Convergence of the stochastic Navier-Stokes-α solutions toward the stochastic Navier-Stokes solutions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Convergence of the stochastic Navier-Stokes-α solutions toward the stochastic Navier-Stokes solutions

Résumé

Loosely speaking, the Navier-Stokes-⍺ model and the Navier-Stokes equations differ by a spatial filtration parametrized by a scale denoted ⍺. Starting from a strong two-dimensional solution to the Navier-Stokes-α model driven by a multiplicative noise, we demonstrate that it generates a strong solution to the stochastic Navier-Stokes equations under the condition ⍺ goes to 0. The initially introduced probability space and the Wiener process are maintained throughout the investigation, thanks to a local monotonicity property that abolishes the use of Skorokhod’s theorem. High spatial regularity a priori estimates for the fluid velocity vector field are carried out within periodic boundary conditions.
Fichier principal
Vignette du fichier
Mnscrpt-Hal.pdf (262.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03794814 , version 1 (03-10-2022)

Identifiants

Citer

Jad Doghman, Ludovic Goudenège. Convergence of the stochastic Navier-Stokes-α solutions toward the stochastic Navier-Stokes solutions. 2022. ⟨hal-03794814⟩
46 Consultations
53 Téléchargements

Altmetric

Partager

More