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Abstract—Testing perception functions for safety-critical au-
tonomous systems is a crucial task. The reason is that accurate
ML models applied in computer vision tasks still fail in scenarios
where humans perform well. Out-of-distribution (OOD) images
are usually a source of such failures. For this reason, literature
usually applies data augmentation techniques or runtime mon-
itors such as OOD detectors to increase robustness. Evaluating
such solutions is usually performed by analyzing metrics based
on positive and negative rates over a dataset containing several
perturbations. However, using such metrics on such datasets can
be misleading since not all OOD data lead to failures in the
perception system. Hence, testing a perception system cannot be
reduced to measuring Machine Learning (ML) performances on a
dataset but rely on the images captured by the system at runtime.
However, the amount of time spent to generate diverse test cases
during a simulation of perception components can grow quickly
since it is a combinatorial optimization problem. Aiming to
provide a solution for this challenging task, we present SiMOOD,
an evolutionary simulation testing of safety-critical perception
systems, which comes integrated into the CARLA simulator.
Unlike related works that simulate scenarios that raise failures
for control or specific perception problems such as adversarial
and novelty, we provide an approach that finds the most relevant
OOD perturbations that can lead to hazards in safety-critical
perception systems. Moreover, our approach can decrease, at
least 10 times, the amount of time to find a set of hazards in
safety-critical scenarios such as autonomous emergency braking
system simulation. Besides, code is publicly available for use.

Index Terms—Testing, Autonomous Vehicle, Out-Of-
Distribution, Perception System, Computer Vision, Safe AI.

I. INTRODUCTION

State-of-the-art Machine Learning (ML) models built with
deep learning architectures perform reasonably well in safety-
critical tasks such as perception in autonomous systems.
However, these models tend to have problems such as ghost
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detections [1], misclassifications [2], or even being blind to
the presence of new objects [3]. These problems usually come
when the model is exposed to out-of-distribution (OOD) data,
such as distributional shifts, sensor noise, and new classes [4],
leading to wrong predictions even with high confidence asso-
ciated with the decision [5].

To increase ML robustness, practitioners usually apply data
augmentation techniques during training or OOD detectors
during operation [3], [2]. The performance of such methods
is usually demonstrated by inspecting the number of false
positives and false negatives when exposed to several datasets
containing common image perturbations and new objects [4],
[6], [7]. However, simulation is an essential part of testing
since not all ML errors lead to hazards, and most of the time,
the physics of such autonomous systems need to be taken
into account when searching for hazards. Therefore, in this
work, we present SiMOOD, an approach dedicated to test
perception functions built with ML. SiMOOD is integrated
within CARLA simulator [8].

As illustrated in Figure 1, we apply OOD perturbations
during simulation instead of using it over static datasets as it is
usually done in the literature [9], [4], [10], [7]. However, since
each OOD perturbation has several parameters, the number
of possible simulations to find a hazard grows exponentially.
Moreover, the time to simulate even a tiny part of these
simulations grows quickly. To mitigate this problem, SiMOOD
uses a two-step approach. First, it performs a unit testing
of the ML model using a genetic algorithm (GA) [11] on
the same dataset applied to train the ML model. It deter-
mines which combination of OOD perturbations with their
respective intensity levels increases the number of incorrect
predictions. Second, the selected perturbations are applied to
the simulation to verify if they lead to hazards in the system.
That is, SiMOOD takes a set of existing scenarios and injects
image perturbations selected by a GA-on-data approach and
posteriorly tests them on simulations, proving itself capable of
turning safe scenarios into unsafe ones, which can be analyzed
in order to improve the safety of the system.

We consider four categories of OOD perturbations: novel



Fig. 1: SiMOOD simulation flow.

classes, distributional shifts, noise, and anomalies.
Our main contributions are:
• Open-source testing approach integrated with CARLA

simulator: SiMOOD apply several relevant OOD pertur-
bations at simulation time. Such perturbations also vary
in intensity. Performing such tests yields more realistic
results than performing them over static datasets. Besides,
SiMOOD is open-source [12].

• Optimized search for hazards: SiMOOD is an off-the-
shelf testing approach for perception functions in sim-
ulated environment. It uses an evolutionary approach
to find the minimal OOD perturbations that may lead
to hazards during simulation. Due to its GA-on-data
approach, SiMOOD decreases 10 times the amount of
time required to find a set of hazards in safety-critical
tests while considering a huge search space.

