Sobolev regularity of Gaussian random fields - Archive ouverte HAL
Journal Articles Journal of Functional Analysis Year : 2024

Sobolev regularity of Gaussian random fields

Iain Henderson
  • Function : Author
  • PersonId : 1161330

Abstract

In this article, we fully characterize the measurable Gaussian processes $(U(x))_{x\in\mathcal{D}}$ whose sample paths lie in the Sobolev space of integer order $W^{m,p}(\mathcal{D}), m\in\mathbb{N}_0$, $1< p< +\infty$, where $\mathcal{D}$ is an arbitrary open set of $\mathbb{R}^d$. The result is phrased in terms of a form of Sobolev regularity of the covariance function on the diagonal. This is then linked to the existence of suitable Mercer or otherwise nuclear decompositions of the integral operators associated to the covariance function and its cross-derivatives. In the Hilbert case $p=2$, additional links are made w.r.t. the Mercer decompositions of the said integral operators, their trace and the imbedding of the RKHS in $W^{m,2}(\mathcal{D})$. We provide simple examples and partially recover recent results pertaining to the Sobolev regularity of Gaussian processes.
Fichier principal
Vignette du fichier
sobolev_gp_vf.pdf (591.71 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03769576 , version 1 (05-09-2022)
hal-03769576 , version 2 (09-09-2022)
hal-03769576 , version 3 (31-10-2022)
hal-03769576 , version 4 (23-11-2023)

Identifiers

Cite

Iain Henderson. Sobolev regularity of Gaussian random fields. Journal of Functional Analysis, 2024, 286 (3), pp.110241. ⟨10.1016/j.jfa.2023.110241⟩. ⟨hal-03769576v4⟩
344 View
153 Download

Altmetric

Share

More