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Abstract. Uplift modeling aims to estimate the incremental impact of
a treatment, such as a marketing campaign or a drug, on an individual’s
outcome. Bank or Telecom uplift data often have hundreds to thousands
of features. In such situations, detection of irrelevant features is an essen-
tial step to reduce computational time and increase model performance.
We present a parameter-free feature selection method for uplift model-
ing founded on a Bayesian approach. We design an automatic feature
discretization method for uplift based on a space of discretization mod-
els and a prior distribution. From this model space, we define a Bayes
optimal evaluation criterion of a discretization model for uplift. We then
propose an optimization algorithm that finds near-optimal discretiza-
tion for estimating uplift in O(n logn) time. Experiments demonstrate
the high performances obtained by this new discretization method. Then
we describe a parameter-free feature selection method for uplift. Exper-
iments show that the new method both removes irrelevant features and
achieves better performances than state of the art methods.

Keywords: Uplift Modeling · Feature Selection · Discretization · Bayesian
methods · Machine Learning · Treatment Effect Estimation

1 Introduction

Uplift modeling aims to estimate the incremental impact of a treatment, such as
a marketing campaign or a drug, on an individual’s behavior. Uplift models help
identify groups of people likely to respond positively to treatment only because
they received one. This research domain has multiple applications like customer
relationship management, personalized medicine, advertising. Uplift estimation
is based on groups of people who have received different treatments. A major
difficulty is that data are only partially known: it is impossible to know for
an individual whether the chosen treatment is optimal because their responses
to alternative treatments cannot be observed. Several works address challenges
related to the uplift modeling [14, 26] or the evaluation of uplift models [21].

Many databases are large and contain hundreds of features [12]. Keeping all
the features is costly and inefficient to build uplift models. A feature selection
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process is then an essential step to remove irrelevant features, improves the
estimation accuracy and accelerates the model building. While there are a lot of
feature selection methods in machine learning, there are very few propositions
for uplift modeling [27]. This observation might be explained since uplift creates
new challenges such as the impossibility to observe two treatment outcomes for a
same individual. Designing methods for uplift requires overcoming this difficulty.
This paper aims to answer the need for feature selection methods for uplift.

We present a parameter-free feature selection method for uplift modeling
founded on a Bayesian approach. Following a part of literature on feature se-
lection that performs a discretization of numerical features [16, 25], we first de-
scribe an automatic feature discretization method for uplift modeling that we call
UMODL (for Uplift MODL). UMODL is based on the Bayesian MODL (Mini-
mum Optimized Description Length) criterion [1] that we have extended to the
uplift problem. UMODL defines a space of discretization models and a prior dis-
tribution on this model space. We construct a Bayes optimal evaluation criterion
of a discretization model for uplift modeling. In practice, the best model accord-
ing to the criterion cannot be computed due to the complexity of the problem
and we present a greedy search algorithm in O(n log n) to find near-optimal dis-
cretizations. Experiments show that the discretization model found by UMODL
gives a good estimator of uplift. Then, based on UMODL, we present UMODL
feature selection (UMODL-FS in short) a feature selection method for uplift.
UMODL-FS computes a score of the features and automatically selects appro-
priate features for uplift. Experiments demonstrate that UMODL-FS properly
removes irrelevant features and clearly outperforms state of the art methods by
providing uplift models with the highest and most stable performance. Being
a parameter-free method (neither the number of bins in the discretization nor
the number of features to keep or remove are given), UMODL-FS can be used
without effort.

The remainder of the paper is organized as follows. In the next section, we
introduce uplift modeling, feature selection for uplift, MODL and the literature
related to our problem setting. Section 3 presents UMODL which is experimen-
tally evaluated in Section 4. UMODL-FS and the associated experiments are
described in Section 5. We conclude in Section 6.

2 Background and literature review

2.1 Uplift modeling

Uplift definition. Uplift is a notion introduced by Radcliffe and Surry [20] and
defined in Rubin’s causal inference models [23] as the Individual Treatment Ef-
fect. The uplift modeling literature and a branch of the causal inference literature
have recently approached each other [8]. We present the notion of uplift.

