Universal 1-loop divergences for integrable sigma models - Archive ouverte HAL
Article Dans Une Revue Journal of High Energy Physics Année : 2023

Universal 1-loop divergences for integrable sigma models

Résumé

We present a simple, new method for the 1-loop renormalization of integrable $\sigma$-models. By treating equations of motion and Bianchi identities on an equal footing, we derive 'universal' formulae for the 1-loop on-shell divergences, generalizing case-by-case computations in the literature. Given a choice of poles for the classical Lax connection, the divergences take a theory-independent form in terms of the Lax currents (the residues of the poles), assuming a 'completeness' condition on the zero-curvature equations. We compute these divergences for a large class of theories with simple poles in the Lax connection. We also show that $Z_T$ coset models of 'pure-spinor' type and their recently constructed $\eta$- and $\lambda$-deformations are 1-loop renormalizable, and 1-loop scale-invariant when the Killing form vanishes.
Fichier principal
Vignette du fichier
JHEP03(2023)003.pdf (742.04 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-03790860 , version 1 (23-08-2024)

Licence

Identifiants

Citer

Nat Levine. Universal 1-loop divergences for integrable sigma models. Journal of High Energy Physics, 2023, 2023 (03), pp.003. ⟨10.1007/JHEP03(2023)003⟩. ⟨hal-03790860⟩
68 Consultations
3 Téléchargements

Altmetric

Partager

More