A class of nonlinear state observers for an SIS system counting primo-infections - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A class of nonlinear state observers for an SIS system counting primo-infections

Résumé

Observation and identification are important issues for the practical use of compartmental models of epidemic dynamics. They are usually evaluated based on the number of infected individuals (the prevalence) or the newly infected cases (the incidence). We are interested in a general question: may the measure of the number of primo-infected individuals and the prevalence improve state estimation? To study this question, we analyze in this paper a simple model of infection with waning immunity and, consequently, the possibility of reinfections. A class of nonlinear observers is built for this model, and tractable sufficient conditions on the gain matrices are established, ensuring asymptotic convergence of the state estimate towards its actual value. Numerical simulations illustrate the method.
Fichier principal
Vignette du fichier
SISObserver-0911.pdf (518.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03775928 , version 1 (13-09-2022)

Identifiants

  • HAL Id : hal-03775928 , version 1

Citer

Marcel Fang, Pierre-Alexandre Bliman, Denis Efimov, Rosane Ushirobira. A class of nonlinear state observers for an SIS system counting primo-infections. IEEE CDC 2022 - 61st IEEE Conference on Decision and Control, Dec 2022, Cancún, Mexico. ⟨hal-03775928⟩
116 Consultations
131 Téléchargements

Partager

More