Let D be a group of N individuals indexed by n : 1 . . . N where each indi-
vidual is described by a set of variables X. Xn denotes the set of values of X for
the individual n. Let T be a variable indicating whether or not an individual
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has received a treatment. Uplift modeling is based on two groups: the individ-
uals having received a treatment (denoted T = 1) and those without treatment
(denoted T = 0). Let Y be the outcome variable (for instance, the purchase or
not of a product). We note Yn(T = 1) the outcome of an individual n when he
received a treatment and Yn(T = 0) his outcome without treatment. The uplift
of an individual n, denoted by τn, is defined as: τn = Yn(T = 1) − Yn(T = 0).
The main difficulty is that uplift value is not directly measurable, i.e for each
individual we can either observe Yn(T = 1) or Yn(T = 0) but cannot observe
simultaneously both outcomes. However, uplift τn can be empirically estimated
by considering two groups: a treatment group (individuals who received a treat-
ment) and a control group (individuals who did not). The estimated uplift of an
individual n denoted by τ̂n is then the difference between response rates in both
groups and computed by using the CATE 3 (Conditional Average Treatment
Effect) [23]: CATE : τ̂n = E[Yn(T = 1)|Xn]− E[Yn(T = 0)|Xn]

As the real value of τn cannot be observed, it is impossible to directly use
machine learning algorithms such as regression to infer a model to predict τn.
We sketch below how uplift is modeled in the literature. Simple methods such as
considering only individuals having received the treatment fail because they do
not detect individuals whose response is always positive even without treatment.

Uplift modeling approaches. In recent years, several studies on uplift models
design have been conducted. One of the most classical and intuitive approach
is the two model approach [11] (also called T-learner in the causal commu-
nity), which consists of two independent predictive models, one on the treatment
group to estimate P (Y |X,T = 1) and another on the control group to estimate
P (Y |X,T = 0). The estimated uplift of an individual n is the difference between
those values for the given individual, i.e. τ̂n = P (Y = 1|Xn, T = 1) − P (Y =
1|Xn, T = 0). Class transformation approach [14] is another family of methods
that maps the uplift modeling problem to a usual supervised learning problem.
With the Direct-approach, different machine learning algorithms are modified to
suit uplift modeling such as methods based on decision trees [24, 26], k nearest
neighbors [7], logistic regression [17], etc. The causal inference community defines
other methods such as S-Learner which includes the outcome variable T in the
features with a standard regression, X-Learner [13] which performs a two-step
regression before the estimation of the CATE, DR-Learner [15] which combines
a two-model approach and the use of the Inverse Propensity Weighting [18].

Evaluation of uplift models Since real values of uplift cannot be observed,
standard performance measures of supervised learning algorithms cannot be
used. That is why uplift is evaluated through the ranking of the individuals
according to their estimated uplift value. The intuition is that a good uplift
model estimates higher uplift values to individuals in the treatment group with
positive outcomes than those with negative outcomes and vice versa for the con-
trol group. A common approach to evaluate uplift models is the qini measure,
3 The terms treatment effect and uplift address the same notion. CATE is an estima-

tion of uplift and we use "CATE" for speaking of the estimated uplift values.
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also known as the Area Under Uplift Curve (AUUC) [3, 19]. It is a variant of
the Gini coefficient. Qini values are in [−1, 1], the higher the value, the larger
the impact of the predicted optimal treatment.

2.2 Feature Selection for uplift models

The accessibility of high dimensional datasets with hundreds of features makes
the use of feature selection techniques crucial for machine learning tasks and
uplift. The goal of feature selection techniques is to select subset of features that
could efficiently describe data while expelling irrelevant features [9]. This can
significantly improve models performances and computation time [2]. Regarding
uplift modeling, studies addressing feature selection are very limited. To the best
of our knowledge, only two research papers deal with this challenge.

Zhao et al. [27] propose filter and embedded feature selection methods for
uplift. The principle is to remove features that are not correlated either with
the outcome variable or uplift. Filter methods are used in a pre-processing step
independently of an uplift model while embedded methods perform feature se-
lection during the training of a model and are specific to an uplift algorithm.
In [27], the presented filter methods are bins methods (inspired from [24]), F-
filter and LR-filter. Experiments in [27] show that bin-based filter methods have
the best performances while F-filter, LR-filter and embedded methods have poor
performances.