This work is organized as follows: in Section II, we provide
a brief explanation of the concepts used in our approach, the
simulated OOD data, and existing related works. In Section III,
we detail the architecture of our approach and introduce its
main functionalities. In Section IV, we show the experiments
and the insights provided by the results. Finally, in Section V,
we present our final considerations and limitations.

II. BACKGROUND

We focus on simulation testing of ML-based object detec-
tors when exposed to out-of-distribution images.

A. Perception systems with ML-based object detectors

Supervised ML models for vision are usually divided into
shallow and deep models. Both shallow and deep learning
models are built to receive an instance (e.g., image or other
sensory values) and perform a prediction of one/multiple
object(s) on it. It is done, initially, by converting an image
to a matrix of numerical values, and classifying this matrix in
a categorical value that represents a specific class previously
seen during the training process. Such models are usually
validated by analyzing the discrepancy between the predicted
objects and a ground-truth in a validation dataset. If the
prediction error in the validation process is low enough to

be considered satisfactory, the model goes to production.
Since deep learning models demonstrated, on average, superior
performance in computer vision than shallow ones, such deep
learning architectures were integrated into several perception
pipelines of many safety-critical functions of autonomous
systems such as collision avoidance and path planning. In this
work, we refer to ML models like the ones built on top of deep
learning architectures. Hence, we perform our experiments
using one of the most popular ML-based object detectors:
YOLO [13]. Next, we explain which OOD data can negatively
affect the ML model performance.

B. Out-of-distribution images

ML models tend to be biased to the training data [5],
resulting in a natural inability of a model to generalize 100% of
the time since rare object characteristics and conditions tend to
be underrepresented and different enough to threaten the ML
model performance. Such data is known as out-of-distribution
data (OOD). Despite the existence of different classifications,
we name here four common types of OOD data that an ML
model can be exposed during simulation:

• Novelty: it happens when new objects appears at runtime.
For example, an ML model can be trained to identify dogs
but fails to classify a cat since it was not present in the
training data (novelty class) [14].

• Anomaly: it is also known as corner cases [1]. It happens
when the ML has to interpret an unexpected interaction
between known objects, such as an overturned vehicle on
the road [15].

• Distributional shift: it occurs when the distribution of
the incoming data is different from the training, while
the class generation mechanism keeps unchanged [16]. It
means that at runtime, the incoming data can have differ-
ent characteristics from the training set while its semantic
content remains the same. Such condition decreases the
ML performance through time in non-stationary environ-
ments [17]. For example, images that have a compro-
mised visibility due to environmental conditions (e.g.,
snow, smoke, condensed water on the lens) [4]
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• Noise: it is provoked by common image corruptions
resulting from different types of sensor failures (e.g.,
Gaussian noise, occlusions by black pixels) [7].

Next, we show related works that propose simulation-based
testing of perception systems.

C. Related works

We focus on simulation-based testing of perception systems
composed of ML algorithms, specifically object detectors
exposed to out-of-distribution images. Therefore, works that
focus on finding safety violations on control [18], system spec-
ifications [19], error space exploration [20], path planning [21],
and new driving scenes generation [22] are outside of the scope
of this work, and therefore, not considered in this section.

As the first example of related work, Pei et al. [23] proposes
DeepXplore, an automated white-box testing of deep learning
systems. The authors argue that DeepXplore can measure code
coverage by measuring the neuron coverage of a deep learning
algorithm when perturbing the images that are fed into these
ML models. Following a similar idea of neuron coverage, Tian
et al. propose DeepTest [24], an automated testing approach
of deep-neural-network-driven autonomous cars. The authors
can find several ML failures in a test set in which the ML
model should perform a steering angle action correctly. Zhang
et al. [25] push forward the idea of perturbing images for
testing by proposing DeepRoad: a GAN-based metamorphic
testing and input validation framework for autonomous driving
systems. DeepRoad generates driving scenes with different
weather conditions by using generative adversarial networks
(GAN) along with the corresponding real-world weather
scenes. DeepXplore, DeepTest, and DeepRoad test safety-
critical perception functions against generated OOD images.
However, these works perform tests on datasets, and such
offline testing alone cannot guarantee that safety violations
will not happen during online testing [26]. Therefore, our work
also differs from the previous related works.

