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Abstract

In this article, we fully characterize the measurable Gaussian processes (U(z))zep whose
sample paths lie in the Sobolev space of integer order W™ (D), m € Ng, 1 < p < 400,
where D is an arbitrary open set of R%. The result is phrased in terms of a form of Sobolev
regularity of the covariance function on the diagonal. This is then linked to the existence
of suitable Mercer or otherwise nuclear decompositions of the integral operators associated
to the covariance function and its cross-derivatives. In the Hilbert case p = 2, additional
links are made w.r.t. the Mercer decompositions of the said integral operators, their trace
and the imbedding of the RKHS in Wm’Q(D). We provide simple examples and partially
recover recent results pertaining to the Sobolev regularity of Gaussian processes.

1 Introduction

Sobolev spaces W™ P (D) are central tools in modern mathematics, most notably in the study of
partial differential equations (PDESs). These spaces are built upon the notion of weak derivative:
v is the weak derivative of u in the direction x; if for all smooth compactly supported function
pe Cr(D),

aw = — vlxr x)ax
| w@£E @i =~ | @eta)ds. (1)

Weak derivatives generalize classical, pointwise defined derivatives. In particular, there are
cases where weak derivatives are well defined and pointwise differentiation otherwise fails (see
e.g. [23], Examples 3 and 4 p. 260). The popularity of Sobolev spaces is justified by a number
of reasons: first, they are separable reflexive Banach spaces when 1 < p < +00, and separable
Hilbert spaces when p = 2 ( [1], Theorem 3.6 p. 61). Through duality, this allows for geometrical
interpretations of PDEs which in turn lead to numerous quantitative theoretical results in the
study of PDEs [23]. Second, as the Sobolev norm is defined through integrals of powers of the
function and its weak derivatives, it is easily interpreted as an energy functional of the said
function, which complies with physical interpretations of PDEs. This is a desirable feature as
PDEs are generally used for describing physical phenomena. Finally, Sobolev spaces are useful
for practical purposes as they are the natural mathematical framework for the celebrated finite
element method when seeking numerical solutions to PDEs ( [8], Chapter 1).

When a function of interest u : D — R is unknown, it may be relevant to model it as a
sample path of a random field (U(x)),ep, say a Gaussian process, whose realizations lie in



a suitable function space. This is e.g. frequent in Bayesian inference of functions [50]. Such
suitable spaces can indeed happen to be Sobolev spaces, for example when u describes a physical
quantity. The question at hand in this article is thus the following: when do the sample paths
of a given Gaussian process lie in some Sobolev space? This question is closely linked to the
recent attention that Gaussian processes have drawn for tackling machine learning problems
arising from PDE models; see e.g. [30,35,38,51]. Notably (see [11]), Gaussian processes seem
to provide a numerically competitive and mathematically tractable alternative to the now
widespread “physics informed neural networks” (PINNs, [37]). For the moment though, the
machine learning techniques involving Gaussian processes have only been studied within the
framework of spaces of functions with classical smoothness : C°,C', etc. As argued before,
these spaces are often not as well-suited for studying PDEs as Sobolev spaces.

Relevant literature Though weak differentiability is more general, it is less direct to check
than classical differentiability. Weak derivatives are defined implicitly and in the most general
case, ensuring Sobolev regularity is not usually done by directly verifying that an integral or a
series is finite, as would be the case in LP spaces; variational or boundedness criteria are used
instead (see Lemma 2.1).

In many important cases however, handy characterizations of such regularity do exist, which
have effectively been used to bypass the implicit definition of Sobolev regularity and provide
results on the sample path regularity of Gaussian processes. When D = R, the space W™P(R%)
can be characterized in terms of a sufficient decay of of the Fourier transform ( [44], Theorem
3 p. 135; [23], Section 5.8.5; [1], Section 7.63). Still in the case D = R?, Sobolev regularity
is equivalent to the convergence of its de la Vallée Poussin expansion in a suitable space (
[34], Section 8.9). This fact has been the first to be employed for characterizing the Sobolev
regularity of stationary Gaussian processes indexed by the unit cube of R? in [15,25], in terms
of the spectral measure of its covariance. For some Banach spaces, explicit Schauder bases
are known and lying in such spaces can be translated as the convergence of some coordinate
series. This has been exploited in [14] for studying the Besov and Besov-Orlicz regularity of one
dimensional Gaussian processes (they are natural generalizations of Sobolev regularity, [1]), and
the fractional Brownian motion in particular. Note that in this one dimensional framework,
those spaces only contain continuous functions ( [14], Lemme II1.3); a fact which, as we will see,
can be quite restrictive. Wavelet analysis is also available for describing Sobolev regularity ( [1],
Section 7.70) and has been used for studying the smoothness of the Brownian motion [13,41].
More complex notions such as the existence of an underlying Dirichlet structure have been put
to use in [28]. The latter work deals with Besov BY, , regularity, s > 0, on compact metric
spaces, and relies on a convergence analysis of suitable spectral coefficients, based on the so
called Littlewood-Paley decomposition. Note that when 0 < s < 1 and D is sufficiently regular,
B3, (D) exactly corresponds to the space of Hélder continuous functions C*(D) (e.g. [22], p.
26). In [45], Karhunen-Loéve expansions are used to study whether or not the sample paths
of a general second order random process lie in interpolation spaces between the reproducing
kernel Hilbert space (RKHS, Section 4.1 below) of the process and L?(v), where v is a o-finite
measure. This is then applied to study the H®(D) :=W?*?2(D) regularity of the corresponding
sample paths when s > d/2 (Corollaries 4.5 and 5.7 in [45]), with applications to Gaussian
processes in particular (H® is a fractional Sobolev space). Note that RKHS are also popular
function spaces in the machine learning community [5]. Using the notion of mean square
derivatives, [42] shows that the sample paths of a general second order random field lie in
H™(D) under an integrability condition of the symmetric cross derivatives of the kernel over the
diagonal ( [42], Theorem 1). For the suitable definition and use of the mean square derivatives
of the process, [42] additionally requires that the covariance function be continuous over the



diagonal as well as its symmetric cross derivatives.

A first study of the H™ regularity of Gaussian processes To make things more explicit,
let us apply some of the results described above on two examples, namely centered Gaussian
processes (U(z))zep whose covariance function (or “kernel”) is either Matérn ( [39], pp. 84-85)
or finite rank. This will allow us to identify situations in which those previous results may be
extended.

Gaussian processes with Matérn kernels are widely used in machine learning for approxi-
mating finitely smooth functions, therefore it is quite natural to study this particular case. In
the case where the domain D is a bounded open set whose boundary verifies the strong local
Lipschitz condition, it is in fact known that the RKHS of Matérn kernels of real order v > 0
are exactly H"*%2(D). In this case, Corollary 4.5 from [45] is optimal (see [45], Example 4.8
and Theorem 4.4): the sample paths of the associated Gaussian process lie in the Besov space
B3 5(D) for all s < v and not in B3 4(D) for all s > v. For such domains, it is also true that
B3 5(D) = H*(D). As stated in [45], p. 370, this result suggests that the sample paths are about
d/2 less smooth than the functions in the RKHS. A limitation of the result described above is
the regularity assumption on D, which is necessary for [45] as its results rely on the existence
of suitable extension operators to assert that B3 (D) = H*(D) (see [1], p. 230). Without such
regularity assumptions, this equality does not hold anymore (although generalizations to less
regular open sets exist, [17], Theorem 6.7). Hence the seemingly simple case of Sobolev spaces
of integer order defined on arbitrary open sets is left undealt with.

