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MINIMAL DISTANCE BETWEEN RANDOM ORBITS

SÉBASTIEN GOUËZEL, JÉRÔME ROUSSEAU, AND MANUEL STADLBAUER

Abstract. We study the minimal distance between two orbit segments of length n, in
a random dynamical system with sufficiently good mixing properties. This problem has
already been solved in non-random dynamical system, and on average in random dynamical
systems (the so-called annealed version of the problem): it is known that the asymptotic
behavior for this question is given by a dimension-like quantity associated to the invariant
measure, called its correlation dimension (or Rényi entropy). We study the analogous
quenched question, and show that the asymptotic behavior is more involved: two correlation
dimensions show up, giving rise to a non-smooth behavior of the associated asymptotic
exponent.

1. Introduction

1.1. Main results. This article is devoted to the study of the minimal distance between
pieces of orbits of length n, in a random dynamical system setting. By this, we mean the
following standard setting. We start from an invertible, probability preserving dynamical
system (Ω, θ,P) on a compact metric space, and consider another metric space (X, d).
For each ω ∈ Ω, let Tω be a measurable map of X, such that the skew-product map
S : (ω, x) 7→ (θω, Tωx) is measurable and preserves a probability measure ν whose marginal
on Ω is P. The iterates of S are given by Sn(ω, x) = (θnω, Tnω x), where Tnω = Tθn−1ω ◦· · ·◦Tω
is a random composition of the Tω’s, where the randomness is dictated by the driving map θ.
In this setting, the measure ν can be disintegrated above P: there is a family of probability
measures µω, depending measurably on ω, such that for any bounded function f holds∫
f dν =

∫ (∫
f(x) dµω(x)

)
dP(ω). We write informally ν = P ⊗ µω. Let µ =

∫
µω dP(ω)

be the second marginal of ν. As ν is invariant under S, the measures µω also satisfy an
invariance property: (Tω)∗µω = µθω for P-a.e. ω.

We are interested in the minimal distance between two pieces of orbit of length n. In
a classical dynamical system setting, this would amount to understanding the behavior of
mini,j<n d(T ix, T jy) for a typical pair (x, y). It has been shown in [3] that the rate of decay
to zero of this quantity is related to a dimension-like quantity associated to the invariant
measure, called its correlation dimension (or Rényi entropy for symbolic dynamical systems),
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measuring the polynomial decay rate of the r-neighborhood of the diagonal in X × X in
terms of r.

In the random dynamics situation, there are two possible interpretations for this question.
One may consider typical pairs (ω, x) and (ω′, y) and try to minimize d(T iωx, T

j
ω′y). This is

the annealed question, where randomness is taken over the whole product space Ω×X. It
has already been studied in [5], and the outcome is comparable to the situation of classical
dynamical systems (the relevant quantity being the correlation dimension of the second
marginal µ of ν). One may also consider a typical ω, and then for this fixed ω pick a typical
pair (x, y) for µω and try to minimize d(T iωx, T

j
ωy). This is the quenched variant of our main

question, to which this article is devoted.
In many questions about random systems, the outcome in a quenched situation is similar

to the outcome of the annealed situation, but harder to prove. This is not the case here:
we observe a behavior which is genuinely different from the annealed case, with a phase
transition: there are two competing phenomena to decide the decay rate of the minimal
distance between orbits, one similar to the annealed situation and one that is specific to the
quenched situation, and each of them can be prevalent in some situations.

We denote

Dan
2 = lim inf

r→0

log
∫
µ(B(x, r)) dµ(x)

log r
, D

an
2 = lim sup

r→0

log
∫
µ(B(x, r)) dµ(x)

log r

for the lower and upper correlation dimensions of the measure µ. The 2 in the notation
comes from the fact that this in an L2-like expression, which is easier to see in a symbolic
setting as in Remark 1.3. These are annealed quantities, referring to the averaged measure
µ =

∫
µω dP(ω), hence the superscript an. In the quenched version, one should rather

compute the correlation dimension of each measure µω and then average with respect to P,
giving rise to the following definitions:

Dqu
2 = lim inf

r→0

log
∫
µω(B(x, r)) dµω(x) dP(ω)

log r
,

D
qu
2 = lim sup

r→0

log
∫
µω(B(x, r)) dµω(x) dP(ω)

log r
.

When the liminf and the limsup coincide, we denote the corresponding quantities by Dan
2

and Dqu
2 .

Our main theorem shows that the decay rate of the minimal distance between orbits, in
the quenched situation, can be expressed in terms of Dan

2 and Dqu
2 . This result requires that

the geometry of the space should be nice enough (spaces with bounded local complexity,
see Definition 1.4 below – this is a very mild geometric condition on the space, satisfied
for instance by shift spaces and Riemannian manifolds), that the measures µω depend in a
Lipschitz way on ω (see Definition 1.5) and that the system mixes quickly enough, both for
the base map and the fiber maps (stretched exponential mixing, see Definitions 1.7 and 1.8).
Finally, we also require that the map S is Lipschitz.

Theorem 1.1. Let X be a compact metric space with bounded local complexity. Consider
a random dynamical system S : Ω × X → Ω × X preserving a probability measure ν, for
which Dan

2 and Dqu
2 are well defined, and for which ω → µω is Lipschitz. Assume that S is
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Lipschitz, has fiberwise stretched exponential mixing, and that the base map has stretched
exponential 4-mixing. Then, for P-almost every ω, for µ⊗2

ω -almost every x, y, one has the
convergence

(1.1)
− log mini,j<n d(T iωx, T

j
ωy)

log n
→ max

{
2

Dan
2

,
1

Dqu
2

}
.

This theorem should be compared with the corresponding statement in the annealed
situation: under the same assumptions, for ν⊗2 almost-every pairs (ω, x), (ω′, y), one has

− log mini,j<n d(T iωx, T
j
ω′y)

log n
→ 2

Dan
2

,

by [5, Theorem 4.4].
Theorem 1.1 is a consequence of several statements on upper and lower bounds, which

for some of them require weaker assumptions regarding mixing, and which can be expressed
in terms of Dan

2 , Dqu
2 and Dan

2 , Dqu
2 respectively, without requiring that Dan

2 and Dqu
2 are

well defined. These more precise versions are discussed in Paragraph 1.3, after the precise
meaning of our assumptions is discussed in the next paragraph.

Let us stress that Theorem 1.1 applies to a large class of concrete uniformly and nonuni-
formly expanding random dynamical systems, see Paragraphs 2.2 and 2.3. Also, one can
construct examples in which the maximum in the right hand side of (1.1) is realized either
by the first or the second term. See in particular Paragraph 2.1 in which we exhibit a family
of systems depending smoothly on a parameter for which there is a transition from the
first behavior to the second behavior, in a non-smooth way, exhibiting a second-order phase
transition for the minimal approximation rate of orbits in the quenched setting (while there
is no such phase transition for the analogous annealed question).

When Ω is a point, the annealed and quenched correlation dimensions coincide, so the
maximum is always realized by 2/Dan

2 . This is also the case when we are close enough to a
product situation (in which case all the µω are close to µ), but 1/Dqu

2 may become dominant
in more distorted situations, as testified in Paragraph 2.1.

The intuition as to which term is dominant is the following. If one considers i far away
from j, then θiω and θjω are essentially independent, so T iωx and T jωy are essentially two
independent points distributed according to µ, and one should get the same behavior as in
the annealed situation. There are n2 such pairs (i, j), and for each of them the probability
that the points are close by is governed by the dimension Dan

2 , hence an asymptotics 2/Dan
2 .

For j = i on the other hand, the points T iωx and T iωy are independent points distributed
according to the measure µθiω, so the correlation dimension of this measure should appear
in the asymptotic. Since there are only n such pairs (i, i) (as opposed to n2 before), we get
an asymptotics 1/Dqu

2 . The precise statements in Paragraph 1.3 will make this intuition
precise, by showing that the on-diagonal and off-diagonal behaviors are genuinely different.

It is interesting to specialize Theorem 1.1 to the case of a deterministic dynamical system
(taking Ω to be a point). Many of our assumptions become trivial in this situation. The
statement becomes the following.

Theorem 1.2. Let T : X → X be a Lipschitz map on a compact metric space with bounded
local complexity, preserving a probability measure µ with a well-defined correlation dimension
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D2(µ). Assume that T mixes stretched exponentially. Then, for µ⊗2-almost all x, y,

− log mini,j<n d(T ix, T jy)

log n
→ 2

D2(µ)
.

This theorem is essentially proved in [3], although the assumptions there are phrased in
a slightly different way.

Remark 1.3 (Longest common substring). When the (random) dynamical system is a
(random) shift, i.e., X = AN for some alphabet A and T = σ (or Tω = σ) with σ the left
shift, it was observed in [3] that studying the minimal distance between orbits is equivalent
to studying the length of the longest common substring between two sequences, that is:

− log min
i,j<n

d(σix, σjy) = max{m : ∃0 6 i, j < n s.t. xi+k = yj+k for k = 0, . . . ,m− 1}.

In this case, balls will correspond to cylinders and the correlation dimensions coincide with
the annealed and quenched Rényi entropies

Han
2 = lim

k→∞

log
∑
µ(Ck)

2

−k
and Hqu

2 = lim
k→∞

log
∑∫

µω(Ck)
2dP(ω)

−k
,

where the sums are taken over all k-cylinders.

1.2. The technical assumptions. In this paragraph, we specify precisely the technical
assumptions made in Theorem 1.1. The various assumptions will also be useful to highlight,
in Paragraph 1.3, which statements require stronger or weaker assumptions.

A function f : X → R is Lipschitz if it satisfies the inequality |f(x) − f(y)| 6 Cd(x, y)
for all x, y. The best such C is called the Lipschitz constant of f and denoted by Lip(f).
We define the Lipschitz norm of f , denoted by ‖f‖Lip, to be the sum of its sup norm and
its Lipschitz constant. In this way, ‖fg‖Lip ≤ ‖f‖Lip‖g‖Lip.

Here is our main geometric assumption on the spaces we consider.

Definition 1.4. A compact metric space X has bounded local complexity if there exists a
constant C0 such that, for any small enough r, there exist a constant k(r) < +∞ and points
x

(r)
1 , . . . , x

(r)
k(r) in X such that the space is covered by the balls (B(x

(r)
p , r))1≤p≤k(r) and any

point x belongs to at most C0 balls B(x
(r)
p , 4r).

Basic examples are shift spaces on finitely many symbols: for these, one may take the balls
B(x

(r)
p , r) as the different cylinders of a given length N , and they are all disjoint. Compact

Riemannian manifolds have also bounded local complexity: this follows from the fact that
Euclidean spaces are, using finitely many charts and an approximation argument to reduce
to this situation.