Regarding related works that also propose simulation tests,
Dreossi et al. [27] propose to test the safety-critical system
when exposed to novel classes. The authors apply a falsifica-
tion method over images with different light conditions and
distances to find regions of uncertainty. After that, they test it
against a simulator. Rossolini et al. [28] test the robustness of
semantic segmentation models by applying adversarial colored
patches on the simulation and real images. The authors present
extensive experiments to validate the proposed attack and
defense approaches in real-world scenarios. Boloor et al. [29]
also test and simulate physical adversarial examples that can
affect the detection performance for object detection tasks.
Boloor et al. [29] apply black lines on the streets to foul
the object detector and force it to go in a different direction.
Fahmy et al. [30] propose a tool to debug DNNs for safety
analysis. The tool finds clusters of images with common
characteristics that lead to errors by using the information
propagated by DNN neurons during the prediction. Finally,
Haq et al. [26] showed that for continuous values, DNN
prediction errors not identified by testing DNNs with static

datasets can yield many safety violations during online testing.
However, authors also emphasizes that such premise cannot be
applied when testing perception-based tasks. Our work goes
one step further on this problem by focusing on minimal image
perturbations that leads to hazards during simulation.

Our approach differs from Rossolini et al. [28] since our
focus is on the object detection task. Our approach also differs
from [29], [27], [30] since these related works are focused on
an in-depth analysis of one type of OOD data (e.g., adversarial,
novelty, and distributional shift respectively). In contrast, we
consider four types of OOD data that are a source of threats for
perception systems with ML-based object detectors. We also
provide a list of fine-grained intensity perturbations selected
over a higher search space. Next, we present SiMOOD.

III. SIMOOD OVERVIEW

SiMOOD generates hazardous perturbations in a specific
scenario in four types of OOD data: novelty, anomaly, dis-
tributional shift, and noise. For novelty class and anomaly
perturbations SiMOOD works with binary intensity levels
(true/false) and continuous values for distributional shift and
noise. For example, for novelty class experiments, SiMOOD
can inject a new object from the operation domain design in
a random point of the scenario, and for anomaly experiments,
SiMOOD can inject a known object in a way that is not
expected to be found in the original dataset. As noted, there is
no sense in applying intensity levels for novelty and anomaly
perturbations but rather applying random locations for the
novel/anomalous objects in the scene.

For perturbations that can vary with a range of continuous
values, SiMOOD needs to generate values that can lead to
hazards in the simulation. Since the search space for such
values are large, SiMOOD applies an evolutionary search to
find the values that have more chance of provoking ML failures
that lead to hazards in the simulation.

As illustrated in Figure 2, SiMOOD is divided in three
parts: generation, simulation, and evaluation. Thus, during the
generation, SiMOOD applies an evolutionary search to find the
n-most relevant OOD combinations. Each combination repre-
sents a vector containing m tuples in the format (perturbation,
intensity). Each perturbation has a range of intensity values.
For instance, a single combination of size m=2 can be formed
by [(Gaussian noise, 0.2), (Blur, 3)]. Thus, we introduce the
following definitions:

• Genes: A gene is represented as an OOD perturbation
with its respective intensity value (e.g., Gaussian noise,
0.2). Each OOD perturbation varies in intensity from 0
(no effect) to L (severe but still interpretable).

• Individual: an individual is composed of a number of
genes. For instance, an individual of size m=2 is repre-
sented by a vector of m tuples: [(Gaussian noise, 0.2),
(Blur, 1)].

• Population: it is a set of individuals. An initial population
of size n means a generation of n-individuals.

• Genetic algorithm iterations: since the number of com-
binations and their parameters is large, the space search
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Fig. 2: SiMOOD overview: generation, simulation, and evaluation phases.

is similarly large. Therefore, in the first iteration, the GA
randomly selects an initial population of size n.

After this generation step, the n-most relevant individuals
selected by the GA are iteratively simulated in a safety-
critical system. Each combination is applied to each frame.
The transformed image is exposed to the ML-based safety-
critical function, and the results are stored for future analysis.
Next, we detail each part of SiMOOD.

A. Generation

During this part, SiMOOD performs the task of finding
suitable configurations (e.g., combinations of OOD perturba-
tions) using a genetic algorithm (GA) approach as illustrated
in Figure 3. A GA comprises an initial population randomly
selected from the original population. A population represents
a group of individuals. Each individual comprises a group of
genes (or a group of parameters). The GA selects the best
individuals based on a fitness score outputted from a fitness
function. After it, the k best selected individuals generate
k-new individuals for the next generation. For each pair of
selected individuals, a crossover point is chosen randomly
from within the genes. Finally, a mutation can occur to
maintain diversity within the population.

