Minimal distance between random orbits - Archive ouverte HAL
Article Dans Une Revue Probability Theory and Related Fields Année : 2024

Minimal distance between random orbits

Résumé

We study the minimal distance between two orbit segments of length n, in a random dynamical system with sufficiently good mixing properties. This problem has already been solved in non-random dynamical system, and on average in random dynamical systems (the so-called annealed version of the problem): it is known that the asymptotic behavior for this question is given by a dimension-like quantity associated to the invariant measure, called its correlation dimension (or Rényi entropy). We study the analogous quenched question, and show that the asymptotic behavior is more involved: two correlation dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic exponent.
Fichier principal
Vignette du fichier
min_dist.pdf (567.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03788538 , version 1 (26-09-2022)

Identifiants

Citer

Sébastien Gouëzel, Jérôme Rousseau, Manuel Stadlbauer. Minimal distance between random orbits. Probability Theory and Related Fields, 2024, 189 (3-4), pp.811-847. ⟨10.1007/s00440-024-01283-3⟩. ⟨hal-03788538⟩
70 Consultations
44 Téléchargements

Altmetric

Partager

More