In this regard, it is instructive to investigate the consequences of [42], Theorem 1, which
does not make any regularity assumptions over the open set D. Its statement is as follow, given
a centered random field (U(z))zep with continuous covariance function k (we refer to Section
2.1.2 for notations). If for all |a| < m, the weak derivative 0*“k exists, is continuous on the
diagonal of D x D and §,, 0**k(z,z)dx < +00, then the sample paths of U lie in H™ (D) almost
surely. Matérn kernels are stationary, meaning that they are of the form k(z,2’) = kg(x—2') for
some real valued function kg. For such kernels, the criterion from Theorem 1 in [42] essentially
reduces to the condition that the pointwise derivatives (0**kg)(0) exists for all |a| < m, as well
as D being bounded. In fact, when m = 0, we are awkwardly left with the condition that k
be continuous and D be bounded. In hindsight, this criterion is not surprising, as the sample
paths of a stationary process “look similar at all locations” ( [39], p. 4), and thus expecting
them to be square integrable over some unbounded domain is not reasonable. This example
suggests that focusing on stationary Gaussian processes somewhat conceals the real nature of
accurate Sobolev regularity criteria for the sample paths of a Gaussian process. We thus turn
to non stationary kernels.

Perhaps the simplest non stationary Gaussian processes are those with finite rank covari-
ance functions, i.e. processes of the form U(z)(w) = 1", &(w) fi(z), where (&;) are standard
Gaussian random variables (which we assume independent) and (f;) are measurable functions.
The covariance function of the latter is k(z,2’) = X1, fi(z)fi(2). In this case, it is rather
clear that the property that P(U € H™(D)) = 1 is equivalent to having (f;) < H™(D) (see
Example 3.3 for a rigorous proof of this statement). It is also true that Sobolev functions may
happen to be discontinuous (e.g. they may have local singularities, [23], p. 22 and Example 4 p.
260). Hence, the continuity assumptions over k as well as its derivatives required in [42] seem
unnecessarily restrictive with reference to the criterion “(f;) ¢ H™(D)”. This also prevents the
criterion from [42] to be also necessary. Concerning the results described in [45], the RKHS of k&
is now equal to Span(fi, ..., fn), which is only embedded in H™ (D) if (f;) € H™(D). Corollary
4.5 from [45] now only states that the sample paths lie in H™~%2~¢(D) for all £ > 0, which is
clearly suboptimal (it also requires that m > d/2 to be non trivial). In fact, for this process,



the sample paths have the same regularity as the functions in the RKHS. This shows that the
rule of thumb according to which the sample paths are about d/2 less smooth than functions
in the RKHS (a fact which is tight for Matérn processes) can be quite misleading. It is better
understood as a lower bound on the regularity of the realizations of a Gaussian process.

Concerning our previous study of Matérn kernels however, it is noteworthy that the imbed-
ding of H(D) in H*(D) is Hilbert-Schmidt precisely when t —s > d/2 (recall that t —s > d/2 is
the correct criterion for Matérn kernels; see Example 4.5 below for more details on such embed-
dings). Likewise, the integrals from [42] exactly correspond to traces of very specific integral
operators (see Section 2.1.3 for operator theoretic definitions). These observations suggest the
existence of a purely spectral criterion for characterizing the H™(D) regularity of Gaussian
processes, which could encompass the results from both [42] and [45], as well as finite rank
Gaussian processes. In fact, we provide such a spectral criterion in Proposition 4.4.

As a final comment, none of the articles previously mentioned except [14,28] deal with spaces
of non Hilbert type. General Sobolev spaces W™P (D), with 1 < p < +00, are particularly useful
when studying nonlinear PDEs, e.g. whose nonlinearity is of the form |u|"u (see [47], Section
3.9 for examples). As such, we will also focus on this general setting.

General assumptions The purpose of this article is to uncover necessary and sufficient
characterizations of the Sobolev regularity of nonnegative integer order of a given Gaussian
process, in terms of its covariance function. In an attempt to make them as general as possible,
we set the following targets and assumptions.

(7) The covariance function of the Gaussian process will only be assumed measurable, as in [45].
This contrasts with some of the previously mentioned works [14,28,42], where the covariance
function is assumed continuous. As previously observed though, it seems that assuming the
continuity of the covariance (and thus more or less that of the sample paths, [3] p. 31) to
examine some Sobolev regularity of potentially low order is an unnatural assumption. This
is especially true as the dimension of D increases, since W™?(D) is embedded in C%(D), the
Banach space of continuous and bounded functions over D, only when m > d/p ( [1], Theorems
4.12 and 7.34).

(ii) We will not make any regularity or shape assumptions on the open set D. Indeed, Sobolev
spaces of integer order are easily defined over arbitrary open sets D — R? and thus some
results should hold within this general setting. As a result though, we will not deal with
fractional Sobolev spaces nor Besov spaces. Indeed, those spaces may have some pathological
properties without additional hypotheses on D, namely enjoying a Lipschitz boundary or the
cone condition (see e.g. [18], Example 9.1). We will see that elementary characterizations of
Sobolev regularity (Lemmas 2.1 and 2.4) will prove to be enough for our purpose.

(#i7) Our results should lie outside of the assumption that m > d/p, where m, p and d correspond
to the notation W™P?(D), D < R?. Indeed, several previous results concerning the Sobolev
regularity of a given Gaussian process concern the spaces H™ (D), D < R?, only in the case
m > d/2. This is convenient because it ensures that H™ (D) is continuously embedded in C%(D)
when D is smooth enough, which suppresses the ambiguity of choosing a representative of a
function in H™ (D). However, m > d/2 excludes the useful spaces H'(R?) and H'(R?), which
are central in the study of many important second order PDEs such as the wave equation, the
heat equation, Laplace’s equation or Schrodinger’s equation.

Our characterizations of measurable Gaussian processes with sample paths in W"?(D) is
phrased in terms of a form of Sobolev regularity of the covariance function on the diagonal. It



is then linked to the existence of suitable Mercer or otherwise nuclear decompositions of the in-
tegral operators associated to the covariance function and its symmetric weak cross-derivatives.
In the Hilbert case p = 2, additional links are made w.r.t. the Mercer decompositions of the said
integral operators, their trace and the Hilbert-Schmidt nature of the imbedding of the RKHS
in H™(D). Our results are strongly reminiscient of those found in [42], where we removed of
the continuity assumptions over the covariance in a suitable fashion.

The article is organized as follow. In Section 2, we introduce the necessary notions for
properly stating our results as well as some useful lemmas directly related to these notions. In
Sections 3 and 4, we state and prove the main results of this article, which treat the general
case p € (1,400) and the special case p = 2 respectively. In Section 5, we conclude and provide
some further outlooks. We prove the intermediary lemmas used in the main proofs in Section
6.