These perturbations are combinations of distributional-shift
and noise perturbations. For example, Gaussian noise with a
blur effect, or Spackle noise in an environment with heavy
smoke. Since the ML always gives wrong predictions to new
classes, the novelty class category is not applied in the GA
but rather as an option when performing a simulation with
our approach. Next, we translate the GA terms to our task as
illustrated in Figure 3:

a) Initial population: it is randomly generated, and rep-
resents a subset of all combinations of OOD transformations.

b) Apply perturbations: it sequentially applies a combi-
nation of perturbations over an image following an order of
occurrence of these perturbations inside of an individual. That
is, an individual containing [(Blur, 0.1), (Smoke, 0.3)] leads
to a blur transformation followed by a smoke transformation.

c) Fitness evaluation: each set of perturbations is ap-
plied to the same dataset used to train the ML model. Hence,
we have n transformed datasets that are exposed to a fitness
function. The fitness function uses the same ML model applied
later in the simulation as part of the final fitness score. Thus,
the fitness function calculates all true/false positives/negatives
yielded by the ML model when exposed to these transformed
datasets. Any classical ML metric value α between 0 and 1
can be used (e.g., mAP, false positive/negative rates (FPR)
regarding the detection task [7], precision and recall).

The fitness score f is a sum of α and the normalized vector
of perturbation intensities η multiplied by a smoothness term
ω, that is, f = α + (η ∗ ω), ω ∈ IR[0, 1]. These terms are
added to α to force the GA to reward perturbations that lead
to hazards but with a minimum amount of intensity. Worth
mentioning that if α is based on measuring the ML model
errors (ex: mean average error) instead of the model correct
predictions, this regularization term is decreased by α instead
(e.g., |(η ∗ ω)− α|).

To calculate η we first normalize the vector of perturba-
tion intensities v = v1, ..., vm through the formula (val −
min val)/(max val − min val), which val means the in-
tensity value of a particular OOD perturbation, min val and
max val represents using the minimum (e.g., 0, or no effect),
and the maximum value of intensity for a particular OOD
perturbation. Hence, after applying the above formula for each
gene of an individual of size m, we obtain the final value by
η = 1

m

∑m
i=1 vi.

Regarding ω, it is intended to penalize a high intensity η
over the ML metric α. The value of ω can be increased if one
wants to give more importance to η, or decreased otherwise.
Besides, since our focus is to find different perturbations rather
than find the highest intensity levels, we do not allow ω > 1.

d) Selection: once all fitness scores are collected, the
algorithm selects k best OOD perturbations that had the most
relevant fitness scores. In this work, we choose to work with
odd number of individuals (e.g., k=2) since it is a simple
premise of the GA, which performs crossover between the
best pairs of the generation. This criteria is also generic and
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depends on the objective of the test. In our case, we want to
find the minimal OOD perturbations that have a high proba-
bility of leading to hazards. Hence, the selection mechanism
will choose one leading to the worst ML performances. For
instance, if the fitness score is based on accuracy, SiMOOD
selects k individuals that led to the worst results using minimal
perturbation intensities.

e) Crossover: the selected individuals k generates k new
individuals by exchanging their genes.

f) Mutation: it might occur on the resulting pair of
individuals by changing a specific gene at an arbitrary point.
Unlike the crossover, the mutation does not always happen and
has a low probability of occurrence. The mutation randomly
chooses a gene to replace and assigns a new random value to it.
In our approach, to avoid repeated individuals, a mutation also
occurs when there is a crossover between equal individuals.

g) Population update: the new individuals are added
to the current population, their fitness scores are evaluated
and added to the fitness scores list of the current population.
After that, the algorithm selects the best k individuals for the
next generation, and excludes the worst k ones. The process
repeats until the desired number of generations is reached.

Finally, at the end of the process, SiMOOD outputs the
resulting population containing the final selected individuals.
That is, the combinations that are candidates of being a source
of hazards during simulation. However, these possible hazards
cannot be confirmed until we perform the simulation tests.
Next, we explain how we perform these simulations.

B. Simulation

Following the same term given in the previous subsection,
in this part, we take the relevant individuals selected from the
previous step and apply them to each frame of the simulation.

During simulation we collect the ground-truth from the
original image provided by CARLA without perturbation, and
we dynamically generate object’s bounding boxes from the
simulator data, adapting the method developed in [31]. This
method generates 2D bounding boxes from the projected 3D
bounding box of the visible objects in the camera image.
It uses a distance filter, an angle filter, an occlusion filter,
and instance segmentation of the LiDAR sensor provided by
CARLA. Besides, to be as lightweight as possible, we adapted
this module to generate the ground truth of the objects of
interest in the safety scenario. For instance, in an advanced
emergency braking scenario, one needs just the ground truth
of the objects that interact with the ego-vehicle, such as cars
and pedestrians, instead of checking for all other objects in
the scene. All the ML model and safety results are stored for
future analysis at the end of the simulation.