Definition 1.5. Given a random dynamical system on Ω×X, the random fiber measures µω
depend on a Lipschitz way on ω if there exists C1 > 0 such that, for any Lipschitz function
f : X → R, for any ω, ω′,∣∣∣∣∫ f dµω −

∫
f dµω′

∣∣∣∣ 6 C1‖f‖Lipd(ω, ω′).

Let us now turn to the various mixing conditions we need, for the base map or the fiber
maps.
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Definition 1.6. The dynamical system θ : Ω → Ω mixes stretched exponentially if there
exist c2 > 0 and C2 > 0 such that, for any Lipschitz functions f, g : Ω→ R, for any n ∈ N,∣∣∣∣∫ f · g ◦ θn dP−

(∫
f dP

)(∫
g dP

)∣∣∣∣ 6 C2e
−nc2‖f‖Lip‖g‖Lip.

We will need a stronger property, ensuring that there is quantitative mixing for 4 functions
instead of 2, if there is a large enough time gap between the second and third functions. This
property, that we call stretched exponential 4-mixing, implies the usual stretched exponential
mixing of Definition 1.6 (take f2 = 1 and g1 = 1)

Definition 1.7. The dynamical system θ : Ω → Ω has stretched exponential 4-mixing if
there exist c2 > 0 and C2 > 0 such that, for any Lipschitz functions f1, f2, g1, g2 : Ω → R,
for any n ∈ N, for any a ≤ b ≤ c with b− a ≥ n,

(1.2)
∣∣∣∣∫ f1 · f2 ◦ θa · g1 ◦ θb · g2 ◦ θc dP−

(∫
f1 · f2 ◦ θa dP

)(∫
g1 · g2 ◦ θc−b dP

)∣∣∣∣
6 C2e

−nc2‖f1‖Lip‖f2‖Lip‖g1‖Lip‖g2‖Lip.

Finally, we give a fiberwise mixing condition. In the case where Ω is a point (i.e., for a
deterministic dynamical system), as in Theorem 1.2, this is the only nontrivial assumption.

Definition 1.8. The random dynamical system S : Ω × X → Ω × X mixes stretched
exponentially along the fibers if there exist c3 > 0 and C3 > 0 such that, for any Lipschitz
functions f, g : X → R, for any n ∈ N, for any ω ∈ Ω∣∣∣∣∫ f · g ◦ Tnω dµω −

(∫
f dµω

)(∫
g dµθnω

)∣∣∣∣ 6 C3e
−nc3‖f‖Lip‖g‖Lip.

1.3. More fine-grained results. Let mn(ω;x, y) = mini,j<n d(T iωx, T
j
ωy) be the minimal

distance between orbit segments of length n. For more precise results, we will need to split
it further according to the allowed gap between i and j. Accordingly, let

(1.3) α(n) = (log n)C4 ,

where C4 is large enough (we will need C4 ≥ max(2/c2, 2/c3), where c2 and c3 are the rates
of stretched exponential mixing along the basis and the fibers respectively). Let

m0
n(ω;x, y) = min

i<n
d(T iωx, T

i
ωy),

m≤n (ω;x, y) = min
i,j<n

|j−i|≤α(n)

d(T iωx, T
j
ωy),

m>
n (ω;x, y) = min

i,j<n
|j−i|>α(n)

d(T iωx, T
j
ωy),

m�n (ω;x, y) = min
i<n/3, 2n/3≤j<n

d(T iωx, T
j
ωy).

We start with the upper bounds for − logmn, i.e., with the lower bounds for mn: we
have to show that the orbits are never too close to each other. For this, we will split mn as
min(m≤n ,m

>
n ) and show separately that these two terms are almost surely not too small.
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Proposition 1.9. Assume that the space X has bounded local complexity. Then, for P-
almost every ω, for µ⊗2

ω every x, y, one has

lim sup
n→∞

− logm≤n (ω;x, y)

log n
≤ 1

Dqu
2

.

Proposition 1.10. Assume that the space X has bounded local complexity, that the fiber
measures µω depend in a Lipschitz way on ω, and that θ mixes stretched exponentially. Then,
for P-almost every ω, for µ⊗2

ω every x, y, one has

lim sup
n→∞

− logm>
n (ω;x, y)

log n
≤ 2

Dan
2

.

Combining the two previous propositions, and since mn = min(m≤n ,m
>
n ), one obtains

almost surely

(1.4) lim sup
n→∞

− logmn(ω;x, y)

log n
≤ max

{
2

Dan
2

,
1

Dqu
2

}
,

proving the first (easy) half of Theorem 1.1.

Let us now deal with the lower bounds for − logmn, i.e., with the upper bounds for mn:
we have to show that there are some times at which the orbits are pretty close. We can
select those times as we like. We will use either i = j (given by m0

n) or i and j very far
apart, i.e., i < n/3 and 2n/3 ≤ j < n (given by m�n ). In other words, we use the trivial
inequality mn ≤ min(m0

n,m
�
n ), and we will get good upper bounds for these two terms.

Proposition 1.11. Assume that the space X has bounded local complexity, that the fiber
measures µω depend in a Lipschitz way on ω, that θ mixes stretched exponentially and that
S mixes stretched exponentially along the fibers. Then, for P-almost every ω, for µ⊗2

ω every
x, y, one has

lim inf
n→∞

− logm0
n(ω;x, y)

log n
≥ 1

D
qu
2

.

Proposition 1.12. Assume that the space X has bounded local complexity, that the fiber
measures µω depend in a Lipschitz way on ω, that θ has stretched exponential 4-mixing and
that S mixes stretched exponentially along the fibers. Assume also that S is Lipschitz. Then,
for P-almost every ω, for µ⊗2

ω every x, y, one has

lim inf
n→∞

− logm�n (ω;x, y)

log n
≥ 2

D
an
2

.

Combining the two previous propositions, and since mn 6 min(m0
n,m

�
n ), one obtains

almost surely

lim inf
n→∞

− logmn(ω;x, y)

log n
≥ max

{
2

D
an
2

,
1

D
qu
2

}
,

proving the second (harder) half of Theorem 1.1.
The proofs of all these theorems are given in Section 3, after several examples are dis-

cussed in Section 2. They go from the easiest one (Proposition 1.9) to the hardest one
(Proposition 1.12). The results on the upper bounds (Propositions 1.9 and 1.10) are given
in Paragraph 3.2. They are based on a first moment computation. The results on the lower



MINIMAL DISTANCE BETWEEN RANDOM ORBITS 7

bounds (Propositions 1.11 and 1.12) are then established in Paragraph 3.3. They rely on
technically more involved second moment estimates, that require stronger mixing conditions.

2. Examples

We now present an explicit example with a phase transition, as well as two classes of
random dynamical systems which satisfy the hypothesis of Theorem 1.1. The first class is
constructed from finitely many uniformly expanding maps whereas the second is given by a
continuous family of non-uniformly expanding, local diffeomorphisms on a manifold.

2.1. An explicit example with a phase transition. We construct in this section a
simple random Bernoulli shift where, depending on the sample measures, we will obtain
a phase transition. As explained in Remark 1.3, in this example we will compute Rényi
entropies which correspond to correlation dimensions on shift spaces.

Let (Ω, θ) be the full shift on the symbolic space Ω = {A,B}Z and let P = PZ with
P(A) = P(B) = 1

2 . We then consider the one-sided shift on X = {0, 1}N as a random
subshift by constructing a random Bernoulli measure as follows. Let pA, pB ∈ (0, 1). The
random Bernoulli measure {µω : ω ∈ Ω} is defined by

µω([x0, . . . , xn]) = µω0(x0)µω1(x1) · · ·µωn(xn),

with µA(0) = pA and µA(1) = 1− pA on the one hand, and µB(0) = pB and µB(1) = 1− pB
on the other hand.

To compute the Rényi entropy, observe that for a cylinder Cn = [x0, . . . , xn−1]

µ(Cn) =

∫
µω([x0, . . . , xn−1])dP(ω) =

∫ n−1∏
i=0

µωi(xi)dP(ω) =
n−1∏
i=0

∫
µωi(xi)dP(ωi)

=

n−1∏
i=0

(
1

2
µA(xi) +

1

2
µB(xi)

)
=

1

2n
(pA + pB)#{i:xi=0} (2− pA − pB)#{i:xi=1} .

Thus, by the binomial identity,∑
Cn

µ(Cn)2 =
1

22n

(
(pA + pB)2 + (2− pA − pB)2

)n
=

1

2n

(
(pA + pB)2 − 2(pA + pB) + 2

)n
,

which implies that

Han
2 = − log

(
1

2

(
(pA + pB)2 − 2(pA + pB) + 2

))
.

Moreover, it follows by the same arguments that∫
µω(Cn)2dP(ω) =

n−1∏
i=0

∫
µωi(xi)

2dP(ωi) =
n−1∏
i=0

(
1

2
µA(xi)

2 +
1

2
µB(xi)

2

)
=

1

2n
(
p2
A + p2

B

)#{i:xi=0} (
(1− pA)2 + (1− pB)2

)#{i:xi=1}
.

Thus, ∑
Cn

∫
µω(Cn)2dP(ω) =

(
1

2

(
p2
A + p2

B + (1− pA)2 + (1− pB)2
))n
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and

Hqu
2 = − log

(
1

2

(
p2
A + p2

B + (1− pA)2 + (1− pB)2
))

= − log
((
p2
A − 1

2

)2
+
(
p2
B − 1

2

)2
+ 1

2

)
.

Proposition 2.1 below shows that the hypothesis of Theorem 1.1 are satisfied. Hence, for
P-almost every ω, for µω ⊗ µω-almost every (x, y),

− logmn(ω;x, y)

log n
−−−→
n→∞

max

{
2

Han
2

,
1

Hqu
2

}

= max

 2

− log 1
2

(
(pA + pB)2 − 2(pA + pB) + 2

) , 1

− log
((
p2
A −

1
2

)2
+
(
p2
B −

1
2

)2
+ 1

2

)
 .