Notations Given a Banach space X, X* denotes its topological dual. Given x € X and
l € X*, we denote the duality bracket as follow: I(z) = (I, z)x# x. B(X) denotes the Borel o-
algebra of X for its norm topology. Given two linear operators A : X; — Y; and B : X5 — Y5,
A®B : X1 ® Xo — Y1 ®Y> denotes their tensor product which verifies (A ® B)(a ® b) =
(Aa) ® (Bb). Given two real valued functions f and g, f ® g denotes their tensor product
defined by (f ® g)(z,y) = f(x)g(y). Given h € R || denotes its Euclidean norm. Given
p € (1,40), g will always denote its conjugate: 1/p+1/q¢ =11i.e. ¢ =p/(p—1). As usual, when
D is an open set of RY, we identify the dual of LP(D) with L(D). Explicitly, if f € LP(D) and
g € LY(D), we have

(o gy pe = L F(@)g(@)dz = (g, a0, (1.2)

When there is no risk of confusion, we will write ||f|, = ||f|zr(p). If H is a Hilbert space,
{-,->g denotes its inner product. We denote N := {1,2,...} the set of natural numbers and
Np := N U {0}. Given an open set D < R?, we write Dy € D if Dy = D and Dy is compact.
L}OC(D) denotes the space of equivalence classes of locally integrable functions over D, i.e. such

that §, |f(z)|dz < 40 for all K € D. Elements of L}, (D) are identified when they are equal

loc

almost everywhere w.r.t. the Lebesgue measure. Given an equivalence class f € Li (D), a

representative of f is a function f: D — R such that the equivalence class of fin L, .(D)is f.
We will sometimes denote f and f with the same symbol, e.g. f. Given a function k defined

over D x D, & denotes the associated integral operator (if well defined):

(Ef)(x) = Lk(x,y)f(wdy- (1.3)

The input and output spaces of & will be specified on a case-by-case basis.

2 Background

This section is dedicated to the introduction of the necessary notions required for understanding
the main results of the paper, as well as their proofs. It is divided in two parts.

Section 2.1 contains the definitions necessary for understanding the statements of Proposi-
tions 3.1, 3.6 and 4.4, which constitute the core results of the article. These definitions concern
measurable Gaussian processes, Sobolev spaces as well as certain notions from operator theory.

Section 2.2 describes most of the tools that we will use in Sections 3 and 4. In particular, it
contains a first series of propositions and lemmas (either new or already well-known) which all



play a central role in the proofs of Propositions 3.1, 3.6 and 4.4. These results are all directly
related to the notions introduced in Section 2.1. They concern several characterizations of
Sobolev regularity for locally integrable functions, as well as certain facts about integrals of
measurable Gaussian processes, Gaussian sequences and measurable Gaussian processes with
LP integrable sample paths. Several characterizations of Gaussian measures over LP spaces are
also given, in terms of measurable Gaussian processes in particular.

2.1 Preliminary definitions
2.1.1 Measurable Gaussian processes

Throughout this article, (Q2, F,P) denotes the same probability space. Given p € (1, +00), LP(IP)
denotes the space of real valued random variables X such that E[| X |P] < +o0.

If (E, B) is a measurable space, the law Px of a random variable X : Q — E is the push-
forward measure of P through X, which is defined by Px (B) := P(X ~!(B)) for all measurable
set B € B ( [7], Section 3.7).

A Gaussian process ( [2], Section 1.2) (U(z))zep is a family of Gaussian random variables de-
fined over (Q, F,P) such that for all n € N, (a1, ...,a,) € R" and (z1, ..., z,) € D™, 3" | a;U ()
is a Gaussian random variable. The law it induces over the function space R? endowed with its
product o-algebra is uniquely determined by its mean and covariance functions, m(x) = E[U(z)]
and k(z,2') = Cov(U(x),U(2")) ( [26], Section 9.8). We then write (U(x))zep ~ GP(m, k).
The covariance function k is positive definite over D, meaning that for all nonnegative integer
n and (z1,...2,) € D", the matrix (k(z;,2;))1<i j<n is nonnegative definite. Conversely, given
a positive definite function over an arbitrary set D, there exists a centered Gaussian process
indexed by D with the this function as its covariance function ( [2], p. 11). We will often
denote o(x) = k(x,z)"/?. Given w € Q, the corresponding sample path (or realization) of
(U(x))zep is the deterministic function U, : D — R defined by U, (z) := U(z)(w). A Gaussian
process is said to be measurable if the map (2 x D, F ® B(D)) — (R, B(R)), (w,z) — U(z)(w)
is measurable. If (U(z))zep is measurable, then from Fubini’s theorem the maps of the form
x> k(z,z'),z — k(z,x), etc, are measurable. If a general random field is continuous in proba-
bility, then there exists a measurable modification of this random field ( [20], Theorem 2.6 p. 61).
This property is e.g. ensured when the covariance function is continuous, from Tchebychev’s in-
equality. Tedious extensions of this result exist ( [19], Theorem 2.3). Finally, the measurability
property is ensured for processes defined by series of the form U(z)(w) = >}, §;(w)e;(x) where
(&;) are random variables and (e;) are measurable functions such that the series converges in a
suitable space. See [45] for similar remarks. We further discuss the measurability property of
Gaussian processes in Remark 2.10.

2.1.2 'Weak derivatives and Sobolev spaces

Let o = (v, ..., aq) € N§. We denote 0* = 991...02¢ the o' derivative, and |a] == 27:1 |-
In this article, the statement “let |o| < m” will mean “let a = (v, ..., q) € Nd be such that
|a] < m”. Given a function k defined on D x D, 0%%k denotes its symmetric cross derivative:
0k (x,y) == 091...004081 .00 k(x,y) (formally, 0% = 0* ® 0*). A function u € L}, (D) has

Tq YY1
ve L} (D) for its o' weak derivative if ( [1], Section 1.62)

Vo e C*(D), LD u(x)0%p(z)de = (—1)1! L v(x)p(z)de. (2.1)



If it exists, v is then unique in L} (D) and is denoted v = 0%u. Let p € [1, +00]. The Sobolev

loc

space W™P(D) is defined as ( [1], Section 3.2)
W™P(D) = {ue LP(D) : V |a| < m, 0% exists and 0%u € LP(D)}. (2.2)

Sobolev spaces are Banach spaces for the norm [[ufwm.» = (X4/<p Hé’“uug)l/p; they are sepa-

rable when p # +o0 ( [1], Theorem 3.6 p. 61). When p = 2, we denote H™(D) := W™2(D).
H™(D) is a Hilbert space for the following inner product

{u, v) gm (py = Z (0%, 0"v) L2 (D). (2.3)

|| <m

Note that we made no assumptions on the regularity of the open set D.

2.1.3 Notions from operator theory

The following reminders can be found in [6], Section A.2. Let H; and Hs be two Hilbert spaces,
and X and Y two Banach spaces.

() A linear operator 7' : X — Y is bounded if |T'| := supy,,_ | T2y < +o0. A bounded

operator T : X — Y is compact if T'(B) is a compact set of Y, where B is the closed unit
ball of X. When X = Y, the spectrum of a compact operator is purely discrete, and can be
reordered as a sequence (A )neny Which converges to 0.

(i) If T : Hi — Hy is compact, then T*T : H; — H; is compact, self-adjoint and nonneg-
ative (Vo € Hy,{z, T*Tx)yy, > 0). If H; is separable, T*T can then be diagonalized in an
orthonormal basis (e,) of H;. Denote (\,) the nonnegative eigenvalues of T*T', their square
roots s, := 4/, are called the singular values of 7. If H; is separable, T is said to be Hilbert-
Schmidt if Y, [T fn]3, < +o0 for one orthonormal basis (f,) of Hy, in which case the value
of this sum does not depend on the orthonormal basis at hand. The Hilbert-Schmidt norm of
T, defined as the square root of the sum above, is then also equal to the discrete £2 norm of its
singular values:

IT%s = D3 ITfallde, = 25 [ Tenllfr, = D<o, T*Ten)n, = ) s (2.4)

neN neN neN neN

Every Hilbert-Schmidt operator is compact, and every Hilbert-Schmidt operator T' acting on
L?(D) can be written in integral form ( [6], Lemma A.2.13): there exists a “kernel” k €
L?(D x D) such that for all f e L?(D),

(Tf)(x) = JD k() f()dy = (Ecf)(@). (2.5)

If T is symmetric, nonnegative and Hilbert-Schmidt, there exists an orthonormal basis (¢,,) of
L?(D) of eigenvectors of T with nonnegative eigenvalues (\,), such that in L%(D x D), we have

neN

We will refer to decompositions of f of the form of equation (2.6) as Mercer decompositions, in
reference to the celebrated Mercer’s theorem ( [10], Theorem 1.2).