C. Evaluation

Besides simulation metrics such as processing time, and
memory, we evaluate the safety-critical function (hazards) and
the ML model (ML metrics). We use the number of hazards
during simulation for the safety metrics. Here, we consider two

types of hazards: a) accident (e.g., car hits pedestrian); and b)
dangerous stop (e.g., the emergency brake is activated without
necessity). For the ML metrics, we use the mean average
precision (mAP) of the bounding boxes generated by the ML
model [32]. It is a standard metric applied to evaluate object
detectors. Next, we detail the experiments with SiMOOD.

IV. EXPERIMENTS AND RESULTS

We evaluate SiMOOD capacity to find a suitable choice
of minimal perturbations that lead to hazards in CARLA
simulations. We choose a safety-critical scenario in which a
car uses an emergency braking system equipped with an ML-
based object detection model (e.g., YOLO). In this scenario, a
pedestrian crosses the street coming behind other objects. The
ML model is responsible for detecting all objects that enter
a safety-critical region in front of the ego-vehicle. Regarding
the safety-critical region, the emergency braking system reacts
to pedestrians that enter the region. The scenario is configured
with CARLA scenario runner [33].

A. Experiment settings

Regarding the object detector algorithm, we use one of
the most applied: YOLO v6 [13], a model based on stacked
convolutional neural networks (CNN). The ML model was
trained on the COCO dataset [34] with 10% of augmented
data. We use the same augmentation techniques for generating
noise and distributional shift perturbations in our approach.
Worth to mention that we do not apply OOD perturbations
during model training, just during test.

We applied 15 categories of OOD perturbations presented
in [6], [35], [7], each one with its own levels of intensity (“no
effect” included), totalling 175 different OOD perturbations.

TABLE I: OOD perturbation parameters.

OOD perturbation Levels of intensity

Shifted pixels 11
Gaussian noise 8
Gaussian blur 24
Grid dropout 9
Coarse dropout 31
Channel dropout 3
Snow 6
Broken lens 11
Dirty 11
Condensation 11
Sun flare 11
Brightness 11
Contrast 11
Rain 6
Smoke 11

For novelty class experiments, we inject a fallen tree on
a random road point since it is a familiar object in the
operational design domain, but the ML model was not trained
with this object in the training set. For anomaly experiments,
we inject a vehicle overturned on a random point of the road
since it is a known object to the ML model but in a way that is
not expected to be found in the original dataset. More details
can be found in our repository [12].
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Fig. 3: Genetic algorithm approach: searching for relevant OOD perturbations.

Regarding the GA parameters, each individual has size m =
2. It is worth mentioning that one can change the size of the
individual to m = 1 in case to find just the single perturbations
that lead to hazards instead of a combination of them. Besides,
the number of k selected individuals per generation is also
fixed in k = 2, that is, we select the best pair of individuals
per generation, replacing the worst ones. Worth to mention
that k could be higher than 2 and we fix this value since
this setting is a simple, and still traditional, approach [36] to
validate our proposal. The mAP metric is applied as the ML
metric. Therefore, the fitness score includes the worst mAP
obtained from a given pair of perturbation.

Regarding the crossover and mutation probabilities, we fol-
low the recommendations of Yang et al. [36] that showed from
empirical results and theoretical studies that it is a good choice
to set a relatively higher probability for crossover (e.g., in the
range of 0.6 to 0.99). In contrast, the mutation probability can
be very low (e.g., around 0.001 to 0.1). Therefore, we set our
crossover probability as 0.99 and the mutation as 0.1. Finally,
regarding the other GA parameters: number of generations,
population size, and smoothness term ω were chosen after
performing sensitivity analysis experiments.

B. Robustness of SiMOOD regarding its parameters

This subsection shows the robustness of SiMOOD regarding
its parameters rather than performing a hyper-parameter op-
timization analysis. Moreover, for this analysis, we prioritize
finding hazards with a reasonable amount of different pertur-
bations rather than finding a huge number of hazards with
repeated perturbations. That is, finding more hazards while
having more diversity indicates better quality results.