The behavior of this maximum depends on the values of pA and pB and some simple choices
can give us distinctive behaviors. If pA and pB are close enough (for example if |pA−pB| 6 1

2)
then max {2/Han

2 , 1/Hqu
2 } = 2/Han

2 . In this case, we obtain the same behaviour as observed
in [7, Example 2.1]. However, if pA and pB are sufficiently far from each other, there is
a phase transition as the quenched parameter becomes dominant. In order to obtain a
precise description of these domains, it suffices to determine the separating curve given by
Han

2 (pA, pB) = 2Hqu
2 (pA, pB) (see the left hand side of Figure 2.1). The same argument then

gives rise to the contours (or level sets) of the function (pA, pB) 7→ max {2/Han
2 , 1/Hqu

2 },
which are displayed on the right hand side of Figure 2.1. Observe that the formulas for Han

2

and Hqu
2 imply that these contours consist of straight lines of slope −1 and circle segments

with center (1/2, 1/2).

pA

1

pB

20

9

5.5

4

3

4

5.5

9

20

10

1

3.5

10

quenchedannealed

quenched

pB

pA

Figure 2.1. Regions with quenched and annealed behaviour
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For example, if we choose pB = 1− pA, and set c± := 1
2 ±

1
2

√
2
√√

2− 1− 1, then

lim
n→∞

− logmn(ω;x, y)

log n
= max

{
2

Han
2

,
1

Hqu
2

}
=


1

Hqu
2

: 0 < pA 6 c−
2

Han
2

: c− < pA 6 c+

1
Hqu

2
: c+ < pA 6 1.

To illustrate this phase transition, the graph of pA 7→ max {2/Han
2 , 1/Hqu

2 }, provided that
pA = 1− pB, is presented in Figure 2.2.

0.6 1

3

5

7

0.40.2 0.8

Figure 2.2. Graph of − limn→∞
logmn(ω;x,y)

logn

2.2. Finitely many Ruelle expanding maps. In this paragraph, we describe a simple
class of random dynamical systems to which Theorem 1.1 applies.

We begin with the description of the fibre maps. Let (X, d) be a compact metric space
of bounded local complexity and recall that a Lipschitz-continuous and surjective map
T : X → X is Ruelle expanding if there exist a > 0 and λ ∈ (0, 1), such that for any
x, y, x̃ ∈ X with d(x, y) < a and T (x̃) = x, there exists a unique ỹ ∈ X with T (ỹ) = y and
d(x̃, ỹ) < a. Moreover, d(x̃, ỹ) 6 λd(x, y). This class of maps was introduced by Ruelle in [8]
and contains subshifts of finite type as well as uniformly expanding maps on manifolds.

Now assume that T1, . . . , Tk : X → X are Ruelle expanding maps which are jointly mixing
in the following sense. For any pair of nonempty open sets U, V ⊂ X we require that there
exists m ∈ N such that (Tin ◦ · · ·Ti1)−1(U) ∩ V 6= ∅ for each choice i1, . . . in ∈ {1, . . . k} and
n > m. In order to construct the skew product, assume that Ω ⊆ {1, . . . k}Z is a topologically
mixing subshift of finite type and let

S : Ω×X → Ω×X, ((ωi), x) 7→ (σ((ωi)), Tω0(x)),

where σ refers to the left shift. Here, it is worth noting that the choice of Ω as a shift space
is natural in the setting of finitely many maps.

It remains to construct measures P and {µω : ω ∈ Ω} which satisfy the Lipschitz and
mixing conditions in Definitions 1.5, 1.8 and 1.7. In order to do so, we first define a metric
on Ω by ds(ω, ω̃) := smin{|k| : ωk 6=ω̃k} for some fixed s ∈ (0, 1). Secondly, we fix Lipschitz
continuous functions ψ : Ω → R and ϕi : X → R for i = 1, . . . k and assume that P is the
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unique Gibbs measure associated to ψ (see [4]). For the construction of µω, we proceed as
follows. It is well known that the operator defined by

(2.1) Li(f)(x) :=
∑

Ti(y)=x

eϕi(y)f(y)

acts on the space of Lipschitz functions. Furthermore, as shown in [10, Prop. 6.3], there
exists a > 0 such that for any ω ∈ Ω, there exists a probability measure µω such that for
any Lipschitz continuous function f and m,n > 0,

(2.2)
∥∥∥∥Lωm · · · Lω0(f Lω−1 · · · Lω−n(1))

Lωm · · · Lω−n(1)
−
∫
f dµω

∥∥∥∥
∞
6 Ce−amin{m,n} Lip(f),

where Lip(f) refers to the best Lipschitz constant of f .

Proposition 2.1. Assume that T1, . . . Tk are jointly mixing Ruelle expanding maps of
the compact metric space of bounded local complexity X and that (Ω, σ) is a two-sided,
topologically mixing subshift of finite type. Furthermore, assume that ψ : Ω → R and
ϕi : X → R are Lipschitz continuous. Then the conclusions of Theorem 1.1 hold with respect
to the equilibrium state P of ψ and {µω : ω ∈ Ω} as defined in (2.2).

Proof. Observe that it follows from (2.2) that ω 7→ µω is Lipschitz continuous with respect
to dt, for t := max{s, e−a}. For ease of notation, set Lωn···ω0

:= Lωn · · · Lω0 . Fix x0 ∈ X.
For f, g : X → R Lipschitz continuous and k > 0, it follows from (2.2) that∫

fg ◦ T kω dµω −
∫
f dµω

∫
g dµθkω

= lim
n→∞

Lωn...ω0(fg ◦ T kωLω−1...ω−n(1))(x0)

Lωn...ω−n(1)(x0)
−
∫
f dµω

∫
g dµθkω

= lim
n→∞

Lωn···ωk
(
gLωk−1···ω−n(1)

(Lωk−1···ω0 (fLω−1···ω−n (1))

Lωk−1···ω−n (1) −
∫
f dµω

))
(x0)

Lωn···ω−n(1)(x0)

6 Ce−a(k−1) Lip(f)

∫
|g| dµθkω 6 Ce−a(k−1)‖f‖Lip‖g‖Lip

as ‖ · ‖Lip = ‖·‖∞ + Lip( · ). Furthermore, by considering f = 1, it follows from the above
calculation that µω ◦ T−1

ω = µθω.
The fact that P is exponential 4-mixing is standard. Let us nevertheless explain the proof

quickly, using the non-invertible, canonical factor (Ω+, θ+) of (Ω, θ), where Ω+ := {(ωi :
i = 0, 1, . . .) : (ωi) ∈ Ω}, θ+ is the one-sided shift, d+

t is the usual shift metric with respect
to the parameter t and π : Ω → Ω+ the canonical projection. It is now crucial to recall
some results from [4]. Firstly, we may assume without loss of generality that ψ = ψ+ ◦ π
for a Lipschitz function ψ+ : Ω+ → R. The regularity of ψ+ then implies that the operator
defined by

P (f)(ω) :=
∑

θ+ω̃=ω

eψ+(ω̃)f(ω̃)

acts on the space of Lipschitz continuous functions on Ω+. Secondly, by adding a coboundary
we may then assume that P (1) = 1 and ‖Pn(f)−

∫
f dP+‖Lip � λn Lip(f) for P+ := P◦π−1

and some λ ∈ (0, 1).
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Now fix m ∈ N and choose for a given function f : Ω → R a function f∗ : Ω → R
which on each ball of radius tm+1 is constant and equal to some value of f there. If f is
Lipschitz continuous, then ‖f − f∗‖∞ 6 Lip(f)tm and there exists f+ : Ω+ → R such that
f+ ◦ π = f∗ ◦ θm and Lip(f+) 6 t−m−1 Lip(f).

Now assume that f1, f2, g1, g2 are Lipschitz continuous and that 0 6 a 6 b 6 c, with
b− a > n > 0 . Letting m = εn for some positive ε to be fixed below, we choose functions
f∗1 , f

∗
2 , g
∗
1, g
∗
2 as above. To check the 4-mixing property (1.2), we may replace fi and gi with

f∗i and g∗i respectively, as this introduces an exponentially small error.
Then the quantity to be estimated is∣∣∣∣∫ (f∗1 f

∗
2 ◦ θag∗1 ◦ θbg∗2 ◦ θc) ◦ θm dP−

∫
f∗1 f

∗
2 ◦ θa dP

∫
g∗1g
∗
2 ◦ θc−b dP

∣∣∣∣
=

∣∣∣∣∫ f+
1 f

+
2 ◦ θ

a
+g

+
1 ◦ θ

b
+g

+
2 ◦ θ

c
+ dP+ −

∫
f+

1 f
+
2 ◦ θ

a
+ dP+

∫
g+

1 g
+
2 ◦ θ

c−b
+ dP+

∣∣∣∣
=

∣∣∣∣∫ P b−a(f+
2 P

a(f+
1 ))g+

1 g
+
2 ◦ θ

c−b
+ dP+ −

∫
f+

2 P
a(f+

1 ) dP+

∫
g+

1 g
+
2 ◦ θ

c−b
+ dP+

∣∣∣∣
� λb−a Lip(f+

2 P
a(f+

1 ))

∫
|g+

1 g
+
2 ◦ θ

c−b
+ |dP+

� λb−at−2m‖f1‖Lip‖f2‖Lip‖g1‖∞‖g2‖∞.

The prefactor is bounded by λnt−2εn. If ε is small enough, it is exponentially small as
desired. �

Remark 2.2. If T1, . . . , Tk are Ruelle expanding maps defined on a connected and compact
Riemannian manifold X, then the semigroup generated by these maps is always jointly
mixing (see [10, Prop. 3.3]). Furthermore, as Riemannian manifolds are always of bounded
local complexity, the conclusions of Proposition 2.1 hold without these two hypotheses.

2.3. Non-uniformly expanding local diffeomorphisms. We now give an example in
which the fiber maps are nonuniformly expanding: contrary to Paragraph 2.2, there may be
some region where the maps are contracting, but the expansion is still winning on average.
We adapt the setting in [9]. In contrast to the situation in there, we have to assume that
the base transformation has the following mixing property.
(H0) Assume that (Ω, d) is a compact metric space, that θ : Ω → Ω is a bi-Lipschitz

homeomorphism and that P is a θ-invariant probability measure with stretched
exponential 4-mixing.

Furthermore, let X be a compact connected Riemannian manifold and let {Tω}ω∈Ω be a
family of C1-maps on X with the following properties.
(H1) For each ω, the map Tω is a surjective, local diffeomorphism.
(H2) There exists δ > 0 such that for every (ω, x) ∈ X, there exists an open neighborhood

Uωx of x with Tω|Uωx : Uωx → B(Tω(x), δ) invertible,
(H3) There exists C > 0 such that ‖DTω(x)‖ 6 C for all ω ∈ Ω and all x ∈ X.

Observe that the connectedness and compactness of X imply that the degree deg(Tω) of
Tω, i.e., the number of preimages of Tω is finite and constant for each ω. Moreover, (H3)
ensures that this degree is uniformly bounded.
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We also assume the following geometric conditions. There are random variables σω >
1, Lω > 0 and 0 6 pω, qω < deg(fω) with L := supLω <∞ such that for each ω,
(H4) there exists a covering Pω = {Pω1 , . . . , Pωpω , . . . , P

ω
pω+qω} ofXω such that every Tω|Pi is

injective, ‖DTω(x)−1‖ 6 σ−1
ω < 1 for each x ∈ Pω1 ∪· · ·∪Pωpω , and ‖DTω(x)−1‖ 6 Lω

for every x ∈ X,
(H5)

sup

{
log

σ−1
ω pω + Lωqω

deg(fω)
: ω ∈ Ω

}
< 0.

