Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2024

Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators

Résumé

We estimate the lowest eigenvalue in the gap of the essential spectrum of a Dirac operator with mass in terms of a Lebesgue norm of the potential. Such a bound is the counterpart for Dirac operators of the Keller estimates for the Schrödinger operator, which are equivalent to Gagliardo-Nirenberg-Sobolev interpolation inequalities. Domain, self-adjointness, optimality and critical values of the norms are addressed, while the optimal potential is given by a Dirac equation with a Kerr nonlinearity. A new critical bound appears, which is the smallest value of the norm of the potential for which eigenvalues may reach the bottom of the gap in the essential spectrum. The Keller estimate is then extended to a Lieb-Thirring inequality for the eigenvalues in the gap. Most of our result are established in the Birman-Schwinger reformulation.
Fichier principal
Vignette du fichier
DGPV.pdf (1013.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03803758 , version 1 (06-10-2022)
hal-03803758 , version 2 (24-07-2023)

Licence

Identifiants

Citer

Jean Dolbeault, David Gontier, Fabio Pizzichillo, Hanne Van Den Bosch. Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators. Revista Matemática Iberoamericana, 2024, 40 (2), pp.649-692. ⟨10.4171/RMI/1443⟩. ⟨hal-03803758v2⟩
124 Consultations
93 Téléchargements

Altmetric

Partager

More