We vary the number of generations g between
[10, 20, 30, 50], the initial population size n between
[10, 20, 30, 50], (each individual has 2 genes), and we also vary
the value of ω between [0.01, 0.1, 0.25, 0.5, 0.66, 0.75, 0.99].
Next, we perform a diversity analysis, and a hazard analysis
when varying the parameters of SiMOOD.

1) Diversity analysis on the influence of ω: The objective
is to analyze how many unique individuals are generated when

we change the smoothness term ω across the different amount
of generations and population size. More unique individuals
indicates more diversity in the results. Hence, as illustrated
in Figure 4, the best value for better diversity tends to be
ω = 0.5. However, SiMOOD tends to be robust regarding this
parameter, since we observe small but steady variations in the
diversity in which ω ≤ 0.5 leads to slightly better results.

Fig. 4: Unique individuals per ω, generated across all varia-
tions of generations and population size (440 individuals).

It is worth mentioning that in the next analysis, we keep
ω with the best value. The reason is that the amount of
time to perform all simulation tests with different values of
ω increases quite fast. That is, the simple range of values
chosen for these analysis leads to 3080 different individuals,
which would require 6,160 minutes of graphical simulation.

2) Hazard analysis on the influence of the population size
and the number of generations when ω = 0.5: Table II
shows the number of unique genes, while Table III shows the
number of hazards posteriorly found in the simulation. The
best parameter values are the ones that lead to higher values
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of unique genes (e.g., more diversity) and hazards. Best values
of each column are marked with (*).

TABLE II: Number of unique genes in the selected population.

Generations Population size
10 20 30 50

10 7 (35%) 16 (40%) 34 (57%)* 59 (59%)*
20 8 (40%)* 20 (50%)* 28 (47%) 48 (48%)
30 6 (30%) 5 (12%) 26 (43%) 42 (42%)
50 6 (30%) 7 (17%) 19 (31%) 32 (32%)

TABLE III: Number of hazards.

Generations Population size
10 20 30 50

10 9 (90%) 11 (55%) 12 (40%) 12 (24%)
20 6 (60%) 20 (100%)* 23 (77%) 21 (42%)
30 10 (100%)* 20 (100%)* 30 (100%)* 25 (50%)
50 10 (100%)* 20 (100%)* 15 (50%) 23 (46%)

Tables II and III show that the number of unique genes
increases gradually along with the population size when
performed over low number of generations, but the number
of hazards seems to be steady. Considering the best results
in Table II and III, it seems that SiMOOD achieve a good
compromise between diversity and hazards when performing
with 20 generations g and population size n = 20. Besides, the
number of predominant genes (e.g., repeated genes) increases
with the number of generations. It indicates that SiMOOD
does not need too many generations to find a good balance
between diversity and uncovered hazards.

Regarding the variability of the experiments, we also run
SiMOOD 10 times using the configuration that achieved the
best values in both Tables (generation=20, population=20).
Such experiments yielded standard deviation σ = 2.5 regard-
ing the number of unique genes, and σ = 5.5 regarding the
number of hazards, which is acceptable for our experiments.

C. Results and analysis

In this subsection, we show the results of two main
experiments: single OOD perturbations that lead to hazards;
and combinations of OOD perturbations that lead to hazards.
These experiments were performed with the best parameters
presented in the previous subsection: 20 generations g,
population size n = 20, and ω = 0.5.

1) Hazards provoked by single OOD perturbations: Figure
5 shows three examples.

The first sub-figure resulted from a vehicle crash due
to a fallen tree not detected by the ML model. Since the
safety-critical system depends on the ML model to “see”
objects in the safety-critical region in front of the ego-vehicle,
it does not trigger the brake-action, and the vehicle collides
with the tree. In the second sub-figure, since the emergency
braking system has the rule to react when a bounding box
of a pedestrian intersects a warning region, the emergency
braking system stops the vehicle in the middle of the street

due to a “ghost” pedestrian detected by the ML model. Such
a false detection was provoked by condensed water on the
camera lens. Finally, in the Figure 5c), a new accident occurs;
this time, the vehicle does not avoid a crash with a pedestrian
not detected by the ML model when exposed to heavy smoke
in the environment. Even though the ML model was capable
of detecting the pedestrian, the detection was not made at
the right time to avoid a crash after the brake-action was
triggered. This case also shows the importance of testing on
simulations instead of testing on static datasets.