Finally, assume that {ϕω} is a family of real valued functions in C1(X), referred to as
potentials, such that sup{‖Dϕω‖∞ : ω ∈ Ω} <∞ and for all ω

(H6) sup
x∈Xω

ϕω − inf
x∈Xω

ϕω + log(1 + ‖Dϕω‖∞ diamX) < − log
σ−1
ω pω + Lωqω

deg(fω)
.

We now motivate conditions (H4–6). (H4) states that regions of contraction and expansion
may coexist whereas (H5) implies that expansion dominates the contraction. Finally, (H6)
can be seen as an upper bound of the global and local oscillation by the combinatorial
expansion in (H4). However, in contrast to the bounds in average in [9], we have to ask for
uniform bounds in (H5) and (H6) due to the uniform hypothesis in Theorem 1.1.

Furthermore, in order to guarantee the continuous variation with respect to ω, we assume
that T and ϕ vary Lipschitz continuously with respect to ω, that is we require that
(H7) there exists CT > 0 with d(Tω(x), Tω′(x)) 6 CTd(ω, ω′) for all ω, ω′ ∈ Ω and all

x ∈ X,
(H8) there exists Cϕ > 0 with |ϕω(x) − ϕω′(x)| 6 Cϕd(ω, ω′) for all ω, ω′ ∈ Ω and all

x ∈ X.
The relevant measures {µω} are now given by application of Theorem A in [9]: denoting

by Lω the transfer operator associated to Tω and ϕω as in (2.1), there exist families of
positive constants {λω}, of differentiable functions {hω} and probability measures νω such
that Lω(hω) = λωhθω and L∗ω(νθω) = λωνω. Furthermore, for dµω := hω dνω, it follows
that µω = µθω ◦ T−1

ω and that a fibered exponential decay of correlation for C1-observables
holds (Corollary 1 in [9]). Finally, we would like to remark that the standard examples
for this class are random Manneville-Pomeau maps or sufficiently random perturbations
of non-uniformly expanding maps with respect to a potential sufficiently close to zero (see
Examples 3.1 and 3.2 in [9] for more details).

Proposition 2.3. Assume that (H0–H8) hold. Then there exists α > 0 such that the
assumptions of Theorem 1.1 hold with respect to P, the metric dα defined by dα(ω, ω′) :=
d(ω, ω′)α on Ω and {µω : ω ∈ Ω} as defined above.

Proof. Before starting with the proof, we remark that we will write a� b whenever there
exists C > 0, depending exclusively on (H0–H8), such that a 6 Cb.

In order to verify the assumptions of Theorem 1.1, we have to modify the construction
in [9] slightly. In order to do so, recall that it is shown there that there exists a positive and
almost surely finite random variable κω such that the family of cones

(2.3) Λω :=

{
gω ∈ C1(X) : gω > 0 and ‖Dgω‖∞ 6 κω inf

x∈X
gω(x)

}
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satisfies Lω(Λω) ⊂ Λθω a.s. However, as (H6) provides a uniform bound, it follows from
the construction (see Formula 5.2 in [9]) that κω is in fact uniformly bounded. Hence
(see [9, Claim 1]), there exist C > 0 and ϑ ∈ (0, 1) such that, for every m,n > 1 and every
ϕ ∈ Λθ−(n+m)(ω) and ψ ∈ Λθ−nω,

(2.4) Θω

(
Ln+m
θ−(n+m)ω

ϕ,Lnθ−nωψ
)
6 C ϑn Θθ−nω

(
Lm
θ−(m+n)ω

ϕ,ψ
)
.

In here, Θω refers to the Hilbert metric on Λω and Lnω stands for Lθn−1ω · · · Lω which we
now analyze briefly. Firstly, by dividing the defining relation by gω in (2.3), one obtains
that ‖D log gω‖∞ 6 κω and, in particular, that qω(x)/qω(y) 6 κω diam(X) for all x, y ∈ X.
Secondly, if Θω(f, g) < ε for some ε > 0, then there are t′ > t > 0 with log t′− log t < ε such
that 0 6 κω inf(f − tg) and 0 6 κω inf(t′g − f). Hence, t 6 f/g 6 t′ and 0 6 f/g − t < ε.

Construction of νω. Assume that f ∈ Λω. Then (2.4) implies, for εn := CϑnΘω(f,1), that
Θθnω(Lnω(f),Lnω(1)) 6 εn. With rn := infx Lnω(f)(x)/Lnω(1)(x), one then obtains from the
above that rn 6 Lnω(f)/Lnω(1) 6 rneεn . Hence, as

rm+n 6
Lmω (Lnθmω(f))

Lm+n
ω (1)

6 rne
εn and rm+ne

εm+n >
Lmω (Lnθmω(f))

Lm+n
ω (1)

> rn,

(log rn) is a Cauchy sequence and, in particular, limn rn ∈ (0,∞). Moreover, as Θω(f,1)
is uniformly bounded, the function Lnω(f)/Lnω(1) converges uniformly to a constant νω(f).
Moreover, this constant satisfies

(2.5)
∥∥∥∥log νω(f)− log

Lnω(f)

Lnω(1)

∥∥∥∥
∞
� ϑn ∀f ∈ Λω, n ∈ N, ω ∈ Ω.

We now extend the domain of νω to Lipschitz functions, using the following standard fact:
There exists C > 0 such that for any ε > 0 and Lipschitz function f : X → R, there is
f∗ ∈ C1(X) with ‖f − f∗‖∞ 6 ε and ‖Df∗‖ 6 C Lip(f). Let us recall how this fact is
proved, using mollifiers as follows. Assume that ` : Rd → [0,∞) is a function in C1 such
that ` is supported on {x : ‖x‖ 6 1} and

∫
` dx = 1. For `ε(x) := ε−d`(x/ε), the convolution

g ∗ `ε with a Lipschitz function g is in C1(X) and ‖g − g ∗ `ε‖∞ 6 2 Lip(g)ε. If, in addition,
`(x) = j(‖x‖) for some j : [0, 1] → R (i.e., ` is constant on spheres), a straightforward
calculation shows that ‖D(g ∗`ε)‖ � Lip(g) where the implicit constant in ‘�’ only depends
on `. Finally, by employing an argument based on a partition of unity, one obtains that the
same holds for the Riemannian manifold X.

In order to employ (2.5), note that f∗ + c ∈ Λω for c = ‖Df∗‖∞/κω − inf f∗. Hence,∥∥∥∥νω(f∗)− L
n
ω(f)

Lnω(1)

∥∥∥∥
∞
− ε 6

∥∥∥∥νω(f∗ + c)− L
n
ω(f∗ + c)

Lnω(1)

∥∥∥∥
∞

� ϑnνω(f∗ + c)� ϑn(‖Df∗‖∞/κω + ‖f∗ − inf f∗‖∞)

� ϑn Lip(f)
(
κ−1
ω + diam(X)

)
� ϑn Lip(f).

As ε > 0 is arbitrary, the definition of νω extends to Lipschitz continuous functions and

(2.6) ‖Lnω(f)/Lnω(1)− νω(f)‖∞ � ϑn Lip(f).
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Construction of hω. Let λnθ−nω := νω(Lnθ−nω(1)) and hnω := Lnθ−nω(1)/λnθ−nω. As Θω is a
projective metric, (2.4) implies that (Lnθ−nω(1)) and (hn) are Cauchy sequences with respect
to Θω. Hence, for rn,k := infx h

n+k
ω (x)/hnω(x), it follows in analogy to the construction of νω

that
rn,k 6 h

n+k
ω /hnω 6 rn,ke

εn .

Moreover, by multiplying with hnω and integrating with respect to νω, it follows that
|log rn,k| 6 εn. Hence, hω = limhnω exists and satisfies

(2.7) ‖log hnω − log hω‖∞ � ϑn.

Exponential mixing. We now show that dµω = hω dνω mixes exponentially along fibers with
respect to Lipschitz functions (in [9], it is only shown for functions in C1(X)). However, it
follows from (2.6) and (2.7) that, for f Lipschitz and some uniform C > 0,∥∥∥∥log νω(fhω)− log

Lnω(fhω)

λnωhθnω

∥∥∥∥
∞
6

∥∥∥∥log νω(fhω)− log
Lnω(fhω)

Lnω(1)

∥∥∥∥
∞

+

∥∥∥∥log
λnωhθnω
Lnω(1)

∥∥∥∥
∞

6 Cϑn + ‖log hθnω − Lnω(1)/λnω‖∞ � ϑn.

Observe that L̃ω : f 7→ Lnω(fhω)/(λnωhθnω) is the transfer operator of Tω with respect to µω.
Hence, as Lip(hω) is uniformly bounded, it follows that ‖L̃nω(f) − µω(f)‖∞ � ϑn Lip(f).
The exponential mixing along fibers follows from this.

Hölder continuity of µω. Note that Kantorovich’s duality for the Wasserstein metric W on
probability measures implies that the condition in Definition 1.5 is equivalent to Lipschitz
continuity with respect toW . So assume that f is a Lipschitz function on X with Lip(f) 6 1
and infx∈Xω f(x) = 0. Then ‖f‖∞ 6 Lip(f) diam(X) and∫

f d(µω − µω′) =

∫
f(hω − hω′) dνω +

∫
fhω′ d(νω − νω′)

6 ‖hω − hω′‖∞
∫
f dνω + Lip(fhω′)W (νω, νω′)

6 diam(X)‖hω − hω′‖∞ + (Lip(hω′) diam(X) + ‖hω′‖∞)W (νω, νω′)

� ‖hω − hω′‖∞ + ‖hω′‖LipW (νω, νω′).

As hω′ ∈ Λω′ and
∫
hω′ dνω′ = 1, the Lipschitz norm ‖hω‖Lip is uniformly bounded. So it

remains to show that ω → hω is Hölder with respect to the sup-norm and that νω is Hölder
with respect to W , which essentially is a corollary of the above and the following estimate.

We recall that constants δ, L and CT have been introduced respectively in (H2), (H4)
and (H7).

Lemma 2.4. There exists A > 1 such that for n ∈ N, ω, ω′ ∈ Ω with And(ω, ω′) < 1 (or
d(θnω, θnω′)An < 1, respectively) and f ∈ Λω ∩ Λω′,

‖logLnω(f)− logLnω′(f)‖∞ �

{
And(ω, ω′) if d(ω, ω′)An < 1,

And(θnω, θnω′) if d(θnω, θnω′)An < 1.
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Proof. The estimate relies on the control of the distances between the preimages of T kω and
T kω′ , where k = 1, . . . , n and ω and ω′ are sufficiently close.