(#41) If Hy is separable, a general compact operator T : H; — H; is said to be trace-class (or
nuclear) if >, s, < +00, where the sequence (s,,) still corresponds to the singular values of
T. One can then define its trace as the following linear functional, which is independent of the
choice of basis (e,), and equal to the (absolutely convergent) series of the eigenvalues (u.,,) of
T (Lidskii’s theorem):

Te(T) = Z<T€na en) = Z Hr - (2.7)
neN neN

Any trace-class operator is Hilbert-Schmidt, and T is Hilbert-Schmidt if and only if either T*T
or TT* is trace-class, in which case Tr(T*T) = T3 = |T*|%s. If Hi = Hy = L*(D), if T
is trace class with kernel k and if k is sufficiently smooth (say continuous), then the trace of
T = & is given by Tr(T) = {, k(x, z)dx. Extensions of this formula to general Hilbert-Schmidt
kernels k € L?(D x D) of trace class operators is studied in [10]; see also Proposition 2.9 and
Lemma 3.8 below. If T': H; — H; is bounded, self-adjoint and nonnegative, then we define its
trace as the possibly infinite series of nonnegative scalars Tr(T) := >, _(Tey,en).

(iv) ( [32], p. 160) A bounded operator T : X — Y is nuclear if there exists sequences
(zn) € X* and (y,) € Y with 377 |z, | x# |yn|y < +00 such that Ta = 377 (xn, ) x% xYn
for all x € X. In this case, we write abusively T = Zfliol ZTp, ® Yr. The nuclear norm of T' is
then defined as

+00 +00

v(T) = inf{ Z [nl xlyn|y such that T = Z T, ®yn}. (2.8)
n=1 n=1

A bounded operator K : X* — X is symmetric if for all z,y € X*, (z, Ry) = {y, Rz), and

nonnegative if {z, Rz) > 0. When X =Y = H where H is a separable Hilbert space, the

sets of trace class and nuclear operators coincide; moreover, the same can be said for the trace

functional (2.7) and the nuclear norm (2.8) if T has a nonnegative spectrum : v(T') = Tr(T).

2.2 Main tools of the article
2.2.1 Characterization of W™ P-regularity for locally integrable functions

As for pointwise derivatives, finite difference operators can be used for characterizing Sobolev
regularity. Given y € RY, introduce the translation operator (ryu)(z) = u(x + y), which is
bounded over LP(R?). Introduce the associated finite difference operator:

Ay =1, —Id. (2.9)

The linear subspace of bounded operators over LP(R?) induced by the translation operators is
commutative, as Ty, © Ty, = Ty1tys = Ty © Tyr- L€t (Y1,.,ym) € (RY)™, we define the m!"
order finite difference operator associated to (yi,...,ym) to be A, 5= T A, where
the product symbol denotes the composition of operators. When y € RY, the adjoint of A, is
also a finite difference operator, which is computable using the change of variable formula. If
y € R%, then

Af =1, —Id. (2.10)

Finally, when o = (aq,...,aq) € N& and h = (hq,..., hq) € (R*)%, we denote by §¢ the finite
difference approximation of 0% defined by

d a; « «@
@ A €4 ! A 1€1 ' A € !
w=(5e) =Gie) - Gi) e

i=1



Above, (e, ...,eq) is the canonical basis of R?. We use the convention that (Ap,e,)% = Id if
a; = 0. Depending on which one is the most convenient, we will either use A(,, ., y or d;.

We will use the following characterizations of W™ P-regularity; they are “straightforward”
generalizations of Proposition 9.3 from [9] to m > 2. These characterizations have the benefit
of being valid without any regularity assumptions on the open set D. We prove Lemma 2.1 in
Section 6, as we could not find it stated as such in the literature.

Lemma 2.1. Suppose that u € L}, (D). Let m € Ny, p € (1,+] and introduce ¢ > 1 the
conjugate of p : 1/p+ 1/q = 1. Then the following statements are equivalent.

(i) ue WmP(D)

(i) (Variational control) for all o such that |a| < m, there exists a constant Cy, such that

Vo e CX (D), ‘J u(m)aav(x)dm‘ < Coll@llLe(py- (2.12)
D
In this case, the LP norm of 0%u is given by
o 0%p(x
[0%ul ey = sup f u(z) ol )dx' (2.13)
peC®(D)\{0} | JD ) za

(iii) (Finite difference control) there exists a constant C' such that for all open set Dy € D, for
all £ <m and all (yi,...,ye) € (R such that Zf=1 lyi| < dist(Dy, dD),

1Ayl o (Do) < Clyal x oo x [yl (2.14)

Moreover, for all |a| < m, [0%ulprpy < C for any C verifying equation (2.14). Finally, one
can actually take C = |[ulywm.»(py in equation (2.14).

In Point (iii) above, the assumption that Zle lyi| < dist(Dg, 0D) ensures that the quantity
A(y,,... .y u(r) makes sense when x € Dy. A similar criterion to Point (44i) above is given in [31],
Theorem 10.55, still in the case m = 1 (as well as in [23], Section 5.8.2.a, Theorem 3). This
theorem only requires the LP control of the ratios éf'u with |a| < 1. As such, we could have
also stated a version of Lemma 2.1(4i¢) solely in terms of the ratios 6fu with |o| < m.

2.2.2 Sobol, Sectioev reguln 10.5arity and generalized functions

The theory of generalized functions (or distributions) provides a flexible way of characterizing
Sobolev regularity, by building a larger space in which partial derivatives are always defined.
Given an open set D, denote CZ (D) the space of smooth functions with compact support in
D. Endow it with its usual LF topology, defined e.g. in [48], Chapter 13. This topology is
such that the sequence (g,) converges to ¢ in CP(D) if and only if there exists a compact set
K < D such that Supp(y,) < K for all n and

Va = (ai,...,aq) € Nd,  sup |0%p, (z) — 0%p(z)| — 0. (2.15)

reK
With C¥ (D) endowed with this topology, the space of generalized functions, or distributions,
is then defined as the topological dual of C*(D) i.e. the set of all continuous linear forms

over CX(D). It is traditionally denoted as follow: 2'(D) := CX(D)’ ( [48], Notation 21.1). A
generalized function T € 2'(D) is said to be regular ( [48], p. 224) if it is of the form

Ve CP(D), T(p) L w(@)o(z)dz, (2.16)



for some u € L}, (D), in which case one writes T' = T,,. Given any function u € L}, (D) and

o € N4, its distributional derivative D®u is defined by the following formula ( [48], pp. 248-250):
<Dau:99F~+(41ﬂa|J 0% p(x)u(x)dz. (2.17)
D

D%y then also lies in 2'(D). Sobolev regularity can now be rephrased as follow: w lies in
Wm™P(D) iff for all |a| < m, the distributional derivative D%u is in fact a regular generalized
function represented by some v, € LP(D) i.e. D% = T,_. Then v, is unique in LP(D) and
0“u = vy in LP(D), where 0%u is the a'® weak derivative of w.

