Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators - Archive ouverte HAL
Journal Articles Revista Matemática Iberoamericana Year : 2023

Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators

Abstract

We estimate the lowest eigenvalue in the gap of the essential spectrum of a Dirac operator with mass in terms of a Lebesgue norm of the potential. Such a bound is the counterpart for Dirac operators of the Keller estimates for the Schrödinger operator, which are equivalent to Gagliardo-Nirenberg-Sobolev interpolation inequalities. Domain, self-adjointness, optimality and critical values of the norms are addressed, while the optimal potential is given by a Dirac equation with a Kerr nonlinearity. A new critical bound appears, which is the smallest value of the norm of the potential for which eigenvalues may reach the bottom of the gap in the essential spectrum. The Keller estimate is then extended to a Lieb-Thirring inequality for the eigenvalues in the gap. Most of our result are established in the Birman-Schwinger reformulation.
Fichier principal
Vignette du fichier
DGPV.pdf (1013.67 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03803758 , version 1 (06-10-2022)
hal-03803758 , version 2 (24-07-2023)

Licence

Identifiers

Cite

Jean Dolbeault, David Gontier, Fabio Pizzichillo, Hanne Van Den Bosch. Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators. Revista Matemática Iberoamericana, In press, ⟨10.4171/RMI/1443⟩. ⟨hal-03803758v2⟩
113 View
82 Download

Altmetric

Share

More