2) Hazards provoked by combined OOD perturbations:
Figure 6 shows an example of how the combination of differ-
ent OOD perturbations can uncover new hazards. In the Figure
6c), we show a combination (smoke, 3) and (grid dropout, 1)
found by SiMOOD that led to a collision between the vehicle
and the pedestrian due to the failure of YOLO in detecting
the pedestrian, leading to incorrect behavior of the emergency
braking system. However, when one of these combinations
happens alone (sub-figures a) and b)), the ML model can
correctly detect the pedestrian, making the emergency braking
system correctly trigger the brakes.

Simple combinations such as a sensor failure in a moment
with a small amount of smoke or haze during runtime can
be enough to provoke a hazard. Moreover, as illustrated in
Figure 7, the order of the perturbations also matters. The
reason is that same perturbations combined in a different
order produce subtle differences in the image outcome, which
is enough to hinder the performance of ML models. Next, we
analyze the processing time and memory to run SiMOOD.

3) Processing time and memory usage: the experiments
were performed in an Intel(R) i5-10500 CPU @ 3.10GHz,
with 32GB of memory, six cores, and a GPU (Quadro RTX
4000). Below, we show time and memory analysis for the two
parts of the approach: a) generation, and b) simulation.

a) Generation: SiMOOD can reduce the time necessary
for finding hazards during the simulation due to its approach
of performing the GA algorithm on data instead of applying
it directly to the simulation. In our experiments, there are
175 possible perturbations T with their respective intensity
levels, and the number of simultaneous perturbations for
each combination (individual) is m = 2. Since the order of
transformations matters, the set of possible combinations is
given by 175!

2!×(175−2)!×2 = 30, 450 possible combinations.
Besides, applying the GA directly into the simulation is

suitable for the classes exposed during the test (in our case,
pedestrians and cars). On the other hand, SiMOOD uses a GA-
on-data approach, which considers all 80 classes in the COCO
dataset. It allows SiMOOD to be extended to other types of
scenarios and objects on it. Below, we provide a theoretical
time analysis considering our GA and its parameters.

First, the GA starts with a time complexity of O(nt) which
n is the size of the initial population, and t is the amount
of time to compute the fitness function. Second, for each
subsequent generation, the GA will transform the k best
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Fig. 5: Hazards uncovered by applying single OOD perturbations.
a) An accident due to a unknown object (tree) not detected by the ML model; b) A dangerous stop due to a false detection
(ghost pedestrian) provoked by condensed water on the camera lens; c) An accident due to a known object (pedestrian) not
detected by the ML model when exposed to heavy smoke on the environment.

Fig. 6: Hazards uncovered by combining two types of OOD perturbations.
a) YOLO detects a pedestrian in an environment with light smoke (intensity 0.25); b) YOLO detects a pedestrian despite a
light grid dropout failure on the camera sensor (intensity 2); c) A collision happens due to a failure of YOLO on detecting a
pedestrian when both conditions happen at the same time even with smoke transformation having a lower intensity than before.

(a) Grid dropout (1) + smoke (0.3). (b) Smoke (0.3) + grid dropout (1).

Fig. 7: Same OOD perturbations but in different order produce different image outcomes, which may uncover new hazards.
a) YOLO detects a pedestrian in the scenario with the OOD combination grid dropout + smoke. b) YOLO do not detect a
pedestrian in the same scenario but with OOD perturbations in an inverted order (e.g., smoke + grid dropout).

individuals of the population with crossover and mutation
operators, and posteriorly compute the fitness function, which
adds k ∗ t ∗ g to the processing time. Finally, the theoretical
processing time when performing the GA is given by nt+ktg,
and its required memory space is given by m ∗ k.

Considering the aforementioned processing time formula,
we calculate the expected time, in seconds, to find a population
of hazards when performing GA directly on the simulation.

Therefore, if we chose a simple configuration with an initial
population n = 20 (0.0001% of the entire population), with
20 generations g, and the amount of time to render our
scenario (t = 120), and the number of selected individuals per
generation k = 2, then the expected processing time is given
by 20 ∗ 120 + 2 ∗ 120 ∗ 20 = 7, 200 seconds (120 minutes).

Regarding performing the GA-on-data-first approach, the
time t to compute a fitness function is replaced by the time
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spent generating the datasets (5 seconds per dataset) + the time
applying the fitness function over each one of the generated
datasets (7 seconds per dataset). That is, t = 12. Hence, the
amount of time to perform GA over data is 20∗12+2∗12∗20 =
720 seconds. Finally, we add the time spent when running the
simulation with the final population, that is, 120∗20. Therefore
the total amount of time is given by 720 + 120 ∗ 20 = 960
seconds (16 minutes).

