)y — lltgll, = (f.tg)y — lltgll, = € —— +o0,

which shows that ||-||* (f) = +oo.
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Case p = +0o: The reasoning goes as follows: we show that || f||, < 1 implies ||-||X_ (f) = 0, and that || f||, > 1 gives
-lI% (f) = 400, which allows one to conclude that ||-|%, = L1 ().

e When || f||; < 1: By applying Holder’s inequality we get that (f, g)y < || f]|; |lg|| forall g € Y. Using the condition
that || f||, < 1, this means that (f, g)y — ||g]|,, < O0forall g € Y. Since the supremum is reached for g = 0, we get
that |-, (/) = 0.

e When || f||, > 1: Letg: 6 — sign (f(#)). Since g is bounded by 1, it belongs to Y, and (f, g)y = || f||,. Running a free

t—o0

parameter ¢ > 0, this means that (f,tg)y — ¢ ||g||., = ¢ (||f|l; — 1) —— +oc which implies that ||-||*_ (f) = 4o0.
—_———

>0
O
A.3. Proof of Proposition 3.2
Proposition (3.2). Let k > 0, p € [1,+0o0], and q the dual exponent of p (i.e., % + % =1). Thenforall f €Y,
o SR i I, <
K = . 2 . .
% HPrOJBg (f)||‘d + K ||f — Projgs (f)Hp otherwise.
Proof Let us introduce the notation R(g) = 3 || f — g||§ + £ gl where f €Y, g € Y. Then
p(py Y ® ©1 - 2 :
HE(f) = ;Telg R(g) = R(PTOXRH-HP(JC)) =3 ||PT0JBg(f)Hy +r|f - PTOJBg(f)Hp, (22)

where (a) follows from the definition of the infimal convolution, (b) is implied by that of the proximal operator using that
%[, € To(Y). (c) is a consequence of the Moreau decomposition (Lemma A.6) as

(d) (e) .
prOXn\LHp(f) =f- PTOX(HH.HP)*(JC) =f- prOXLBg fH=r- Projga (f), (23)
where in (d) and (e) we used that
") TR
(’”v||~\|p) = g () with © =1, (24)
prox, , W Projga . (25)

(f) follows from the facts listed in the 3rd and the 2nd line of Table 5:

(s 10,) " = w (111,) /) = sy (/) = 1 ().

(g) is implied by ts = ¢ (-/k), the precomposition rule of proximal operators (prox(,.) = 1 prox,. () holding for
any o > 0; see (2.2) in (Parikh & Boyd, 2014)), and prox, , = ProjB;z:

q
1

PIOX, o = PIOX, . (/x) = KPIOX 1, , (-/k) = K proX, (-/k) = K Projga(-/K) = Projga .

Finally we note that when f = Projgs (f) (& f € B < || ||, < ), (22) simplifies to sIf15 O

A.4. Proof of Proposition 3.4
Proposition (3.4). Let p, k € [1,4+00]%]0, +00] and % + % = 1. Then the dual of Problem 16 with loss HE writes as

n

1 1 .
Z 3 ”%”‘25 — (o, yi)y + oy Z kx(zi, ;) <(Xi,Tk®Oéj>y s.t. Hain < K forVi € [n]. (26)

m
(ou)ier €Y g b
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Proof Applying Lemma A.7 and (24) give the result. O

A.5. Proof of Proposition 3.5

Proposition (3.5). Let & > 0. The projection on B is tractable for ¢ = 2 and ¢ = oo and can be expressed for all
(a,0) €Y xOas

Projg: (o) = min (17 ||04|2)a’ ifa#0 (27)
(Proszo (a)) () = sign (a(9)) min (k, |a(8))). (28)

Proof The projection on the 2-ball of radius « is similar to the finite-dimensional case (Y = R?) for which Equation (27)
is well-known.

We now turn to the case of ¢ = co. Let a € Y. By definition,

. o1
Projz (a) = arg min 7/ [a(8) — y(0)]% du(0) + 1= (Y)- (29)
yeyY €]
Since o € Y, the function g defined as
g(0) = sign (a(#)) min (k, |a(0)]), 6 € O,

is measurable, it is in Y, and one can verify easily that it is the solution of Equation (29); it corresponds to taking the
pointwise projection of « on the segment [—x, &]. O

A.6. Proof of Proposition 4.2

Proposition (4.2). Let ¢ > 0 and p € [, +oc]. Then (2(f) = % || — Projg ()| for all f €Y.

