Minimal distance between random orbits
Résumé
We study the minimal distance between two orbit segments of length n, in a random dynamical system with sufficiently good mixing properties. This problem has already been solved in non-random dynamical system, and on average in random dynamical systems (the so-called annealed version of the problem): it is known that the asymptotic behavior for this question is given by a dimension-like quantity associated to the invariant measure, called its correlation dimension (or Rényi entropy). We study the analogous quenched question, and show that the asymptotic behavior is more involved: two correlation dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic exponent.
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|