Besides, even SiMOOD reduced the processing time almost
10 times the GA-approach processing time, this difference
could be even higher if we use a bit more complex scenarios
such as longer scenarios with more objects to render, or if
more than one different scenario needs to be tested.

b) Simulation: Table IV shows the processing time (sec-
onds) and the memory usage (MB) when performing the
simulation with and without using SiMOOD.

TABLE IV: Comparison of processing time and memory.

Time Time (with SiMOOD) Overhead

101.94 123.10 20.75%

Memory Memory (with SiMOOD) Overhead

3975.58 6708.09 68.73%

It is worth mentioning that the number of perturbations
does not increase the average simulation time nor the total
average memory used in the simulation. All perturbation
functions are performed over a matrix with a fixed image
size. However, since SiMOOD applies perturbations on high-
resolution images (1280x720), it is necessary an extra amount
of memory (2.7 GB) to perform the task without severely
impacting the simulation speed. Therefore, SiMOOD requires
a computer with 8GB of memory, which is quite normal for the
current computational requirements. Moreover, SiMOOD can
be optimized to perform better processing and consume less
memory by performing parallelization and data compression.

D. Threats to validity

In order to analyze and mitigate threats to the validity of the
results, we present below a summary of arguments for external
and internal validation.

• External validity: Regarding the simulated sensor failures
and weather conditions, there is always a gap between
simulation and reality [37]. However, the tested OOD
perturbations were already applied in several other papers
from the literature with different levels of intensity.
Regarding the chosen simulator to perform our
experiments, it is worth mentioning that different
simulators can yield different outcomes. However,
CARLA simulator is an open-source simulator widely
applied in the industry and in the literature. Besides, our
approach can be extended for other simulators.

• Internal validity: What could have to lead us to the
wrong conclusions in our study?

a) Variability of simulated safety-critical scenarios: we
tested our approach over a single but relevant safety-
critical scenario. However, a safety-critical scenario can
greatly vary depending on the expert needs. Therefore,
it is not feasible to guarantee in a theoretical way that
our approach will provide similar results across any
safety-critical scenario. However, it is worth mentioning
that this study is a first approach to this challenging
problem. Thus, other scenarios can be added and tested
in the future since our open-source code can easily be
adapted/extended to new scenarios.
b) Choice of OOD perturbation levels: despite the
choice of perturbations on images capable of being
interpreted by humans eyes, the amount of intensity
considered as valid is a choice of the experts. Thus, the
range of intensity over the perturbations can change the
outcomes in different simulated scenarios.
c) Choice of parameters of the GA: different values
for the parameters of GA algorithm (e.g., number of
selected candidates per generation, number of new gen-
erated individuals, crossover/mutation probability) can
lead to different outcomes in both diversity and number
of hazards in the simulation. However, we followed a
traditional way to develop the GA approach and we also
followed the recommendations from the literature [11].
d) Choice of datasets for the ML model and for the GA:
even though we chose a dataset widely applied in the
computer vision literature, the choice of the amount of
data accessible for training/validating and testing the ML
model, and to perform the GA, can influence the fitness
score and maybe also change the selected perturbations.
However, we followed traditional ways to divide data
(e.g., 80/20 for training and test).

V. CONCLUSION

In this work, we proposed SiMOOD, an evolutionary si-
mulation testing for ML-based perception systems. SiMOOD
is open-source [12] and is already integrated with CARLA,
an open-source simulator for autonomous vehicles. SiMOOD
was capable of finding out-of-distribution image perturbations
that lead to hazards during simulation. Moreover, it was pos-
sible without performing such optimization algorithms loops
directly into the simulation. Such strategy is able to save, up to
10 times, the amount of time needed to find a set of hazards.

We also showed that combinations of perturbations could
expose different hazards. Moreover, these perturbations are
not commutative. Hence, the order of occurrence of such
perturbations can also uncover new hazards in the simulation.

A limitation of this work is that we tested just one type of
state-of-the-art object detector (e.g.,YOLO). Other ML models
should be added to give more robust results regarding the
applicability of the proposed approach. Another limitation
of this work is the additional memory usage added to the
simulation. However, this is the first version of SiMOOD,
and it can be improved in the next versions since it is
open to the community. As a next step, we intend to add a
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scenario generation process similar to Abdessalem et al. [38],
capable of varying the scenarios, their objects and parameters.
Besides, new safety-oriented metrics [39] can also be added
to SiMOOD, which can produce more types of analysis.
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