Proof Let R(g)=1|f - g||§ +tpr(g) where f € Yand g € Y. Then

()@ inf Blg) ¥ R (prox,,, (1)) < R (Proisy (1) © 5 I~ Projer (1]}

where (a) follows from the definition of the infimal convolution, (b) is implied by that of the proximal operator and by
tgr € I'g(Y), (c) is the consequence of prox, , (f) = Projgr (f) implied by (25), in (d) the definition of R was applied. []

A.7. Proof of Proposition 4.3
Proposition (4.3). Let (p,€) € [1,400]x]0, +00], and% + % = 1. Then, the dual of Problem 16 writes as

. 1, .o 1
ol S Gl = sy ellal| + i 3 o) fon Troasy a0
i€[n] i,5€[n]
Proof Applying Lemma A.7 with
(52 ()" =€l 3D
gives the result. (31) is the consequence of (24) and the involutive property of the Fenchel-Legendre conjugate. O

A.8. Proof of Proposition 4.4

Proposition (4.4). Let € > 0. The proximal operator of €||-||, is computable for ¢ = 1 and q = 2, and given for all
(o,0) €Y x O by

(pros.y, (@) (8) = sign (a(8)) [|a(6)] — ] @)
prox, (@) =a|l— ——|  ifa#0. (33)
2 ||04Hy +
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Algorithm 2 APGD with eigenbasis representation

input : Gram matrix Ko, matrix of eigenvalues A, data scalar product matrix R, regularization parameter A, loss
parameters (x, 2) or (¢, 2), gradient step 7y

init : A0 ACD =0 e R

for epoch t fromOtoT — 1 do

// gradient step

V=A® i% (A(t) _ A(tfl))

U=V -—7(V+{LKxVA-R)

// proximal step

for row i € [n] do

o K ) . 2
_mln(Huin’l) w;, // if Hj

a =1- w; // if £2
[Tasll, +

return A (D)

Proof By (23) we know that
prox|. (f) = f = Projsz(f)- (34)

The projection operator is known from Proposition 3.5 in the case of p = 2 and p = oo, which allows to express the proximal
operator of the g-norm for ¢ = 2 and ¢ = 1 and by substituting Equation (27) and Equation (28) into Equation (34). O]

B. Additional Details

In this section we present additional algorithmic details as well as complement the numerical experiments presented in the
main document.

B.1. Algorithmic Details

Algorithm 2 fully describes how to learn models with the representation relying on the eigendecomposition of the integral
operator developed in Section 3.2 and Section 4.2.

B.2. Synthetic Data

Below we detail the generation process of the synthetic dataset (Section B.2.1), we expose in full detail the parameters
used in the experiments (Section B.2.2; see Fig. 1 and 2 in the main paper), and we provide additional illustration for the
interaction between the Huber loss’ x and the regularization parameter A (Section B.2.3).

B.2.1. GENERATION PROCESS

Given covariance parameters (6™, 6°") € R” x R” for ¢ € [r] we draw and fix Gaussian processes gi' ~ GP(0, ko)

and g ~ GP(0, ko). We then generate n samples as (Z celr] Uieg™, Dcelr] uicgg”t> il where the coefficients
. . i€[n

u;c are drawn i.i.d. according to a uniform distribution U ([<0.5,0.5]). In the experiments, we take = 4 and set

o™ = 0" = (0.05,0.1,0.5,0.7). We show input and output functions drawn in this manner in the first and second row of

Fig. 3. In the bottom row we display outliers of Type 2 with & = (0.01, 0.05, 1, 4) and intensity ¢ = 2. For the contaminated

indices ¢ in I we add the corresponding outlier to the function y;

B.2.2. EXPERIMENTAL DETAILS

We provide here the full details of the parameters used for the experiments on the toy dataset. For all experiments, we fix the
parameter p™ of the input Gaussian kernel ky : (z1,x2) — exp (—p||lzo — z1[|%) to p™ = 0.01 and that of the output
Gaussian kernel to p°* = 100. Indeed, since we are only given discrete observations for the input functions as well, we
use the available observations to approximate the norms in the above kernels. For the experiments on robustness which
results are displayed in Fig. 2 of the main paper, we select via cross-validation the regularization parameter A and the x
parameters of the Huber loss, considering values in a geometric grid of size 10 ranging from 1075 to 10~2 for \ and values
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Figure 3: Examples from the toy dataset and corresponding type 2 outliers.

in a geometric grid of size 25 ranging from 1072 to 10~ for k.