We give a few words on the above methods providing the best results as
well as F-filter and LR-filter. The principle of a bins method is to discretize a
feature into L bins based on the percentiles of the feature (L is given by the
user). The importance of a feature regarding uplift is evaluated by a divergence
measure of the treatment effect over the bins. Three divergence measures are
used: Kullback-Leibler (KL), squared Euclidean distance (ED), and chi-squared
(Chi). The F-filter and the LR-filter are based respectively on the F-statisic [10]
and the likelihood ratio statistic [5] for the coefficients of regression models.

On the other hand, a very recent paper [12] uses some of the filtering methods
given in [27] as well as a correlation coefficient to remove redundant features. The
paper describes an uplift application on a private database in the bank domain.

2.3 MODL approach

The MODL (Minimum Optimized Description Length) approach is a non-
parametric Bayesian approach for discretization and conditional probability es-
timation [1]. It is based on the Minimum Description Length (MDL) principle [6,
22]. In the MODL approach, a space of discretization models is defined. A dis-
cretization model is described by a set of parameters: the number of intervals,
the boundaries of the intervals and the frequencies of the classes in each interval.
Using these parameters, the MODL approach consists of defining a criterion for
a discretization model and with the help of a search algorithm, the MODL ap-
proach can score all possible discretization models and selects the one with the
best score.
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3 UMODL

This section presents UMODL a new criterion for uplift discretization modeling
and the search algorithm to find the optimal uplift discretization model.

3.1 UMODL Criterion

While MODL properly exploits discretization for density estimation, it is not
suitable for uplift modeling since uplift deals with two treatment groups and the
estimation of the conditional probabilities of the outcome variable Y given an
attribute X also depends on the treatment variable T .

We now introduce the new criterion that we propose to define the best dis-
cretization model for uplift. Let M be an uplift discretization model and D de-
notes data. From a Bayesian point of view, the best uplift discretization model
is found by maximizing the posterior probability of the model given the data
P (M |D). Let us consider the Bayes rule:

P (M | D) =
P (M)P (D | M)

P (D)
(1)

Given that P (D) is constant, maximizing P (M |D) is equivalent to maximizing
P (M)P (D|M), i.e the prior probability and the likelihood of the data given the
chosen model. Let us first introduce some notations:

– X : explanatory variable to discretize
– Y : binary outcome variable
– N : number of instances in the dataset
– J : number of classes of Y
– I : number of intervals
– Ni : number of instances in the interval i
– Nit. : number of instances in the interval i of treatment t
– Ni.j : number of instances in the interval i of class j
– Nitj : number of instances in the interval i of class j and the treatment t
– Wi : boolean term indicating if the treatment has an effect in interval i

(Wi=1) or not (Wi=0)

We define an uplift discretization model M by the number of intervals, the
bounds of the intervals, the presence or absence of a treatment effect, class
frequencies per interval or for each treatment per interval. In other words, a
model M is defined by the hierarchy of parameters (cf. Fig. 1):

{I, {Ni}, {Wi}, {Ni.j}Wi=0, {Nitj}Wi=1}

The evaluation criterion C(M) which is the cost of an uplift discretization
model M is defined then by: C(M) = − log

(
P (M)× P (D|M)

)
. Taking the

negative log turns the maximization problem to a minimization one. M is optimal
if C(M) is minimal.
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Fig. 1: Parameters of an uplift discretization model. The presence of a treatment
effect (Wi = 1) in interval i requires describing the distribution of the outcome
variable Y separately for each treatment (part right). In contrast, the absence of
a treatment effect (Wi = 0) indicates to consider the distribution of the outcome
variable Y for the interval i independently of the treatment variable (part left).

For the prior distribution of the model parameters, we exploit the hierarchy
of the parameters and assume a uniform prior at each stage of the hierarchy with
independence across the intervals. Using these assumptions, we express C(M)
according to the parameters of an uplift discretization model and we obtain Eq. 2
that we demonstrate below.

C(M) = logN + log

(
N + I − 1

I − 1

)
+ I × log 2

+

I∑
i=1

(1−Wi) log

(
Ni + J − 1

J − 1

)
+

I∑
i=1

(1−Wi) log
Ni!

Ni.1!..Ni.J !︸ ︷︷ ︸
Likelihood

+

I∑
i=1

Wi

∑
t

log

(
Nit. + J − 1

J − 1

)
+

I∑
i=1

Wi

∑
t

log
Nit.!