Moreover, the control equation (2.12) shows that 0%u exists and lies in LP(D) if and only
if D% : CP (D) — R can be extended as a continuous linear form over L?(D). Ensuring the
existence of such extensions will thus be of prime interest for us, and is the topic of the next
lemma. Specifically, the next result states that given continuous linear or bilinear forms over
C¥ (D), the existence of extensions of these maps to L?(D) can be ensured by obtaining suitable
estimates on a well chosen countable set E, < CP(D). Restricting ourselves to E, will allow
us to eliminate any measurability issues when introducing the supremum of certain random
variables indexed by FEj, as a countable supremum of random variables remains a random
variable (i.e. a measurable map). Below, we write || - |4 := || - [ Lo(p) for short.

Lemma 2.2 (Extending continuous linear and bilinear forms over C(D) to LP(D)). Let
p € (1,+©). There exists a countable Q—vector space E, = {®1,n € No} < CL(D) with the
following property.

(i) A distribution T € 9'(D) is a regular distribution, T = T,,, for some v € LP (D) iff it verifies
the countable estimate for some constant C' > 0

Vo e By, |T(0)] < Clelg, (2.18)

or equivalently, sup, oy |T(P2)|/|®L|, < +00 (here, setting ¢ = 0 without loss of generality).
This is equivalent to T admitting an extension over LI(D) which is then uniquely given by
T(f) = §p f(x)v(x)dz. Moreover,

sup L@, 1T (2.19)

neN @4l peczmm) el

whether these quantities are finite or not.

(ii) Let b be a continuous bilinear form over CX (D). Then b can be extended to a continuous
bilinear form over L(D) iff it verifies the countable estimate

Vip,1b € Eq,  [b(e,¥)] < Clollqlvllq- (2.20)

In this case, such an extension is unique and there will exist a unique bounded operator B :
L1(D) — LP(D) verifying the following identity

VQD, 1/1 € C?'O(D)v b(% 1/)) = <BQO, 1/}>LP,L‘1~ (221)

The proof of this result can be found in Section 6. It relies on Lemma 2.3 below, which is
interesting in itself.
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Lemma 2.3. C¥(D) is sequentially separable, i.e. there exists a countable subset F' < CX (D)
such that for all p € CL (D), there exists a sequence (p,) < F such that @, — ¢ in CX (D) for
its LF topology.!

A short proof of this result can be found in [24], Lemma 3.6. Given the set E, provided by
Lemma 2.2, we next define the countable set F; to be

Fy = {@/|¢lqr ¢ € Bgrp # 0} = {£1,m € N} © 5,(0,1). (2.22)

Above, (f%)nen is an enumeration of F, and S,(0,1) is the unit sphere of LY(D). The next
lemma is then a direct consequence of Lemmas 2.1 and 2.2.

Lemma 2.4 (Countable characterization of Sobolev regularity). Let p € (1,400). For any

uw € L, (D), u lies in W™P(D) iff for all multi index o such that |a| < m, there exists a

constant C,, such that

Vpe B, \ Luma%(x)dz < Callola: (2.23)

or equivalently, in terms of the set F, defined in equation (2.22),

sup j u(x)0%p(x)dz| = sup J u(z)0* fl(x)dx| < +c0. (2.24)
weF, | JD neN | JD

Moreover,
sup f uw(x)0%p(z)dz| =  sup ‘[ u(ac)a (p(x)dm, (2.25)
weF, | JD peC®(D)\{0} | JD lelq

whether these quantities are finite or not. If one of them is finite, then it is equal to |0%u| s (D).

This lemma provides us with a somewhat explicit countable criteria for Sobolev regularity,
which is valid whatever the open set D.

2.2.3 Integrals of measurable Gaussian processes

We will need the following lemma pertaining to the sample path-wise integration of Gaussian
processes.

Lemma 2.5. Let D = R? be an open set. Let (U(z))zep ~ GP(0,k) be a measurable centered
Gaussian process such that its standard deviation function o lies in L}OC(D). Then the sample
paths of U lie in L}, (D) almost surely and given ¢ € CX(D) and o € N&, the map defined by

loc

Uy : Q3w (=1)lel JD U, (x)0%p(x)dx (2.26)
is a Gaussian random variable. Moreover, for allp € (1,+m0), (Ug)peF, is a centered Gaussian

sequence (i.e. a Gaussian process indexed by a countable set), where Fy is defined in equation
(2.22).

IRecall that a topological space X is separable if there exists a countable subset Y — X which is dense in
X for the topology of X. As for continuity and sequential continuity, separability and sequential separability
agree for metric spaces but not for general topological spaces (see e.g. [4] for further discussions).
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Following Lemma 2.4, in order to study the W"™P regularity of Gaussian processes, we will
be interested in the boundedness of the Gaussian sequence (Ug)yer, given |af < m. As such,
the next result pertaining to bounded Gaussian sequences will be quite helpful. It can be seen
as a weak form of Fernique’s theorem ( [6], Theorem 2.8.5, p. 75).

Lemma 2.6 ( [2], Theorem 2.1.2). Let (Uy)nen be a Gaussian sequence and set |U| = sup,, |Up|.
Suppose that P(JU| < +©) = 1. Then there exists € > 0 such that

E[exp(e|U[*)] < +o0. (2.27)

In particular, E[|UP] < 40 for all p € N.

2.2.4 Gaussian measures over Banach spaces and L” spaces

This section will be helpful for providing a necessary and sufficient condition according to which
P(U € W™P(D) = 1), in terms of the “spectral” properties of the covariance kernel of U.

A Gaussian measure p ( [6], Definition 2.2.1) over a Banach space X is a measure over
its Borel o-algebra such that given any z* € X*, the pushforward measure of u through the
functional x* is a Gaussian measure over R (see Section 2.1.1 for a definition of the push-
forward). Gaussian measures are equipped with a mean vector a, € X** and a covariance
operator K, : X* — X** defined in [6], Definition 2.2.7. When X is separable, u is Radon
( [6], p. 125). This implies that a, lies in X and that the covariance operator K, maps X*
to X ( [6], Theorem 3.2.3). The vector a, and the covariance operator K, are defined by the
following formulas

Vo X7, () = [ Gooutds), (2.28)
Yoy & X7 Ky = [ @ = 0,02) = 0 (), (2.20)

Any operator K : X* — X** which is the covariance operator of a Gaussian measure is called a
Gaussian covariance operator. In Propositions 2.7 and 2.8, we present useful characterizations
of Gaussian measures p over two important classes of Banach spaces: spaces of type 2 and
cotype 2 respectively. For a definition of spaces of type 2 and cotype 2, see e.g. [12]. In
this article, we will only use the fact that LP(D) is of type 2 when p > 2, and cotype 2 when
1 < p <2 (see[6], p. 152). Moreover we will restrict ourselves to the case where X is separable.
As this implies that p is Radon, this removes problems pertaining to extensions of measures
otherwise considered in [32] and [12].

Proposition 2.7 ( [32], Theorem 4 or [6], Remark 3.11.24). Let X be a separable Banach space
of type 2, and let u be a Gaussian measure over X. Then its covariance operator is symmetric,
nonnegative and nuclear. Conversely, given any a € X and any symmetric, nonnegative and
nuclear operator K : X* — X, there exists a Gaussian measure over X with mean vector a
and covariance operator K.

Denote ¢2 the Hilbert space of square summable sequences.