B.2.3. ADDITIONAL ILLUSTRATIONS

To highlight the interaction between the regularization parameter A and the parameter  of the Huber loss, we plot the
NMSE values for various values of A and « using the toy dataset corrupted with the two main types of contamination used
in the main paper, Type 2 and Type 3 outliers. The results are displayed in Fig. 4 and confirm that by making x and A vary,
when the data are corrupted, we can always find a configuration that is significantly more robust than the square loss. In
accordance with one’s expectation, when dealing with local outliers (Fig. 4b), the loss H} is much more efficient than the
loss H2. However, when dealing with global outliers (Fig. 4a), the two losses perform equally well.

B.3. DTI Data

In this section we provide details regarding the experiments on the DTI dataset. For this dataset, we use a Gaussian kernel as
input kernel and a Laplace kernel as output kernel, for the first we fix its parameter to p™ = 1.25, and for the second, defined
as ko : (01, 02) — exp(—p™||zo — x1||x), we fix its parameter to p°" = 10. We consider two values of A, the first one
(A = 107?) is chosen too small for the square loss to highlight the additional sparsity-inducing regularization possibilities
offered by the e-insensitive loss through the parameter ¢, while the second one (A = 10~3) corresponds to a near-optimal
value for the square loss. We do cross-validate the parameters of the losses. For the loss /2 we consider values of € in a
geometric grid of size 50 ranging from 103 to 10~1, while for the loss £>°, we search in a geometric grid of the same size,
however ranging from 10~ to 10~°-5. For the Huber losses H! and H?2, we search for  using a geometric grid of size 50
ranging this time from 10~% to 1071,

B.4. Speech Data
This section is dedicated to additional details about the experiments carried out on the speech benchmark.

Input kernel: As highlighted in the main paper, we encode the input sounds through 13 mel-frequency cepstral coefficients
(MFCC). To deal with this particular input data type we used the following kernel. Let ((xgéf))ve[w])ie[n], jelm) be the
transformed input data where v serves as an index for the MFCC number. The number of locations m is the same for all
i € [n] since we extend the signals to match the longest one to be able to train the models. We then center and reduce each

MFCC using all samples and sampling locations to compute the mean and standard deviation; let ((ig))ﬂe[lg] )icn],je[m]
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Figure 4: NMSE as a function of A and Huber losses’ « with two types of outliers.

be the resulting standardized input data. Denoting by Z; the element ((:iz(-;))ve[lg] )je[m]> We then use the following kernel:

(s = 1 i -(v) _ =)
kx : (Zo,%1) — - Z exp [ —p" Z (%j fx1j>
j€E[m] v€E[13]

Experimental details: For all the experiments (with or without corruption), we select the parameter of the input kernel p™,
the regularization parameter and the parameters of the losses using cross-validation. We fix the parameter of the Laplace
output kernel to p°** = 10. However, to reduce the computational burden, we perform the selection of the parameter p' only
for the square loss, and then take the corresponding values for the other losses. For this parameter values in a geometric grid
of size 15 ranging from 102 to 10~%° are considered. For ), the search space is a geometric grid of size 10 ranging from
1071% to 10~°. Finally, for the e-insensitive loss, values of ¢ in a geometric grid of size 80 ranging from 1075 to 10~ ! are
considered, while for the Huber losses we search for # in a geometric grid of size 100 ranging from 10~7 to 1.

C. Hlustration of Loss Functions

In this section we illustrate the differences between our proposed convoluted losses in several ways. In Section C.1 we study
empirically how the choice of p affects the sensitivity of the Huber loss HE to different kind of outliers. In Section C.2, we
plot some of our proposed losses when they are defined either on R or R2.

C.1. Discussion on the Choice of p for H?