Nit1!..NitJ !︸ ︷︷ ︸
Likelihood

(2)

Proof of Eq 2. We express P (M) and P (D|M) according to the parameters of
an uplift discretization model. We introduce a prior distribution by exploiting
the hierarchy of the models’ parameters. Assuming the independence of the local
distributions across the intervals, we obtain:

P (M) = P (I)× P ({Ni}|I)×∏
i

P (Wi|I)

[
(1−Wi)× P ({Ni.j}|I, {Ni}) +Wi ×

∏
t

P ({Nitj}|I, {Nit.})

]
(3)

We express each of the terms of Eq. 3 according to the parameters of M
assuming a uniform distribution for each parameter. Assuming that the number
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of intervals I is uniformly distributed between 1 and N , the first term in Eq. 3
becomes:

P (I) =
1

N
(4)

Given a number of intervals I, all the discretizations into I intervals (i.e. the
choices of the bounds) are equiprobable. Computing the probability of an interval
set leads to a combinatorial calculation of the number of all possible interval
sets or equivalently the number of ways of distributing the N instances in the
I intervals, with counts Ni per interval. The second term of Eq. 3 is then:

P ({Ni}|I) =
1(

N+I−1
I−1

) (5)

For a given interval i, we assume that a treatment can have an effect or not,
with equal probability, i.e. P (Wi|I) = 1

2 . We obtain:

∏
i

P (Wi|I) =
(
1

2

)I

(6)

In the case of an interval i where there is not effect of the treatment (Wi = 0),
UMODL describes one unique distribution of the outcome variable. Given an
interval i, its number of examples Ni is known. Assuming that each of the class
distributions is equiprobable, we end up also with a combinatorial problem:

P ({Ni.j}|I,Ni) =
1(

Ni+J−1
J−1

) (7)

In the case of an interval i with an effect of the treatment (Wi = 1), UMODL
describes two distributions of the outcome variable, with and without the treat-
ment. Given an interval i and a treatment t, we know the number of examples
Nit.. Assuming that each of the distributions of class values is equiprobable, we
get:

P ({Nitj}|I,Nit.) =
1(

Nit.+J−1
J−1

) (8)

After defining the models’ prior, we define the likelihood P (D|M) of the data
given the uplift discretization model. For each multinomial distribution of the
outcome variable (a single or two distinct distributions per interval depending
on whether the treatement has an effect or not), we assume that all possible
observed data Di consistent with the multinomial model are equiprobable. Using
multinomial terms, we obtain the following likelihood term:

P (D|M) =
∏
i

P (Di|M) (9)

=
∏
i

[
(1−Wi)×

1

(Ni!/Ni.1!..Ni.J !)
+Wi ×

∏
t

1

(Nit.!/Nit1!..NitJ !)

]
(10)
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Combining the prior P (M) (Eq 4 to 8) with the likelihood P (D|M) (Eq. 10),
we obtain P (M)P (D|M). Taking the negative log yields to the UMODL criterion
presented in Eq. 2. Coming back to Eq. 2, the prior terms of the first line come
from Eq. 4 to 6. In the second line of Eq. 2 (modeling a situation w/o a treatment
effect) and the third line (situation with a treatment effect), the first terms are
prior terms (Eqs 7- 8) and the second terms are likelihood terms (Eq. 10).

Uplift estimation The presented discretization approach is a density estimation
approach for uplift modeling. We model the probability of Y conditionally on the
explanatory variable X and a binary treatment variable T . The search algorithm
we present is looking for the parameters I, {Wi}, {Ni}, {Ni.j}, {Nijt}, and {Wi}
that minimize the cost of the model. In other words, the search algorithm tries
to find the optimal discretization in the Bayes sense that best estimates the
real densities of the outcome variable Y conditionally on X and T . Once a
discretization and its parameters are defined, the estimation of the CATE for
each interval is simple. As shown in Fig.1, assuming a binary outcome variable
Y and given Wi = 1, we have Pi(Y = 1|T = 1) = Ni11/(Ni11 + Ni01) and
Pi(Y = 1|T = 0) = Ni10/(Ni10 +Ni00), therefore CATEi = Pi(Y = 1|T = 1)−
Pi(Y = 1|T = 0). For intervals with Wi = 0, CATEi is considered insignificant.

3.2 Search algorithm and post-optimization

We sketch below our search algorithm to find the best model w.r.t. the UMODL
criterion. This algorithm finds the optimal values of the parameters that mini-
mize C(M). The principle of this algorithm is inspired by the search algorithm [1]
which we adapted to our criterion. As an optimal search algorithm is not prac-
tical due to the complexity of the problem, we build a greedy algorithm4.