Proposition 2.8 ( [12], Theorem 4.1 and Corollary 4.1). Let X be a separable Banach space
of cotype 2, and let u be a Gaussian measure over X. Then there exists a continuous linear
map A : 12 — X and a symmetric, nonnegative and trace-class operator S : 12 — 12 such
that covariance operator of u is given by ASA* (in particular, the covariance operator of p
is nuclear). In other words, u is the pushforward measure of a Gaussian measure pig over {2
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through some bounded linear map A. Conversely, given any a € X and any operator of the
form ASA* where A : £2 — X is a bounded linear map and S a symmetric, nonnegative and
trace class operator over (2, there exists a Gaussian measure over X with mean vector a and
covariance operator K.

In practice, we will replace 2 with L?(D), which are isomorphic Hilbert spaces. The propo-
sitions 2.7 and 2.8 generalize the case where X is a separable Hilbert space, which can be found
in [6], Theorem 2.3.1. We finish with the following handy result describing centered Gaussian
measures over LP-spaces.

Proposition 2.9 ( [6], Proposition 3.11.15 and Example 2.3.16).

(i) Let u be a centered Gaussian measure over LP(D) where 1 < p < +o0 and D < R? is
an open set. Then there exists a function k € LP(D x D) such that the covariance operator
of wis & : LY(D) — LP(D), the integral operator associated to k. Moreover, there exists a
centered measurable Gaussian process (U(x))zep whose covariance function k verifies k = k in
LP(D x D), and whose sample paths lie in LP(D) a.s.. Setting o(x) = k(z,x)"/2, k verifies

J k(x,z)Pdx :f o(z)Pdx < +o0. (2.30)
D D

Additionally, Py = p, where Py is the pushforward of P through the Borel-measurable map
w — U, € LP(D). Conwversely, given any measurable nonnegative definite function k verifying
(2.30), the corresponding integral operator & : L1(D) — LP(D) is the covariance operator of a
centered Gaussian measure p over LP(D).

(ii) Given a centered measurable Gaussian process (U(z))zep whose covariance function we
denote k, the condition (2.30) is equivalent to (U(x))zep having its sample paths lie in LP(D)
a.s..

This result is quite strong, as it ensures the existence of a representative in LP(D x D) of the
kernel of any Gaussian covariance operator, which is the covariance function of a measurable
Gaussian process. This will enable us to remove awkward measurability issues w.r.t. k over its
diagonal and equation (2.30). Without the use of an underlying measurable Gaussian process,
these issues are not trivial to deal with, see e.g. [10] for an analysis of the Hilbert case p = 2.

Remark 2.10. Proposition 2.9 shows that the assumption that a given Gaussian process is
measurable is slightly less demanding that it might seem. As observed in Section 2.1.1, the
existence of a measurable modification of a general random field is difficult outside of it being
continuous in probability. For a Gaussian process (U(x))zep ~ GP(0, k) however, Propositions
2.7, 2.8 and 2.9 shows that the measurability of its covariance function over D x D and the
integrability of its standard deviation in L? (D) (or equivalently, suitable nuclear decompositions
of its associated integral operator &) ensure the existence of a measurable Gaussian process
(V(z))zep ~ GP(0,k,) with the same covariance function in L} (D x D). Consequently,
ky, = k, a.e. on D x D. Note though that the process V need not be a modification of U.
Since k, = k, a.e., we only have that U and V have the same finite dimensional marginals
“almost everywhere” in the sense of the Lebesgue measure: for all n € N and almost every
(X1, .0y ) € D™, (U(21), ..., U(2)) and (V (1), ..., V(z,)) have the same law.

Throughout this article, we will only consider centered Gaussian processes (E[U(z)] = 0)
and Gaussian measures (a, = 0). Generalizations of the results of this article to non centered
Gaussian processes are straightforward.
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3 Sobolev regularity for Gaussian processes : the general
case, l <p <+

We can now state our first result, which deals with W™P(D)-regularity of Gaussian processes,
given any p € (1, +00) and any open set D < R9.

Proposition 3.1 (Sample path Banach-Sobolev regularity for Gaussian processes). Let D < R?

be an open set. Let (U(x))zep ~ GP(0,k) be a measurable centered Gaussian process, defined

on a probability set (Q, F,P), such that its standard deviation function o lies in L}, (D). Let
€ (1,+00). Then the following statements are equivalent.

(i) (Sample path regularity) The sample paths of (U(x))gep lie in WP (D) almost surely.

(i) (Integral criteria) For all |a| < m, the distributional derivative 0%k lies in LP(D x D)
and admits a representative ko in LP(D x D) which is the covariance function of a measurable
Gaussian process. For all such ke, denoting oo (z) = ko (z,2)"/2, we have

JD oo (2)Pdr < +00. (3.1)

(iii) (Covariance structure) For all |a| < m, the distributional derivative 0%k lies in LP(D x
D) and the associated integral operator £ : LY(D) — LP(D) defined by

Ex f(x J 0% k(x,y) f(y)dy (3.2)

is symmetric, nonnegative and nuclear: there exists (AY) < Ry and (¢%) < LP(D) such that
+o0
DA ws|2 < 400, 0% k(x,y) Z A () (y) in LP(D x D). (3.3)

If 1 < p < 2, then one can choose (XS) such that Y, A% < +00, and there exists a bounded
operator A, : L?(D) — LP(D) and an orthonormal basis (¢%) of L*(D) such that ¥ = A,¢%
for alln = 0 (in particular, we have the uniform bound |||, < [|Aal)-

The proposition above shows that a suitable LP control of the function 0*“k over the
diagonal is necessary and sufficient for ensuring the Sobolev regularity of the sample paths of
the Gaussian process with covariance function k. Formally speaking, the function (z,y) —
0%k (x,y) is the covariance function of the differentiated process, (w,z) — 0*U,(x). This is
formal only, as the weak derivative of the sample paths are only defined up to a set of Lebesgue
measure zero, and thus there is no obvious way of defining the joint map (w, z) — 0*U,(x). Note
also that the idea of ensuring a suitable control of this covariance function near its diagonal is
not with reminding more standard results pertaining to the differentiability in the mean square
sense of a random process (see e.g. [2], Section 1.4.2). See [42] for similar remarks on the
Sobolev regularity of random fields.

Observe also that there is an asymmetry between Point (i7) and Point (i) of Proposition
3.1, as one depends on whether p is lower or greater than 2 while the other does not. Moreover,
both points rely on the finiteness of some quantity, so explicit bounds should be sought so that
Point (i) controls Point (4#i¢) and conversely. This is the content of Proposition 3.6.

Finally, observe that the integrability criteria (i7) cannot be expected to hold for any positive
definite representative ko of 0% “k, even if k. is measurable on its diagonal. For example, set
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ko(x,y) = ka(2,y) + 04, where &, is the Kronecker delta, which verifies /NC = 0%k in
LP(D x D). But if D has infinite Lebesgue measure, it is also clear that SD (x x)p/ 2dr >
SD 0z zdx = +00. Lemma 3.8 describes a natural set of “admissible” representatives for which
Point (i¢) holds, in the case p > 2.

Remark 3.2. Under the assumption that (U(x)).ep is measurable, the statement that its sample
paths lie in some Sobolev space is not up to a modification of the process. This is a consequence
of Lemmas 2.4, 2.5 and 2.6, which show that the Sobolev regularity of its paths is fully deter-
mined by the finite dimensional marginals of the process (see equation (3.6)). This contrasts
with more classical results, e.g. pertaining to the continuity of the process ( [3], Section 1.4.1).
Still, ensuring the measurability of the process is not really straightforward (see Remark 2.10;
in fact, this property may happen to be only ensured up to a modification of the initial process).

