Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application - Archive ouverte HAL
Article Dans Une Revue Journal of Food Engineering Année : 2023

Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application

Résumé

Carbon dioxide (CO2) is an important gas used in modified atmosphere packaging of nonrespiring foods where it solubilizes into the aqueous and lipid phases of food and exerts an antimicrobial effect. Prediction of CO2 solubility within food is thus of paramount importance to anticipate its benefit on food preservation. In the present study, machine learning algorithms were applied on a set of 362 values of CO2 solubilities collected from the scientific literature to tentatively predict the solubility as a function of food composition (water, protein, fat and salt content) and temperature. The best option kept was a random forest algorithm that was used to predict CO2 solubility in four food case studies (ham, salmon, cheese and pâté) that were further 1 Corresponding author 2 used as input parameters in the MAP' OPT tool, predicting the evolution of headspace gas composition. Predicted CO2 solubilities used as input parameters succeeded in representing the CO2 headspace dynamic as a function of time in the four case studies.
Fichier principal
Vignette du fichier
REVIEWS_Composition_based_statistical_model_FINAL.pdf (669.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03783883 , version 1 (22-09-2022)

Identifiants

Citer

Mélanie Münch, Valérie Guillard, Sébastien Gaucel, Sébastien Destercke, Jonathan Thévenot, et al.. Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application. Journal of Food Engineering, 2023, 340, pp.111283. ⟨10.1016/j.jfoodeng.2022.111283⟩. ⟨hal-03783883⟩
259 Consultations
292 Téléchargements

Altmetric

Partager

More