So assume that x, y, y′ ∈ X and ω, ω′ ∈ Ω with Tω(x) = y, d(y, y′) < δ, and d(ω, ω′) <
C−1
T δ. As d(y, y′) < δ, z := (Tω|Uωx )−1(y′) is well defined and d(x, z) ≤ Ld(y, y′) by (H4). It

now follows from (H7) that d(Tω(z), Tω′(z)) < δ. Hence, x′ := (Tω′ |Uω′z )−1(y′) is also well
defined and

d(x, x′) 6 d(x, z) + d(z, x′) 6 Ld(Tωx, Tωz) +Md(Tω′z, Tω′x
′)

= Ld(y, y′) + Ld(Tω′(z), Tωz) 6 Ld(y, y′) + LCTd(ω′, ω).
(2.8)

Note that (H3) implies that Tω′ |B(x,C−1δ) is injective. In particular, there is at most one
x′ ∈ X with Tω′(x′) = y′ and d(x, x′) < C−1δ. Hence, if d(x, x′) < C−1δ, then x′ is unique.

Now assume that n ∈ N and x, y ∈ X with Tnω (x) = y are given. By iterating the above
construction of preimages, one then obtains a unique x′ ∈ X with Tnω′(x

′) = y whose ω′-orbit
stays close to the ω-orbit of x until time n, provided that d(ω, ω′) is sufficiently small. Namely,
it easily follows by induction that this happens whenever d(θkω, θkω′) < (CCT )−1δ(2L)−k−1

for k = 0, . . . n− 1. As d(θkω, θkω′) 6 Lip(θ)kd(ω, ω′), there exists A > 1 such that ω and
ω′ are sufficiently close if d(ω, ω′) < A−n.

Furthermore, if d(ω, ω′) < A−n, it follows from (H8), (H3) and again by induction from
(2.8) and eventually enlarging A that∣∣∣∣∣

n−1∑
k=0

ϕθkω(T kω (x))− ϕθkω′(T kω′(x′))

∣∣∣∣∣ 6
n−1∑
k=0

Cϕd(θkω, θkω′) +
n−1∑
k=0

Cd(T kω (x), T kω′(x
′))

6Cϕ

n−1∑
k=0

Lip(θ)kd(ω, ω′) + CCT

n−1∑
k=0

n−1∑
`=k

Ln−`d(θ`ω, θ`ω′)

�And(ω, ω′).

(2.9)

As there is a one-to-one relation between the preimages of Tnω and Tnω′ , it follows from (2.9)
by a standard argument, for f ∈ Λω ∩ Λω′ , that

|Lnω(f)(x)− Lnω′(f)(x)| � And(ω, ω′)(Lnω(f)(x) + Lip(log f)Lnω′(f)(x))

� And(ω, ω′)(Lnω(f)(x) + Lnω′(f)(x)),

where we have used that Lip(log f) is uniformly bounded as f ∈ Λω′ . Furthermore, observe
that (2.9), d(ω, ω′)An < 1 and the uniform bound on Lip(log f) imply that Lnω(f)(x) �
Lnω′(f)(x) � Lnω(f)(x). Hence, the first assertion of the lemma follows by dividing the
last estimate by Lnω(f)(x). The second part of Lemma 2.4 follows by precisely the same
arguments. �

By combining Lemma 2.4 with estimate (2.5), one obtains for ω, ω′ sufficiently close,
x ∈ X and f ∈ Λω ∩ Λω′ and νnω(f) := Lnω(f)(x)/Lnω(1)(x) that

|log νω(f)− log νω′(f)| 6 |log νω(f)− log νnω(f)|+ |logLnω(f)(x)− logLnω′(f)(x)|
+ |logLnω(1)(x)− logLnω′(1)(x)|+ |log νnω′(f)− log νω′(f)|
� ϑn +And(ω, ω′).

(2.10)
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For t given by d(ω, ω′) = A−t, n := bt logA/(logA− log ϑ)c, it then follows that

|log νω(f)− log νω′(f)| � d(ω, ω′)
− log ϑ

logA−log ϑ = d(ω, ω′)α,

where α := − log ϑ/(logA − log ϑ). By repeating the approximation argument in (2.6),
one obtains that |νω(f) − νω′(f)| � Lip(f)d(ω, ω′)α and by Kantorovich’s duality that
W (νω, νω′)� d(ω, ω′)α. With respect to hω, estimate (2.7), Lemma 2.4, estimate (2.10), a
further application of Lemma 2.4 and (2.7) (in this order) imply that

|log hω(x)− log hω′(x)| 6
∣∣∣∣log

hω(x)

hnω(x)

∣∣∣∣+

∣∣∣∣log
Lnθ−nω(1)(x)

Ln
θ−nω′(1)(x)

∣∣∣∣+

∣∣∣∣log
νω(Lnθ−nω(1))

νω′(Lnθ−nω(1))

∣∣∣∣
+

∣∣∣∣log
νω′(Lnθ−nω(1))

νω′(Lnθ−nω′(1))

∣∣∣∣+

∣∣∣∣log
hω′(x)

hnω′(x)

∣∣∣∣
� ϑn +And(ω, ω′) + d(ω, ω′)α +And(ω, ω′) + ϑn.

With respect to the same choice of t and n as above, it follows that ‖hω−hω′‖∞ � d(ω, ω′)α.
This concludes the proof of Proposition 2.3, except for the fact that θ is exponentially
4-mixing with respect to Hölder functions, which is proved in the next lemma. �

Lemma 2.5. Let θ : Ω → Ω be a map on a compact metric space which is exponentially
4-mixing for Lipschitz functions. Then it is also exponentially 4-mixing with respect to
Hölder-continuous functions of any given positive exponent.

This fact is not specific to exponential 4-mixing: it works for any kind of mixing rate. It
follows from a standard interpolation argument, approximating Hölder-continuous functions
with Lipschitz ones. This is a standard fact on Riemannian manifolds using mollifiers as we
discussed above in the construction of νω, but it works in any metric space as we explain
now.

Lemma 2.6. Let (Ω, d) be a metric space, and α > 0, κ > 0. For any α-Hölder-continuous
f : Ω→ R, there exists a Lipschitz function f∗ : Ω→ R with ‖f − f∗‖∞ 6 2Holα(f)κα and
Lip(f∗) 6 κ−(1−α)Holα(f), where

Holα(f) = sup
x 6=y

|f(x)− f(y)|
d(x, y)α

is the best α-Hölder constant of f .

Proof. Let A be a maximal κ-separated set in Ω. Let also M = Holα(f)κ−(1−α). The
restriction of f to A satisfies, for x 6= y, the inequality

|f(x)− f(y)| 6 Holα(f)d(x, y)α 6Md(x, y),

as d(x, y) > κ. Define f∗ on Ω by

f∗(x) = inf
y∈A

f(y) +Md(x, y).

The previous inequality ensures that this function coincides with f on A, and that it is M -
Lipschitz globally. Let us check that ‖f − f∗‖∞ 6 2Holα(f)κα. Take x ∈ Ω. By maximality
of A, there exists y ∈ A with d(x, y) 6 κ. Then, as f(y) = f∗(y), we get

|f(x)− f∗(x)| 6 |f(x)− f(y)|+ |f∗(x)− f∗(y)| 6 Holα(f)κα + Lip(f∗)κ 6 2Holα(f)κα. �
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Proof of Lemma 2.5. Start from α-Hölder continuous functions f1, f2, g1, g2 and a 6 b 6 c
for which one wants to prove (1.2) with the Lipschitz norm replaced by the Hölder norm.
Let κ = e−εn with ε suitable small, and apply Lemma 2.5 to get new functions f∗1 , f

∗
2 , g
∗
1, g
∗
2.

Replacing each fi, gi with its starred version in (1.2) introduces an error controlled by e−αεn,
and therefore exponentially small. Thanks to (1.2) for Lipschitz functions, the remaining
difference for the starred functions is bounded by

Ce−cn‖f∗1 ‖Lip‖f∗2 ‖Lip‖g∗1‖Lip‖g∗2‖Lip 6 Ce
−cne4(1−α)εn‖f∗1 ‖Holα‖f∗2 ‖Holα‖g∗1‖Holα‖g∗2‖Holα ,

which is exponentially small if ε was chosen small enough at the beginning of the argument.
�

Remark 2.7. With respect to the proof of Proposition 2.3, we would like to remark that
probably all of the arguments are well known but that they had to be adapted to our situation
in order to prove Hölder continuity of ω 7→ µω and mixing with respect to Lipschitz functions
(instead of functions in C1(X)) along the fibers. In here, it turned out to be advantageous
to first construct the family of conformal measures and thereafter the invariant functions for
the family of transfer operators as the regularity of ω 7→ hω and ω 7→ µω are consequences
of the regularity of ω 7→ νω. Moreover, as the arguments essentially depend on the existence
of the cone field, they probably can be easily adapted to other settings. It is also worth
noting that we did not make use of all features of the cone field as we never touched the
convergence of the logarithmic derivatives, which is provided by the definition of the cones.

Furthermore, we also would like to draw attention to [1, 2], where the authors studied
similar cones adapted to random interval transformations. In there, the cones are defined
through the BV-norm instead of the C1(X) norm. In particular, provided that logLn is
sufficiently regular (see Lemma 2.4), the above proof is applicable in verbatim.

We also would like to point out that the Hölder continuity of νω with respect to ω was
obtained in [6] in a uniformly expanding setting for the more general setting of fibered
systems.

3. Proofs

3.1. Preliminaries. Given a space with bounded local complexity, consider for each r a
finite sequence x(r)

1 , . . . , x
(r)
k(r) of points as in the definition, such that the space is covered

by the balls B(x
(r)
p , r) and such that no point is in more than C0 balls B(x

(r)
p , 4r). Fix also

functions ρ(r)
p supported around x

(r)
p , which are equal to 1 on B(x

(r)
p , 2r), to 0 outside of

B(x
(r)
p , 4r), and take values in [0, 1]. For instance, one can take ρ(r)

p (x) = ρ(d(x, xp)/r))
where ρ : R→ R is equal to 1 on (−∞, 2], to 0 on [4,∞) and affine in between. With this
specific choice, one has a Lipschitz control

(3.1) ‖ρ(r)
p ‖Lip 6

1

r

that will prove useful later.
The main point of these definitions is that one can approximate (x, y) 7→ 1d(x,y)≤r by a

sum of functions ρ(r)
p , to which we will be able to apply mixing arguments:
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Lemma 3.1. For any x, y ∈ X,

(3.2) 1d(x,y)≤r 6
k(r)∑
p=1

ρ(r)
p (x)ρ(r)

p (y) 6 C01d(x,y)≤8r.