Example 3.3 (Finite rank covariance functions). Let p € (1, 4+), m € Ny and n € N. Consider
fis-es fn € LP(D) and choose representatives of those functions in LP(D), also denoted by
fi, .-y fn, so that they may be understood as functions in the classical sense. Consider the
covariance function k(z,z’) == Y1 | fi(x)fi(2’). Assume that fi, ..., f, € W™P(D), then for all
|a] < m, the weak derivative 0**k is obviously given by

0k (z, ') 2 0% fi(x)0% fi(z') in LP(D x D), (3.4)

and the associated integral operators fulfill the criterion (#ii) of Proposition 3.1. Thus the
corresponding measurable Gaussian process has its sample paths in W P(D) almost surely.
Note that this was obvious in the first place, since this Gaussian process can be written as
U(z) = >, &fi(z) where &, ...,&, are independent standard Gaussian random variables
(checking that the covariance function is the right one is trivial). Conversely, assume that the
sample paths of the associated measurable Gaussian process lie in WP (D) almost surely. Then
the function k verifies the criterion (¢i¢) of Proposition 3.1, and in particular 0%k € L?(D x D).
One can then show that fi, ..., f, € W™P(D) (copy the proof of Lemma 4.9, Point (7)).

While this example can easily be studied and solved on its own, we observed in the intro-
duction that (surprisingly) this example fell out of the scope of the previous results pertaining
to the Sobolev regularity of Gaussian processes. Indeed, the stationarity assumptions of [15,25]
are not met. Since the domain D is not assumed to be endowed with an underlying Dirichlet
structure, the results from [28] pertaining to the B3, o regularity of Gaussian processes do not
apply. In fact, in our setting, D is not even assumed to be compact and k is not assumed
continuous, contrarily to [28]. Likewise, the one dimensional framework of [14] is too restrictive
for our example. In the case where p = 2, the continuity assumptions of the covariance function
as well as its cross derivatives over the diagonal required in [42] are also not fulfilled. Still in
the case where p = 2, the RKHS associated to k (see the upcoming Section 4.1) is equal to
Span(f1, ..., fn), which is a subspace of H™(D); without further assumptions on fi,..., fp, it
is not a subspace of H™%¢(D) for any € > 0. Thus the results from [45], Corollary 4.5, only
ensure the suboptimal fact that the sample paths lie in H™~%2~7(D) for all > 0. Moreover,
this result only holds under additional regularity assumptions over D.

Proof. (Proposition 3.1) We show (i) = (i1) & (i4i), (44) = (i) and (i#d) = (i7).

(i) = (4i) & (4i7) : Assume (i) and let |a| < m. We first prove that the map N, : (Q, F,P) —
(R, B(R)), w > [|0°Us|r(p) is measurable. Indeed, given ¢ € F,; (see equation (2.22) for the
definition of Fy), the map

Ug:WMJ U (@) p(2)dz — (-1)‘&‘] Us (2)0%(2)dx (3.5)
D D
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is a real valued random variable (this follows from Lemma 2.5). From Lemma 2.4, one also has

(w — |5an||Lp(p)) = sup [UgZ|. (3.6)
pEFy

The supremum being taken over a countable set, N, is indeed a measurable map. Given
any u € LP(D), a slight modification of this proof shows that w — [0*U,, — ul r»(p) is also
measurable. We can now show the map T, : (Q, F,P) — (LP(D),B(LP(D))), w — 0*U,, is
measurable. Let u € LP(D),r > 0 and B = B(u,r) be an open ball in LP(D). Then from the
measurability of w — [0°U, — u| pr(p),

T (B) ={weQ: |0°Uy — ufpop) <1} € F. (3.7)
Since L?(D) is a separable metric space, its Borel o-algebra is generated by the open balls of
LP(D) (see e.g. [7], Exercise 6.10.28). Thus T, is Borel-measurable and the pushforward of P
through T, induces a (centered) probability measure p, over the Banach space LP(D). We
show that it is Gaussian. Let v € L9(D) and denote T, the associated linear form over LP(D).
Let (¢n) < CL(D) be such that ¢, — v in LI(D) ( [1], Corollary 2.30) and w € € be such that
U, lies in L}, (D):

T¢(0°Uy,) = J;) U, (x)v(z)dx = nh_r)rgo R U, () (x)dx (3.8)
- 7}%(_1)”' f Uy, (2)0% by (x)dzx. (3.9)
D

For each value of n, Lemma 2.5 shows that the map w — (=1)l°I{ U, (2)0%,(z)dz is a
Gaussian random variable. Thus w — T,,(0%U,,) is a Gaussian random variable as an a.s. limit
of Gaussian random variables. This shows that the pushforward of p, through T, is Gaussian
(see Section 2.1.1 for the pushforward), since for all Borel set B € B(R),

ta(T 1 (B)) = pa({g € LP(D) : Ty(g) € B}) = P({w e Q : T,(0°U,,) € B}). (3.10)

Hence, p, is Gaussian. We next show that %%k € LP(D x D) and that the covariance operator
of po is the integral operator £ : LY(D) — LP(D) with kernel 0**k. Let Dy € D x D and
Ky € D be such that Dy ¢ Ky x Ky (for example, set K7 = {x €D :3ye D, (z,y) € K},
Ky :={yeD:3xeD,(x,y) € K} which are both compact subsets of D and Ky := K; U K3).
Let h = (hi, ..., hq) € (R%)? be such that 25:1 a;h; < dist(Ko, Dp). Use then the bilinearity of
the covariance operator:

f (55 ® 88k, ) Pdedy = j B[S0 ()62 U (y)]Pdady (3.11)
Do DO
<[  EEUESRU@IPdsy (3.12)
KQXKO
< f E[62U ()63 (y) [Pldady (3.13)
KUXKQ

< E[(JKO |5,°;U(x)|pdx>2] [ G T

<E[|U% sy | = €7 < +o0. (3.15)
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The expectation in equation (3.15) is indeed finite because of the following. Given |a| < m,
equation (3.6) shows that the map w — |0“U,,|, is the supremum of a Gaussian sequence which
is finite a.s. by assumption; Lemma 2.6 then implies that all the moments of this supremum
are finite. Writing then |U|wm.» in terms of these LP norms yields equation (3.15). To see that
the control (3.15) implies that 0**k € LP(D x D), we copy below the steps of equations (6.2)-
(6.3)-(6.4) in the proof of Lemma 2.1. Let ¢ € C (D x D). Since it is compactly supported in
D x D, find an open set Dy € D such that Supp(p) < Dy. Use Holder’s inequality and equation
(3.15):

L D(&? ®5?)k(x,y)<p(w,y)dwdy‘ < [0 ®@ 3)klplels < Cliel,- (3.16)
Next, use the discrete integration by parts formula,
|Gt osmenpteadndy = | ke @) elw)dady. (37

When h — 0, observe that (07 ® §;)*p(z,y) — 0%p(x,y) pointwise. Use Lebesgue’s domi-
nated convergence theorem and equation (3.16) to obtain

[ k(x,yw’%o(x,y)dxdy\ < Cll, (3.18)
DxD

which indeed shows that 0**k € LP(D x D), from Riesz’ lemma. We now identify K, the
covariance operator of i, in terms of 0“*k. Let f,g € L4(D) and using the density of CX(D)
in LY(D) ( [1], Corollary 2.30), let (f), (9n) < CP (D) be two sequences such that f, — f and
gn — ¢, both in L(D). Then (explanation below),

