A Non-Parametric Bayesian Approach for Uplift Discretization and Feature Selection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A Non-Parametric Bayesian Approach for Uplift Discretization and Feature Selection

Nicolas Voisine
  • Fonction : Auteur
  • PersonId : 1167827
Marc Boullé
  • Fonction : Auteur
  • PersonId : 906624
  • IdRef : 126326223

Résumé

Uplift modeling aims to estimate the incremental impact of a treatment, such as a marketing campaign or a drug, on an individual's outcome. Bank or Telecom uplift data often have hundreds to thousands of features. In such situations, detection of irrelevant features is an essential step to reduce computational time and increase model performance. We present a parameter-free feature selection method for uplift modeling founded on a Bayesian approach. We design an automatic feature discretization method for uplift based on a space of discretization models and a prior distribution. From this model space, we define a Bayes optimal evaluation criterion of a discretization model for uplift. We then propose an optimization algorithm that finds near-optimal discretization for estimating uplift in O(n log n) time. Experiments demonstrate the high performances obtained by this new discretization method. Then we describe a parameter-free feature selection method for uplift. Experiments show that the new method both removes irrelevant features and achieves better performances than state of the art methods.
Fichier principal
Vignette du fichier
pkdd22_rafla.pdf (1.36 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03788912 , version 1 (27-09-2022)

Identifiants

  • HAL Id : hal-03788912 , version 1

Citer

Mina Rafla, Nicolas Voisine, Bruno Crémilleux, Marc Boullé. A Non-Parametric Bayesian Approach for Uplift Discretization and Feature Selection. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2022, Grenoble, France. pp.239-254. ⟨hal-03788912⟩
125 Consultations
158 Téléchargements

Partager

More