Proof. Assume d(x, y) ≤ r. There is some p = p(x, r) such that x ∈ B(x
(r)
p , r), as these balls

cover the space. Then y ∈ B(x, r) ⊆ B(x
(r)
p , 2r). Therefore, ρ(r)

p (x) = ρ
(r)
p (y) = 1, proving

the left inequality.
Conversely, in the sum

∑
p ρ

(r)
p (x)ρ

(r)
p (y), a term can only be nonzero if d(x, xp) ≤ 4r.

There are at most C0 such values of p, by definition of bounded local complexity. For each
such p, the factor ρ(r)

p (y) can only be nonzero if d(y, x
(r)
p ) 6 4r, which implies d(x, y) 6 8r.

This proves the right inequality. �

This lemma makes it possible to express the different correlation dimensions in terms of
the discretization ρ(r)

p :

Lemma 3.2. One has

lim sup
r→0

log

k(r)∑
p=1

(∫
ρ(r)
p dµ

)2


log r
= D

an
2 ,

and

lim sup
r→0

log

k(r)∑
p=1

∫ (∫
ρ(r)
p dµω

)2

dP(ω)


log r

= D
qu
2 ,

Using liminfs instead, similar equations hold for Dan
2 and Dqu

2 .

Proof. We claim that, for any probability measure η on X,∫
η(B(x, r)) dη(x) 6

k(r)∑
p=1

(∫
ρ(r)
p dη

)2

6 C0

∫
η(B(x, 8r)) dη(x).

This follows from integrating the inequalities in Lemma 3.1 with respect to η⊗2.
Applying these inequalities to the measures µ or µω, the lemma follows readily from the

definitions of the correlation dimensions. �

Lemma 3.3. Let k = k(r) be as in Definition 1.4. Then, for small enough r, one has
k(r) 6 r−C

′
0 for C ′0 = 4 logC0.

Proof. Let us show that

(3.3) k(r) 6 C0k(2r).

Since the balls (B(x
(2r)
q ))q6k(2r) cover the space, any point x(r)

p belongs to one of these balls,
for some q = q(p). This defines a map {1, . . . , k(r)} → {1, . . . , k(2r)}. Moreover, each q has
at most C0 preimages, by definition of the bounded local complexity. This shows (3.3).
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We deduce that k(r) 6 Cn0 k(2nr). Take n so that 2nr is of the order of magnitude of 1
(so that k(2nr) is bounded), e.g., n = −blog r/ log 2c. This gives

k(r) 6 CC− log r/ log 2
0 = Cr− logC0/ log 2.

As 4 logC0 > logC0/ log 2, the conclusion follows. �

All the forthcoming proofs will be based on the same scheme. We will fix a small
enough r, and use the functions ρ(r)

p , omitting the superscript (r) for readability. We will
need to compute the first or second moment of some functions, to apply Markov inequalities
to estimate ultimately the probability that mn is smaller or larger than r, and then conclude
with a Borel-Cantelli argument. Depending on the precise quantity to be estimated, we will
need stronger or weaker mixing conditions. The following notations will be used throughout:

• We define a function Rp : Ω→ R by

(3.4) Rp(ω) =

∫
ρp dµω.

As ρp is Lipschitz with ‖ρp‖Lip 6 1/r by (3.1), the assumption that ω 7→ µω is
Lipschitz ensures that Rp is also Lipschitz, with

(3.5) ‖Rp‖Lip 6 C2/r.

With this notation, the second part of Lemma 3.2 can be reformulated as:

(3.6) lim sup
r→0

log

(∑
p

∫
R2
p dP

)
log r

= D
qu
2 ,

and similarly for the liminf.
• Both the base map θ and the fiber map Tω are mixing stretched exponentially, with
respective constants (C2, c2) and (C3, c3). We define a function

ϕ(n) = Cϕ exp(−ncϕ),

with Cϕ = max(C2, C3) and cϕ = min(c2, c3), that bounds from above the mixing
rate of both maps. Its main property is that, with our choice of the gap function α
in (1.3), one has

(3.7) ϕ(α(n)) 6
C

nlogn
.

In particular, ϕ(α(n)) tends to zero faster than any polynomial, which is the property
we will use below.

3.2. Upper bounds. In this paragraph, we prove Propositions 1.9 and 1.10, giving upper
bounds for − logm≤n and − logm>

n , i.e., showing that respectively on-diagonal and off-
diagonal distances along orbits cannot be too small. The probability that they are too
small will be estimated thanks to a first moment computation, and we will conclude with a
Borel-Cantelli argument. These arguments are pretty soft, as testified by the fact that the
assumptions in these propositions are much milder than for the corresponding lower bounds.
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Proof of Proposition 1.9 on on-diagonal upper bounds. First of all, we observe that if Dqu
2 =

0, the theorem is empty. Assume now that Dqu
2 > 0. Let ε < Dqu

2 . Fix a small enough r.
Define a function

S≤n (ω;x, y) =
∑
i,j<n

|j−i|6α(n)

∑
p

ρp(T
i
ωx)ρp(T

j
ωy),

where ρp = ρ
(r)
p is the discretization at scale r.

If m≤n (ω;x, y) ≤ r, then there are two indices i, j such that d(T iωx, T
j
ωy) ≤ r. Then

S≤n (ω;x, y) ≥ 1 by Lemma 3.1. With Markov’s inequality, we obtain

P⊗ µω ⊗ µω{(ω, x, y) :m≤n (ω;x, y) ≤ r}
≤ P⊗ µω ⊗ µω{(ω, x, y) : S≤n (ω;x, y) ≥ 1} ≤ E(S≤n ).

Let us now compute this expectation. We have

E(S≤n ) =
∑
p

∑
|j−i|≤α(n)

∫
ρp(T

i
ωx)ρp(T

j
ωy) dµω(x) dµω(y) dP(ω)

=
∑
p

∑
|j−i|≤α(n)

∫ (∫
ρp dµθiω

)(∫
ρp dµθjω

)
dP(ω),

since T iωx is distributed according to µθiω when x is distributed according to µω, by equiv-
ariance. We recall the notation Rp introduced in (3.4). Applying the Cauchy-Schwarz
inequality and then using the invariance of P under θ, we obtain

E(S≤n ) ≤
∑
p

∑
|j−i|≤α(n)

[∫
Rp(θ

iω)2 dP(ω)

]1/2 [∫
Rp(θ

jω)2 dP(ω)

]1/2

=
∑
p

∑
|j−i|≤α(n)

∫
Rp(ω)2 dP(ω).

The sum over i, j reduces to 2n · α(n). Thanks to (3.6), if r is small enough one has∑
p

∫
Rp(ω)2 dP(ω) 6 rD

qu
2 −ε. We have obtained

P⊗ µω ⊗ µω{(ω, x, y) : m≤n (ω;x, y) ≤ r} ≤ 2nα(n)rD
qu
2 −ε.

Take now r = rn = 1/n(1+2ε)/(Dqu
2 −ε). As α(n) = O(nε), the previous bound gives

P⊗ µω ⊗ µω{(ω, x, y) : m≤n (ω;x, y) ≤ rn} = O(1/nε).

Choose a subsequence ns = bs2/εc. Along this subsequence, the error probability is
O(1/s2), which is summable. By Borel-Cantelli, for almost every (ω, x, y), one has eventually
m≤ns(ω;x, y) > rns , and therefore

− logm≤ns(ω;x, y)

log ns
≤ 1 + 2ε

Dqu
2 − ε

.



MINIMAL DISTANCE BETWEEN RANDOM ORBITS 21

As − logm≤n (ω;x, y) is a non-decreasing function of n and log ns+1/ log ns → 1, this inequal-
ity along the subsequence ns passes to the whole sequence. We obtain almost surely

lim sup
− logm≤n (ω;x, y)

log n
≤ 1 + 2ε

Dqu
2 − ε

.

As ε is arbitrary, this proves the result. �

Proof of Proposition 1.10 on off-diagonal upper bounds. We follow the same strategy as in
the previous proof. The result is obvious if Dan

2 = 0. Assume that Dan
2 > 0. Let ε < Dan

2 .
Fix a small enough r.

Define a function

S>n (ω;x, y) =
∑
i,j<n

|j−i|>α(n)

∑
p

ρp(T
i
ωx)ρp(T

j
ωy).

As above, we have

P⊗ µω ⊗ µω{(ω, x, y) :m>
n (ω;x, y) ≤ r}
≤ P⊗ µω ⊗ µω{(ω, x, y) : S>n (ω;x, y) ≥ 1} ≤ E(S>n ).

Moreover,

E(S>n ) =
∑
i,j<n

|j−i|>α(n)

∑
p

∫
Rp(θ

iω)Rp(θ
jω) dP(ω),

as in the proof of Proposition 1.9.
As the speed of mixing of θ is at least ϕ by definition, we have∫

Rp(θ
iω)Rp(θ

jω) dP(ω) =

(∫
Rp(ω) dP(ω)

)2

+O(ϕ(α(n))r−2),

as Rp has a Lipschitz norm bounded by C2/r (see (3.5)), and i and j are separated by at
least α(n).

Summing over i, j (there are less than n2 of them) and then p (there are k(r) of them),
we get

E(S>n ) 6 n2
∑
p

(∫
Rp(ω) dP(ω)

)2

+ Cn2k(r)ϕ(α(n))r−2.

Note that
∫
Rp(ω) dP(ω) =

∫
ρp dµ. By Lemma 3.2, we have for small enough r∑

p

(∫
ρp dµ

)2

6 rD
an
2 −ε.

Moreover, k(r) 6 r−C
′
0 by Lemma 3.3. Finally,

P⊗ µω ⊗ µω{(ω, x, y) : m>
n (ω;x, y) ≤ r} ≤ n2rD

an
2 −ε + Cn2r−(C′0+2)ϕ(α(n)).

Take now r = rn = 1/n(2+ε)/(Dan
2 −ε). As ϕ(α(n)) 6 C/nlogn by (3.7), this gives

P⊗ µω ⊗ µω{(ω, x, y) : m>
n (ω;x, y) ≤ rn} ≤ 1/nε + C ′nC(ε)/nlogn.

For large enough n, this is bounded by 2/nε.
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Choose a subsequence ns = bs2/εc. Along this subsequence, the error probability is
O(1/s2), which is summable. By Borel-Cantelli, for almost every (ω, x, y), one has eventually
m>
ns(ω;x, y) > rns , and therefore

− logm>
ns(ω;x, y)

log ns
≤ 2 + ε

Dan
2 − ε

.