Greedy Search algorithm The search algorithm is a greedy bottom-up algo-
rithm with the following steps:

– The algorithm starts by making an elementary discretization such that all
examples with the same value have their own interval,

– Compute the costs of all possible merges i.e. try to merge adjacent intervals,
– Merge the two adjacent intervals that decrease C(M) the most,
– Recalculate the cost of all possible adjacent merges and select the merge

that reduces C(M) the most,
– Repeat until no merge decreases C(M).

While this algorithm is complex, it can be implemented in O(n log n) time [1].

Post-optimization This greedy search algorithm can fall into a local minimum,
so post-optimization steps are needed to perturb the interval bounds. We used
post-optimization steps that consist of recurrent splits, merges, merge splits, and
merge merge splits of adjacent intervals, as described in [1] but designed in this
work for uplift.
4 Our implementation is provided at https://github.com/MinaWagdi/UMODL
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4 UMODL quality evaluation experiments

This section experimentally evaluates whether UMODL is a good estimator of
uplift. The principle of the experiments is to generate data with different syn-
thetic uplift patterns in order that results of UMODL can be compared to true
uplift. A synthetic uplift pattern is a data pattern where P (Y = 1|X,T = 1)
and P (Y = 1|X,T = 0) are identified for each example. Therefore several indi-
cators can be observed: (1) the number of intervals founded by UMODL w.r.t.
the characteristics of the uplift pattern, (2) the RMSE (root mean squared er-
ror) between the real uplift and the estimated uplift by UMODL computed for
each instance and (3) the number of instances needed by UMODL to find the
uplift pattern. We generate synthetic uplift patterns of different characteristics
for simulating various situations.

4.1 Description

The experimental protocol is made of the following steps:

1. Define a particular synthetic uplift pattern of one dimension.
2. Generate several train samples according to the defined pattern with 40 dif-

ferent number of instances (also called data size) ranging from 10 to 100,000
instances. For each data size, generate ten datasets. All generated data are
uniformly distributed on the [0, 10] numerical domain for each of the treat-
ment (T = 1) and control groups (T = 0).

3. Generate a test set of 10,000 instances based on the defined uplift pattern.
4. For each training sample, apply the UMODL approach to search for the best

discretization model.
5. For each experiment, the obtained discretization model is then applied to the

test set, and RMSE is computed by comparing for each data point: (a) the
CATE estimation in the found interval and (b) the real CATE value.

6. By observing both the number of found intervals for each dataset and the
RMSE values, we can determine whether the UMODL approach manages to
find the synthetic pattern or not.

7. Repeat these steps with different synthetic uplift patterns.

4.2 Synthetic uplift patterns

We generate four bin-based patterns and one continuous pattern. We use pat-
terns of different characteristics5 to evaluate how UMODL performs both in
various situations and different rates of uplift. The patterns are illustrated in
Fig. 2 and depicted below.

– Crenel pattern 1 (cf. Fig. 2a): this crenel pattern is made of 10 intervals
containing a repeated sequence of a positive treatment effect followed by
a negative one. We generated five versions of this pattern with different
treatment effects (uplift).

5 Other patterns can be found using the github link provided previously.
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(a) Crenel pattern 1 (b) Crenel pattern 2

(c) Trigonometric pattern (d) Scissors pattern (e) Continuous pattern

Fig. 2: Synthetic uplift patterns. The X-axis represents variable X and the Y-axis
represents P (Y = 1). For Crenel Pattern 1 and Crenel Pattern 2, five versions
are generated with different values of θ ∈ {0.6, 0.7, 0.8, 0.9, 1}. The difference
between P (Y = 1) in the treatment and control groups represents the uplift.

– Crenel pattern 2 (cf. Fig. 2b): is a slightly different crenel pattern similarly
made of 10 intervals containing a repeated sequence of a positive treatment
effect followed by no treatment effect. We generated five versions of this
pattern with different treatment effects (uplift).

– Trigonometric pattern (cf. Fig. 2c) is a particular bin-based pattern with
trigonometric shape where: P (Y = 1|T = 1) = 0.5 + (0.5× sin(i× 2π

10 )) and
P (Y = 1|T = 0) = 0.5 + (0.5× cos(i× 2π

10 ))

– Scissors pattern (cf. Fig. 2d) is a bin-based pattern where P (Y = 1|T =
1) = i

10 and P (Y = 1|T = 0) = 1− i
10 , where i is the interval number.

