SiMOOD: Evolutionary Testing Simulation with Out-Of-Distribution Images
Résumé
Testing perception functions for safety-critical autonomous systems is a crucial task. The reason is that accurate ML models applied in computer vision tasks still fail in scenarios where humans perform well. Out-of-distribution (OOD) images are usually a source of such failures. For this reason, literature usually applies data augmentation techniques or runtime monitors such as OOD detectors to increase robustness. Evaluating such solutions is usually performed by analyzing metrics based on positive and negative rates over a dataset containing several perturbations. However, using such metrics on such datasets can be misleading since not all OOD data lead to failures in the perception system. Hence, testing a perception system cannot be reduced to measuring Machine Learning (ML) performances on a dataset but rely on the images captured by the system at runtime. However, the amount of time spent to generate diverse test cases during a simulation of perception components can grow quickly since it is a combinatorial optimization problem. Aiming to provide a solution for this challenging task, we present SiMOOD, an evolutionary simulation testing of safety-critical perception systems, which comes integrated into the CARLA simulator. Unlike related works that simulate scenarios that raise failures for control or specific perception problems such as adversarial and novelty, we provide an approach that finds the most relevant OOD perturbations that can lead to hazards in safety-critical perception systems. Moreover, our approach can decrease, at least 10 times, the amount of time to find a set of hazards in safety-critical scenarios such as autonomous emergency braking system simulation. Besides, code is publicly available for use.
Origine | Fichiers produits par l'(les) auteur(s) |
---|