L1-Gradient Flow of Convex Functionals - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

L1-Gradient Flow of Convex Functionals

Résumé

We are interested in the gradient flow of a general first order convex functional with respect to the L¹-topology. By means of an implicit minimization scheme, we show existence of a global limit solution, which satisfies an energy-dissipation estimate, and solves a non-linear and non-local gradient flow equation, under the assumption of strong convexity of the energy. Under a monotonicity assumption we can also prove uniqueness of the limit solution, even though this remains an open question in full generality. We also consider a geometric evolution corresponding to the L¹-gradient flow of the anisotropic perimeter. When the initial set is convex, we show that the limit solution is monotone for the inclusion, convex and unique until it reaches the Cheeger set of the initial datum. Eventually, we show with some examples that uniqueness cannot be expected in general in the geometric case.
Fichier principal
Vignette du fichier
GFL7.pdf (378.13 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03805962 , version 1 (07-10-2022)
hal-03805962 , version 2 (12-10-2023)

Identifiants

  • HAL Id : hal-03805962 , version 1

Citer

Antonin Chambolle, Matteo Novaga. L1-Gradient Flow of Convex Functionals. 2022. ⟨hal-03805962v1⟩
110 Consultations
264 Téléchargements

Partager

More