Contrary to the proof of Proposition 1.9, we can not argue from there by monotonicity,
as − logm>

n is not a non-decreasing function of n (we are considering more times, but the
constraint |j − i| > α(n) becomes stronger when n increases). What is true, though, is that
for all n ∈ [ns, ns+1], one has

− logm>
n (ω;x, y) ≤ − log min

i,j<ns+1

|j−i|>α(ns)

d(T iωx, T
j
ωy) =: − logm′ns+1

.

One can show exactly as above that, almost surely, eventually,

− logm′ns(ω;x, y)

log ns
≤ 2 + ε

Dan
2 − ε

.

With the previous equation, this inequality passes to the whole sequence m>
n . We obtain

almost surely

lim sup
− logm>

n (ω;x, y)

log n
≤ 2 + ε

Dan
2 − ε

.

As ε is arbitrary, this proves the result. �

Remark 3.4. Stretched exponential mixing is not essential for the proof of Proposition 1.10:
using a gap size α(n) = nδ for an arbitrarily small δ instead of α(n) = (log n)C4 as we did,
the proof goes through if the mixing speed of θ is faster than any polynomial. Therefore, (1.4)
holds under this assumption. The stretched exponential mixing is however necessary in our
argument for the lower bound for mn (see the proof of Proposition 1.12).

3.3. Lower bounds. In this paragraph, we prove Propositions 1.11 and 1.12, giving lower
bounds for − logm0

n and − logm�n , i.e., showing that respectively on-diagonal and off-
diagonal distances along orbits can not be too large. The probability that they are too large
will be estimated thanks to a second moment computation: we will control the average of
a suitable function, and its variance to show that this function can not deviate much from
its average. We will then conclude with a Borel-Cantelli argument. These arguments are
more technical than the ones for the corresponding upper bounds, as we need estimates on
moments of order two instead of one (and therefore stronger mixing assumptions to be able
to deal with the more involved terms that show up).

Proof of Proposition 1.11 on on-diagonal lower bounds. Let ε > 0. Fix a small enough r.
Define a function

S0
n(ω;x, y) =

∑
i<n

∑
p

ρp(T
i
ωx)ρp(T

i
ωy),

where ρp = ρ
(r)
p is the discretization at scale r.
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If m0
n(ω;x, y) > 8r, then for all i one has d(T iωx, T

i
ωy) > 8r. Then S0

n(ω;x, y) = 0 by
Lemma 3.1. We obtain

P⊗ µω ⊗ µω{(ω, x, y) :m0
n(ω;x, y) > 8r}
≤ P⊗ µω ⊗ µω{(ω, x, y) : S0

n(ω;x, y) = 0}.

When S0
n = 0, then (S0

n − E(S0
n))2/E(S0

n)2 = 1. With Markov inequality, this gives

(3.8) P⊗ µω ⊗ µω{(ω, x, y) : m0
n(ω;x, y) > 8r} 6 var(S0

n)

E(S0
n)2

=
E((S0

n)2)− E(S0
n)2

E(S0
n)2

.

We have

E(S0
n) =

∑
p

∑
i

∫
ρp(T

i
ωx)ρp(T

i
ωy) dµω(x) dµω(y) dP(ω)

=
∑
p

∑
i

∫
Rp(θ

iω) ·Rp(θiω) dP(ω)

= n
∑
p

∫
Rp(ω)2 dP(ω),

by θ-invariance of P. Therefore, its asymptotic behavior is described by (3.6).
Let us now estimate E((S0

n)2). Expanding the square, we get

E((S0
n)2) =

∑
i,i′

∑
p,q

∫
ρp(T

i
ωx)ρp(T

i
ωy)ρq(T

i′
ω x)ρq(T

i′
ω y) dµω(x) dµω(y) dP(ω).

We split the sum according to whether |i′ − i| ≤ α(n) or |i′ − i| > α(n). In the former case,
we will use a crude upper bound, and in the latter we will use mixing. Let us fix i, i′.

We have
∑

q ρq(T
i′
ω x)ρq(T

i′
ω y) 6 C0, by (3.2). Therefore, we get a bound

C0

∑
p

∫
ρp(T

i
ωx)ρp(T

i
ωy) dµω(x) dµω(y) dP(ω) = C0

∑
p

∫
Rp(ω)2 dP(ω).

We will only use this crude bound when |i′ − i| ≤ α(n). Therefore, we will get 2nα(n) of
them.

Assume now |i′ − i| > α(n). Then∫
ρp(T

i
ωx)ρq(T

i′
ω x) dµω(x) =

(∫
ρp dµθiω

)(∫
ρq dµθi′ω

)
+O(ϕ(α(n))‖ρp‖Lip‖ρq‖Lip),

by fiberwise mixing (Definition 1.8). As ‖ρp‖Lip 6 1/r, the contribution of the error terms
to E((S0

n)2) is bounded by

(3.9) C
∑
i,i′

∑
p,q

ϕ(α(n))r−2 6 Cn2r−2C′0−2ϕ(α(n)),

as there are n possible values of i, i′, and k(r) ≤ r−C′0 possible values of p, q.
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Let us use the same estimate for the integral with respect to dµω(y). The remaining term
is ∑

p,q

∑
|i′−i|>α(n)

∫
Rp(θ

iω)2Rq(θ
i′ω)2 dP(ω).

The function Rp is Lipschitz, with ‖Rp‖Lip 6 C1/r, see (3.5). As Rp is bounded by 1, it
follows that R2

p is also Lipschitz, with ‖R2
p‖Lip 6 2C1/r. One may therefore use the mixing

of the base transformation θ, to obtain∫
Rp(θ

iω)2Rq(θ
i′ω)2 dP(ω) =

(∫
R2
p dP

)(∫
R2
q dP

)
+O(ϕ(α(n))r−2).

The error terms add up exactly as in (3.9).
Adding up all the terms, we are left with

E((S0
n)2) 6 n2

∑
p,q

(∫
R2
p dP

)(∫
R2
q dP

)
+ Cn2r−2C′0−2ϕ(α(n)) + Cnα(n)

[∑
p

∫
R2
p dP

]
= E(S0

n)2 + Cn2r−2C′0−2ϕ(α(n)) + Cα(n)E(S0
n).

Together with (3.8), this yields

(3.10) P⊗ µω ⊗ µω{(ω, x, y) : m0
n(ω;x, y) > 8r} ≤ Cn2r−2C′0−2ϕ(α(n))

E(S0
n)2

+
Cα(n)

E(S0
n)
.

For small enough r, the limit (3.5) ensures that∑
p

∫
R2
p dP > rD

qu
2 +ε.

Take r = rn = 1/n(1−2ε)/(D
qu
2 +ε). For this value of r, we get

E(S0
n) = n

∑
p

∫
R2
p dP > n · n−(1−2ε) = n2ε.

As ϕ(α(n)) = O(1/nlogn) by (3.7), the first term in (3.10) decays faster than any polynomial.
Moreover, as α(n) = (log n)C4 , the second term decays at least like 1/nε. For large enough
n, we obtain

P⊗ µω ⊗ µω{(ω, x, y) : m0
n(ω;x, y) > 8rn} ≤

1

nε
.

Choose a subsequence ns = bs2/εc. Along this subsequence, the error probability is
O(1/s2), which is summable. By Borel-Cantelli, for almost every (ω, x, y), one has eventually
m0
ns(ω;x, y) ≤ 8rns , and therefore

lim inf
− logm0

ns(ω;x, y)

log ns
≥ 1− 2ε

D
qu
2 + ε

.

By monotonicity of m0
n, this behavior passes to the whole sequence. As ε is arbitrary, this

concludes the proof of the proposition. �

Remark 3.5. As in Remark 3.4, a mixing rate faster than any polynomial would be enough
for the proof of Proposition 1.11.



MINIMAL DISTANCE BETWEEN RANDOM ORBITS 25

Proof of Proposition 1.12 on off-diagonal lower bounds. Fix a small enough r. In this proof,
we will consider indices i or i′ that will always be restricted to the range [0, n/3), and indices
j or j′ that will always be restricted to the range [2n/3, n). Instead of always specifying
this, we will use the notation

∑′ to enforce these restrictions implicitly. In this proof, an
error term (depending on n and r) will be called admissible if it is bounded by r−Cu(n), for
some C and some function u that tends to zero faster than any n−D. A generic admissible
error term will be denoted by an, keeping r implicit.

Define a function
S�n (ω;x, y) =

∑′

i,j

∑
p

ρp(T
i
ωx)ρp(T

j
ωy).

As in (3.8), we have

(3.11) P⊗ µω ⊗ µω{(ω, x, y) : m�n (ω;x, y) > 8r} 6 var(S�n )

E(S�n )2
=

E((S�n )2)− E(S�n )2

E(S�n )2
.

Let us first estimate E(S�n ). We have

E(S�n ) =
∑′

i,j

∑
p

∫ (∫
ρp(T

i
ωx) dµω(x)

)(∫
ρp(T

j
ωy) dµω(y)

)
dP(ω)

=
∑′

i,j

∑
p

∫
Rp(θ

iω)Rp(θ
jω) dP(ω).

By (3.5), the function Rp is Lipschitz, with ‖Rp‖Lip 6 C2/r. The mixing of θ gives then∫
Rp(θ

iω)Rp(θ
jω) dP(ω) =

(∫
Rp dP

)2

+O(ϕ(n/3)r−2),

as the gap between i and j is at least n/3. Summing over n, and writing

(3.12) An =
∑
p

(∫
ρp dµ

)2

=
∑
p

(∫
Rp dP

)2

, Bn = (n/3)2An,

we get
E(S�n ) = (n/3)2An +O(n2ϕ(n/3)r−2) = Bn +O(an),

where we recall that an is a generic admissible error term. Note that Bn also depends on
r, but we keep this implicit in the notation. Also, An only depends on r and not on n, but
since in the end we want to let r depend on n we keep the index n.

Let us now estimate E((S�n )2), up to an admissible error term. We expand the square,
getting 6 indices i, i′, j, j′, p, q.

E((S�n )2) =
∑′

i,i′,j,j′

∑
p,q

∫
ρp(T

i
ωx)ρq(T

i′
ω x)ρp(T

j
ωy)ρq(T

j′
ω y) dµω(x) dµω(y) dP(ω).

We will split this sum depending on whether i and i′ are close, i.e., |i′− i| ≤ α(n), or whether
they are far, and similarly for j and j′.