– Continuous pattern (cf. Fig. 2e) differs from bin-based patterns. Here P (Y =
1|T = 1) = X/10 P (Y = 1|T = 0) = 0.5.

4.3 Results

Results are given in Figures 3, 4 and 5. We start by the central question – "Is
UMODL a good estimator of uplift?" – and provide complementary observations.

Is UMODL a good estimator of uplift? From Figures 3 (left) and 4 (left), we
clearly see that even when the treatment effect is very small per interval (grey
curves), UMODL is able to find the proper number of intervals of the uplift
patterns. This is also illustrated by the RMSE curves (Figures 3 (right) and 4
(right)) showing that RMSE always converges towards 0 for sufficiently large
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Fig. 3: Results obtained for Crenel pattern 1. The left (resp. right) figure shows
the mean number of found intervals (resp. the mean value of RMSE) on the test
set by UMODL according to the dataset size. Different curve colors correspond to
different treatment effects. For example, the blue curve corresponds to the crenel
pattern of repeated positive uplift (= 1) followed by negative uplift (= −1).

datasets. Similar performances are reported with the trigonometric pattern (cf.
Fig. 5a), the scissors pattern (cf. Fig. 5b) and the continuous pattern (cf. Fig. 5c)
except that the number of estimated intervals is not a relevant indicator for the
continuous pattern because this pattern is continuous.

Fig. 4: Results obtained for Crenel pattern 2. The left (resp. right) figure shows
the mean number of found intervals (resp. the mean value of RMSE) on the test
set by UMODL according to the dataset size. Different curve colors correspond
to separate treatment effects. For example, the blue curve corresponds to the
crenel pattern of repeated positive uplift (=1) followed by zero uplift.

How many instances are needed to find the uplift pattern according to its char-
acteristics? When the differences of densities between adjacent intervals get
smaller, UMODL needs more instances to give prominence to a model with
more intervals. This is typically the case with the scissors pattern (cf. Fig. 5b).
Analogous behaviors are observed in Figures 3 and 4. For example, in Fig. 3,
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(a) Trigonometric pattern (b) Scissors pattern (c) continuous pattern

Fig. 5: Figures 5a, 5b, 5c present the performances obtained with the trigono-
metric pattern, scissors pattern and continuous pattern. Blue curves depict the
mean value of the RMSE per dataset size while the green curves indicate the
number of found intervals.

the blue curve finds the uplift pattern with less instances than the red curve.
Interestingly, UMODL succeeds in finding the proper intervals even when there
is no treatment effect (cf. the results with the crenel pattern 2 in Fig. 4).

Does UMODL overfit? Another important aspect of the UMODL discretization
is that the UMODL method does not overfit, i.e. UMODL always finds the
ten intervals of the underlying patterns and does not consider extra intervals
even when the data size increases significantly (cf. Figures 3 and 4). With the
continuous pattern, UMODL goes on to consider more intervals as long as the
size of the data increases (cf. Fig. 5c) which is appropriate since the pattern is
continuous and there is no defined intervals.

5 UMODL Feature Selection

Description of UMODL feature selection. We describe now the method:

1. Given a feature X, we apply the UMODL discretization method to find the
optimal uplift discretization model as presented in Section 3.1.

2. Compute for X an importance score (described below), denoted by imp.s(X),
which is the divergence measure of the treatment effect over the found in-
tervals.

3. We repeat these steps for each feature of the dataset.
4. All features with imp.s(X) > 0 are considered relevant for the uplift estima-

tion, while any feature with imp.s(X) = 0 is eliminated.

We define imp.s(X) as follows. Assuming pi = Pi(Y = 1|T = 1) and qi =
Pi(Y = 1|T = 0). We define:

imp.s(X) =

{∑I
i=1

Ni

N D(pi : qi), if I > 1

0, otherwise .
(11)
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where the distribution divergence measure D is the squared euclidean distance.
We choose the squared euclidean distance for the divergence since it is symmetric
and stable [24]. UMODL-FS considers irrelevant for the uplift estimation any
feature with imp.s(X) = 0 and keeps for the uplift modeling any feature with
imp.s(X) > 0. When UMODL finds a single interval for a feature, it means there
is only one distribution for all instances and thus a non-informative feature (i.e .
imp.s(X) = 0). Unlike feature selection methods of the literature, our approach
does not require parameters to set, and there is no need to give the number of
features to keep or delete.