As it is highlighted in the main paper, solving Problem (8) for p & {1, 2} is unpractical since it involves the computation
of n projections on a g-ball at each APGD iteration. Performing such projection is feasible (it is a convex optimization
problem) but it has to be done in an iterative way. In our case, to run APGD with such inner iterations turns out to be too
time consuming. However we still can approximately calculate the losses H2 using Proposition 3.2 for any p (computing
the involved projection iteratively). We thus propose to leverage this possibility to study empirically the sensitivity of the
Huber losses H? to global and local outliers, for different values of p.

The impact of the outliers on the solution of a regularized empirical risk minimization problem is partly determined by the
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Figure 5: Sensitivity of H to outliers for various p € [1, 2]

contribution of the outliers to the data-fitting term relatively to the contribution of the normal observations. In order to
investigate this aspect, we study and define next a quantity which we call Robustness Ratio.

Let (e;)icn) € (L?[O, u])™ be a set of functional residuals and let (€;) ;[ be the same functional residuals but contaminated
with outliers. In practice, we have to choose a probability distribution to draw the functions (e;);c|,) from, and an outlier
distribution to corrupt those. For the functions (e;);c[,,) we use our synthetic data generation process (see Section B.2.1),
and for the outliers, we consider the same type 2 and type 3 outliers as in the experiments in Section 5.1 from the main
paper. We then define the Robustness Ratio as

1 HP (6
Robustness Ratio := inf — Z ';Eezi.
€;

K>0 T Hi
1€[n]

The best value of this quantity is 1; it means that the loss is not affected at all by the outliers, but it is indeed not possible to
reach such value. In practice, we restrain our study to p € [1, 2]. For each p we reduce the search for  to different empirical
quantiles of the g-norms of the uncorrupted functions (e;);c[,), Where g is the dual exponent of p. It makes sense to do
so since « corresponds to a g-norm threshold which separates observations considered to be outliers from those deemed
normal (see Proposition 3.2). We consider the {0.5,0.6,0.7,0.8,0.9,0.95, 0.99}-th such empirical quantiles. For each p,
we compute the robustness ratio for s equal to each of those quantiles, and then for each level of corruption, we select the
value which minimizes the ratio. This indeed corresponds to an ideal setting, since in practice, we never have access to the
uncorrupted data and we can never optimize  in this way. Thus the robustness ratio reflects more of a general robustness
property of the loss in an optimal setting.

In accordance with one’s expectation, when the data is contaminated with global outliers (left panel of Fig. 5), it is better to
choose p = 2 whereas when the contamination is local (right panel of Fig. 5), p = 1 is almost the best choice; even though
it seems that choosing p slightly bigger than 1 could be a tad better. Even though, we highlight that this analysis based on
the Robustness Ratio has its limits; indeed we do not take into account the interplay between the data-fitting term and the
regularization term which takes place during optimization. This certainly explains why we found the losses H! and H? to
perform equally well in practice whereas based only on the Robustness Ratio analysis (left panel of Fig. 5) we would have
said otherwise. The findings in presence of local outliers (right panel of Fig . 5) are nevertheless coherent with what we
observed in practice for the losses H! and H? in our experiments.

C.2. Loss Examples in 1d and 2d

In this section, we plot several of the proposed losses when they are defined on R and R?. In Fig. 6, we compare the Huber
(Fig. 6b) and the e-insensitive (Fig. 6a) losses with the square loss when they are defined on R.

Then in Fig. 7 we highlight the influence of p on the shape of the e-insensitive loss /7 defined on R?. We set ¢ = 1 and
consider values of p € {1.01,1.5,2, 3,5, +00}. We display ¢1-°" in Fig. 7a, ¢1-® in Fig. 7b, 2 in Fig. 7c, £2 in Fig. 7d, £2 in
Fig. 7e and ¢2° in Fig. 7f.

Finally, in Fig. 8 we underline the influence that the parameter p has on our proposed Huber losses when it is defined on R?;
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Figure 6: Illustrations of the different losses defined on R.

we take = 0.8 and we display H? in Fig. 8a, H!-% in Fig. 8b, H!-?% in Fig. 8c and H! in Fig. 8d.
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Figure 8: Examples of the proposed Huber losses defined on R? for different values of p.
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