Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings

Martin Gonzalez
Hatem Hajri
  • Fonction : Auteur
  • PersonId : 888500
  • IdRef : 156227835
Mihaly Petreczky
  • Fonction : Auteur

Résumé

In this paper we show that neural ODE analogs of recurrent (ODE-RNN) and Long Short-Term Memory (ODE-LSTM) networks can be algorithmically embedded into the class of polynomial systems. This embedding preserves input-output behavior and can suitably be extended to other neural DE architectures. We then use realization theory of polynomial systems to provide necessary conditions for an input-output map to be realizable by an ODE-LSTM and sufficient conditions for minimality of such systems. These results represent the first steps towards realization theory of recurrent neural ODE architectures, which is is expected be useful for model reduction and learning algorithm analysis of recurrent neural ODEs.
Fichier principal
Vignette du fichier
ODE_LSTM.pdf (177.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03782520 , version 1 (21-09-2022)

Identifiants

  • HAL Id : hal-03782520 , version 1

Citer

Martin Gonzalez, Thibault Defourneau, Hatem Hajri, Mihaly Petreczky. Realization Theory Of Recurrent Neural ODEs Using Polynomial System Embeddings. 2022. ⟨hal-03782520⟩
63 Consultations
70 Téléchargements

Partager

More