Experimental Protocol. For comparing UMODL-FS to the state-of-art uplift
feature selection methods (cf. Section 2.2), we design the following experimental
protocol:

1. For each dataset, we generate eleven variants of the dataset, each with an
incremental total number (from 0 to 100) of noise features. Noise features
are sampled from N (0, 1) for each of the treatment and control groups.

2. For each variant, we apply the following feature selection methods: (a) KL–
filter (b) Chi-filter (c) ED-filter (d) LR-filter (e) F-filter (f) UMODL-FS.
For KL-filter, Chi-filter and ED-filter, we set the number of bins to 10.

3. To have the same number of features for each feature selection method and
perform a fair comparison, we pick the M most important features, where
M is the number of all features deemed informative by UMODL-FS.

4. With these sets of features, we build uplift models: a two-model approach
with logistic regression [11] and X-Learner with linear regression [13].

5. The learning process is done with stratified ten-fold cross-validation. Test
samples are used to evaluate the performance of uplift models based on the
selected features.

6. The qini coefficient metric [3] is used to evaluate the performance of the
uplift model.

Datasets. Experiments are conducted on two publicly available continuous
datasets which are usual on the uplift community:

1. Criteo dataset [4]: a real large scale dataset constructed by assembling data
resulting from several incrementality tests in advertising. In the experiments,
we use a random sample of 10,000 instances with the ’visit’ variable as out-
come variable.

2. Zenodo synthetic dataset 6: this dataset was created for evaluating feature
selection methods for uplift modeling. It has three types of features: (a) up-
lift features influencing the treatment effect on the conversion probability
(outcome variable is ’conversion’); (b) classification features influencing the
conversion probability independent of the treatment effect; (c) irrelevant fea-
tures. This dataset consists of 100 trials of different patterns. Each trial has
10,000 instances and 36 features.

6 https://doi.org/10.5281/zenodo.3653141
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(a) Zenodo with two-model approach (b) Zenodo with X-Learner

(c) Criteo with two-model approach (d) Criteo with X-Learner

Fig. 6: Average qini and its variance according to the number of added noisy
features. The X-axis indicates the total number of added noisy features. Y-axis
represents the qini values achieved by uplift models.

Results. Fig. 6 presents the results on the use of UMODL-FS for uplift mod-
eling. In all experiments, UMODL-FS selects the set of features leading to the
uplift model with the best qini (therefore the best uplift model) whatever the
used uplift approach. Remarkably, the more noisy features are added, the more
the qini difference between UMODL-FS and other feature selection methods
increases.

Fig. 7 indicates the percentage of added noisy features which are selected by
the different feature selection methods according to the number of added noisy
features. UMDOL-FS never selects a noisy feature. It illustrates the clear ability
of UMODL-FS to remove noisy features. On the contrary, all other methods
select noisy features and the percentage of the selected noisy ones increases as
the number of added noisy features increases. To sum up, the more the number
of added noisy features, the more the feature selection methods of the literature
select irrelevant features as informative. In contrast, UMODL-FS always neglects
irrelevant features and has the most stable qini. Moreover, UMODL-FS does not
require to set a parameter giving the number of features to keep.
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(a) Zenodo (b) Criteo

Fig. 7: Percentage of selected noisy features according to the number of added
noisy features.

6 Conclusion and future work

In this paper, we have proposed a new non-parametric Bayesian approach for
uplift discretization and feature selection. We have defined UMODL, a Bayes
optimal evaluation criterion of a discretization model for uplift modeling and
a search algorithm to find the best model. We have experimentally shown that
UMODL is an efficient and accurate uplift estimator through discretization.
Then we have presented UMODL-FS, a feature selection method for uplift. Ex-
periments demonstrate that UMODL-FS properly removes irrelevant features
and clearly outperforms state of the art methods by providing uplift models
with the highest and most stable qini. The method is parameter free, making it
easy to use.

This work opens several perspectives. It is promising to study this approach
in the case of multiple treatments and multiple outcomes. On the other hand,
as decision trees are based on discretized variables, this approach can be inves-
tigated to develop tree-based uplift modeling algorithms.
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