Assume first that i and i′ are far. Then

(3.13)
∫
ρp(T

i
ωx)ρq(T

i′
ω x) dµω(x) = Rp(θ

iω)Rq(θ
i′ω) +O(ϕ(α(n))r−2),
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thanks to the fiberwise mixing (Definition 1.8). When adding these error terms over all
possible i, i′, j, j′, p, q, one gets an error at most

Cϕ(α(n))r−2 · n4k(r)2 6 Cn4r−2C′0−2ϕ(α(n)),

which is admissible as ϕ(α(n)) 6 C/nlogn.
In the same way, when j and j′ are far, we can replace

∫
ρp(T

j
ωy)ρq(T

j′
ω y) dµω(y) with

Rp(θ
jω)Rq(θ

j′ω), up to an admissible error.

Case 1: when (i, i′) are far away and (j, j′) are far away.
Up to an admissible error, the contribution of these terms to E((S�n )2) is bounded by∑′

|i′−i|>α(n),|j′−j|>α(n)

∑
p,q

∫
Rp(θ

iω)Rq(θ
i′ω)Rp(θ

jω)Rq(θ
j′ω) dP(ω).

There is a gap of n/3 between max{i, i′} and min{j, j′}. Therefore, using 4-mixing, we can
replace the above integral with(∫

Rp(θ
iω)Rq(θ

i′ω) dP(ω)

)(∫
Rp(θ

jω)Rq(θ
j′ω) dP(ω)

)
up to an error of Cϕ(n/3)r−4. The sum of these errors over p, q, i, i′, j, j′ is admissible. Then,
using 2-mixing, one can replace

∫
Rp(θ

iω)Rq(θ
i′ω) dP(ω) with

∫
Rp ·

∫
Rq, up to an error

which is again admissible as the gap between i and i′ is at least α(n). The same goes for∫
Rp(θ

jω)Rq(θ
j′ω) dP(ω).

Finally, up to an admissible error, the contribution of this case to E((S�n )2) is∑′

|i′−i|>α(n),|j′−j|>α(n)

∑
p,q

(∫
Rp dP

)2(∫
Rq dP

)2

6
(

(n/3)2An

)2
= B2

n,

as
∫
Rp dP =

∫
ρp dµ by definition of µ. Recall that, with An and Bn defined as in (3.12),

then Bn is the dominant term in the expansion of E(S�n ).

Case 2: when (i, i′) are far away and (j, j′) are close (or conversely).
By symmetry, we assume that (i, i′) are far away and (j, j′) are close. In this case, after

doing the substitution (3.13), we should study

(3.14)
∫
Rp(θ

iω)Rq(θ
i′ω)

(∫
ρp(T

j
ωy)ρq(T

j′
ω y) dµω(y)

)
dP(ω).

Assume for instance j ≤ j′. Then, changing variables with y′ = T jωy, and writing ω′ = θjω,
the inner integral becomes

F (ω′) =

∫
ρp(y

′)ρq(T
j′−j
ω′ y′) dµω′(y

′).

We claim that this function F is Lipschitz continuous, with

(3.15) ‖F‖Lip 6 CC
α(n)
S r−2,
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where CS ≥ 1 is a Lipschitz constant for S. To prove this, let us compute

(3.16) F (ω1)− F (ω2) =

[∫
ρp · (ρq ◦ T j

′−j
ω1
− ρq ◦ T j

′−j
ω2

) dµω1

]
+

[∫
ρp · ρq ◦ T j

′−j
ω2

dµω1 −
∫
ρp · ρq ◦ T j

′−j
ω2

dµω2

]
.

For any y, we have

ρq ◦ T j
′−j
ω1

(y)− ρq ◦ T j
′−j
ω2

(y) = ρq ◦ π2(Sj
′−j(ω1, y))− ρq ◦ π2(Sj

′−j(ω2, y)),

where π2 : Ω×X → X is the second projection. As S is Lipschitz with Lipschitz constant
CS , we have d(Sj

′−j(ω1, y), Sj
′−j(ω2, y)) 6 Cj

′−j
S d(ω1, ω2). Therefore, the term on the first

line of (3.16) is bounded by Cα(n)
S r−1d(ω1, ω2), as ρq has Lipschitz constant at most r−1 and

j′− j ≤ α(n). For the term on the second line, we note that ρp · ρq ◦ T j
′−j
ω2 is Lipschitz, with

Lipschitz constant at most r−2C
α(n)
S , by the same argument. Since ω′ 7→ µω′ is Lipschitz

(Definition 1.5), it follows that this term is bounded by Cr−2C
α(n)
S d(ω1, ω2). This completes

the proof of (3.15).
We can write (3.14) as

∫
Rp(θ

iω)Rq(θ
i′ω)F (θjω) dP(ω). Using 3-mixing (which follows

from 4-mixing by taking the last function equal to 1), this is equal to(∫
Rp(θ

iω)Rq(θ
i′ω) dP(ω)

)(∫
F dP

)
+O(‖Rp‖Lip‖Rq‖Lip‖F‖Lipϕ(n/3)).

The error terms add up to at most n4r−4−2C′0C
α(n)
S ϕ(n/3), thanks to (3.15). As ϕ(n/3) 6

Ce−(n/3)c for some c > 0 while α(n) = (log n)C4 , this error term is again admissible.
We can also replace

∫
Rp(θ

iω)Rq(θ
i′ω) dP(ω) with

(∫
Rp
)(∫

Rq
)
up to an admissible error

term, thanks to the mixing of θ and since i and i′ are far apart. Finally, up to an admissible
error term, the contribution of these terms to E((S�n )2) is at most∑

p,q

(∫
Rp dP

)
·
(∫

Rq dP
)
·
(∫

ρp(y)ρq(T
j′−j
ω y) dµω(y) dP(ω)

)

=

∫ (∑
p

[∫
Rp dP

]
ρp(y)

)(∑
q

[∫
Rq dP

]
ρq(T

j′−j
ω y)

)
dµω(y) dP(ω)

6

∫ (∑
p

[∫
Rp dP

]
ρp(y)

)2

dµω(y) dP(ω)

1/2

×

∫ (∑
q

[∫
Rq dP

]
ρq(T

j′−j
ω y)

)2

dµω(y) dP(ω)

1/2

,

by Cauchy-Schwartz. By invariance of the measure P⊗ µω under S, the two factors in the
last product coincide, eliminating the square roots.

For any y, there are at most C0 nonzero terms in the sum
∑

p

[∫
Rp dP

]
ρp(y), by bounded

local complexity. We can therefore use the convexity inequality (a1 + . . .+ aC0)2 ≤ C0(a2
1 +
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. . .+ a2
C0

) to bound the square of the sum by the sum of the squares. We get a bound

C0

∫ ∑
p

[∫
Rp dP

]2

ρp(y)2 dµω(y) dP(ω).

Bounding ρ2
p by ρp, and since

∫
ρp(y) dµω(y) dP(ω) =

∫
Rp dP, we are left with a bound

C0

∑
p

[∫
Rp dP

]3

.

By concavity of the function x 7→ x2/3, one has the inequality (
∑
ai)

2/3 ≤
∑
a

2/3
i , and

therefore
∑
ai ≤

(∑
a

2/3
i

)3/2
. Applying this inequality to the previous equation, one

obtains a bound

C0

(∑
p

[∫
Rp dP

]2
)3/2

= C0A
3/2
n .

Summing over the possible values of i, i′, j (there are (n/3)3 of them) and then j′ (there are
at most 2α(n) of them, as |j′ − j| 6 α(n)), we get that the total contribution of this case is
bounded by

Cα(n)n3A3/2
n = Cα(n)B3/2

n ,

up to an admissible error term.

Case 3: when both (i, i′) and (j, j′) are close.
In this case, we can use rough estimates. We have∑
p,q

∫
ρp(T

i
ωx)ρq(T

i′
ω x)ρp(T

j
ωy)ρq(T

j′
ω y) dµω(x) dµω(y) dP(ω)

≤ C0

∑
p

∫
ρp(T

i
ωx)ρp(T

j
ωy) dµω(x) dµω(y) dP(ω),

as
∑

q ρq(z)ρq(z
′) ≤ C0 for any z, z′, by (3.2). This is equal to C0

∫
Rp(θ

iω)Rp(θ
jω) dP(ω),

which coincides with C0

(∫
Rp dP

)2 by mixing, up to an error term which is admissible, as
above. Finally, the total contribution of this case is, up to an admissible error term, bounded
by

Cn2α(n)2
∑
p

(∫
Rp dP

)2

= Cα(n)2Bn.

Conclusion.
Combining all three cases, we get

E((S�n )2) 6 B2
n + Cα(n)B3/2

n + Cα(n)2Bn + an,

where an is an admissible error term.
Let ε > 0. For small enough r, the convergence (3.6) ensures that, for large n,

An =
∑
p

(∫
Rp dP

)2

> rD
an
2 +ε.
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Take r = rn = 1/n(2−3ε)/(D
an
2 +ε). Then n2An > n3ε. Note that E(S�n ) = Bn + an where an

is an admissible error term. We get E(S�n )2 = B2
n + a2

n + 2Bnan, where both a2
n and 2Bnan

are again admissible error terms, and may thus be written as a′n. In particular, E(S�n )2 is
asymptotic to B2

n, and is larger than B2
n/2 for large n. With (3.11), we get

P⊗ µω⊗µω{(ω, x, y) : m�n (ω;x, y) > 8r} 6 E((S�n )2)− E(S�n )2

E(S�n )2

6
B2
n + Cα(n)B

3/2
n + Cα(n)2Bn + an − (Bn + an)2

B2
n/2

=
B2
n + Cα(n)B

3/2
n + Cα(n)2Bn + an −B2

n + a′n
B2
n/2

6 C
α(n)

B
1/2
n

+ C
α(n)2

Bn
+ C

an + a′n
B2
n

.

As α(n) grows more slowly than any polynomial while Bn > n3ε, it follows that the above
probability is O(n−ε).

Choose a subsequence ns = bs2/εc. Along this subsequence, the error probability is
O(1/s2), which is summable. By Borel-Cantelli, for almost every (ω, x, y), one has eventually
m�ns(ω;x, y) ≤ 8rns , and therefore

lim inf
− logm�ns(ω;x, y)

log ns
≥ 2− 3ε

D
an
2 + ε

.

One can not conclude directly from this, as the sequence m�n is not monotone. What is
true, though, is that for all n ∈ [ns, ns+1], one has

− logm�n (ω;x, y) ≥ − log min
i<ns/3, 2ns+1/3≤j<ns

d(T iωx, T
j
ωy) =: − logm′ns .

One can show exactly as above that, almost surely,

lim inf
− logm′ns(ω;x, y)

log ns
≥ 2− 3ε

D
an
2 + ε

.

With the previous equation, this inequality passes to the whole sequence m�n . We obtain
almost surely

lim inf
− logm�n (ω;x, y)

log n
≥ 2− 3ε

D
an
2 + ε

.

As ε is arbitrary, this proves the result. �
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