<f7 Kozg>Lq,LP = 77,1£Ic}o<fn’ Kagn>Lq,LP (319)

= lim <fna h>Lq)Lp<gn, h>Lq)Lpd/J/a(h)
= Jis(p)

= llHOlC <fn7 6an>Lq,Lp<gn, aan>Lq’LzJ dIP(W) (320)
n—w Jqo

- lm f (O s Ui 10(0% g, U 1o dP(w)
n—o Jq

= lim 0% fr(2)0% gn (y) (2, y)dady (3.21)
=% Jpxp

= lim fn(@)gn(y)0*“k(z, y)dady
n=0 JpxpD

= J F(@)g(y)0“k(z,y)dxdy = {f,EFg)ra Lr (3.22)

DxD

We used the sequential continuity of K, in equation (3.19), the transfer theorem for pushforward
measure integration ( [7], Theorem 3.6.1) in equation (3.20) and Fubini’s theorem in equation
(3.21). Thus K, = &;. According to Proposition 2.9, since p, is a Gaussian measure over
L?(D), there exists a representative ko of 0%k in LP(D x D) which is the covariance function
of a measurable Gaussian process. Note o, () = ko (z, x)l/ 2, then the same proposition shows
that

j oo(x)Pdr < +o0, (3.23)
D
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which shows (i7). By Corollary 3.5.11 from [6], £ is nuclear and admits a symmetric non-
negative representation as the one in equation (3.3). If 1 < p < 2, then LP(D) is of co-
type 2 and since we have shown that £ is a Gaussian covariance operator, from Proposi-
tion 2.8 there exists a bounded operator A, : L?(D) — LP(D) and a trace class operator
So : L*(D) — L*(D) such that £ = A,S,A%. Introduce a Mercer decomposition of S,
(equation (2.6)): So = >, A%¢% ® ¢%. Use the continuity of A, and A} to obtain that
0 k(x,y) = 3, A2 (Aad?)(2)(Aad?)(y) in LP(D x D), which finishes to prove (7).

(i) = (i) : from Proposition 2.9, let (V) be a centered measurable Gaussian process with
covariance function k. Then its sample paths lie in LP(D) a.s. and the Gaussian measure it
induces over LP(D) through the map w — V% € LP(D) is the centered Gaussian measure with
covariance operator &. Given ¢ € C*(D), denote V' the following random variable

Ve twe J V() p(x)de. (3.24)
D

From Lemma 2.5, (Vj)y,epq is a Gaussian sequence. It is also centered and using Fubini’s
theorem to permute E and §, we have that

E[VZViT = J W)y (x)ka(z,y)drdy = J P(Y)y(x)0" k(x, y)drdy

DxD DxD
[ ook, )dady. (3.25)
DxD
E[U2US] = L 20)0" @)k y)dody (3.26)

Having the same mean and covariance, the two Gaussian sequences (V') yer, and (Ug) per, have
the same finite dimensional marginals. One checks in an elementary fashion that their countable
suprema over Fy then have the same probability law (e.g. by showing that they have the same
cumulative distribution function). Recalling from Lemma 2.4 that |V, = sup cp, [V (w)],
we obtain that

L=P(|V], < +o0) = P(sup |V'| < +o0) = P(sup |UJ| < +0), (3.27)
pEFy pEFy

which shows that 0*U € LP(D) almost surely. This is true for all |a| < m, which shows (7).

(#41) == (i) : if (i4i), then from either Proposition 2.7 or 2.8 depending on whether p < 2 or
p = 2, there exists a Gaussian measure over LP(D) whose covariance operator is £ as defined
in equation (3.2). Proposition 2.9 yields (i). O

Remark 3.4 (Distributing derivatives over nuclear decompositions). In Point (iii) of Proposition
3.1, it is very tempting to distribute the cross derivative 0*% over the nuclear decomposition of
k, thus setting A% = A0 and ¢ = 0%°. While we can show that 0%¢,, € LP(D) (copy the proof
of Lemma 4.9(7)), it is not clear whether the obtained decomposition converges in LP(D x D),
or that it corresponds to a nuclear one, i.e. Y, An [0y |2 < 400 (it is not even clear in what
sense this derivative can be distributed, apart from the distributional sense). When p = 2,
it turns out that this is true (see the upcoming Proposition 4.4): distributing derivatives on
nuclear decompositions yield nuclear decompositions, as soon as nuclear decompositions of the
differentiated kernel exist. The following formal computation shows that we should expect this
property to hold also when 1 < p < 2. Assume formally that the derivative can be distributed
pointwise, and introduce the functions v, (z) = Y., A0y, (2)? and 04(7) = v ()2, From
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Proposition 3.1, we expect that |ou[, < +00. When 1 < p < 2, the reverse Minkowski
inequality in LP/?(D) (see [1], Theorem 2.13 p. 28) then yields

+o0 +o0
D Aalld el = D Anllo“Yi e
n=0 n=0

+o0

D Andp
n=0

< = [vallpsz = loaly < +oo, (3.28)

p/2

so that the series 3} An [0, |2 converges. From this, it is then readily checked that the equal-
ity 0%k =Y., \n0%y, ® 0%y, holds in LP(D x D), which is then a nuclear decomposition of
0%“k. Recall however that in spaces of cotype 2, it is not sufficient to require that a self-adjoint,
nonnegative operator be nuclear for it to be a Gaussian covariance operator (Proposition 2.8).
When p > 2 though, the following proposition shows that this property does not hold any-
more: distributing derivatives on nuclear decompositions does not, in general, yield nuclear
decompositions, even if nuclear decompositions of the differentiated kernel exist.

Proposition 3.5. Let p > 2 and D = (0,1). There exists an explicit covariance function
k:D xD — R of a measurable Gaussian process with the following properties.

(i) There exists a countable set N < D x D such that for all (z,y) € (D x D)\N, the classical
derivative 0;0,k(x,y) exists. Moreover, the map (x,y) — (0.04k)(z,y) can be extended over
D x D as a function (still denoted 0y0yk) which is the covariance function of a measurable
Gaussian process.

(i7) Sé E(x,2)P?dx < +oo and Sé(&zﬁyk)(x,x)p/2dx < +o, hence nuclear decompositions of
both k and 0,04k exist in LP(D x D), from Propositions 2.7 and 2.9 (note that those two
integral equations imply that both k and 0,0,k lie in LP(D x D), from the inequality |h(z,y)|? <
h(z, z)P?h(y, y)P/? if h is positive definite, so that Proposition 2.9 indeed applies).

(i1i) There exists () = WYP(D) such that k = Y @y, in LP(DxD), Y17 [thn]2 < +00
but 3°° ]2 = +00. Hence (1) provides a nuclear decomposition of k, while (¢,) does not
for 0,0,k (even though such decompositions exist!).

The proof of Proposition 3.5 is deferred to Section 6. Note that a general procedure for
obtaining nuclear decompositions of Gaussian covariance operators (hence of suitably inte-
grable covariance functions in the case of LP spaces), based on a gradual “orthonormalization”
procedure, can be found in the proof of Theorem 3.5.10 of [6].

The following proposition deals with the apparent asymmetry in p between Points (i¢) and
(#33) of Proposition 3.1. We recall that the nuclear norm v(T) is defined in equation (2.8).
Contrarily to Proposition 3.1, we do not exclude p = 1.

Proposition 3.6. Let p be a centered Gaussian measure over LP(D), where 1 < p < +0. Let
k e LP(D x D) be the kernel of its covariance operator (K, = ), chosen such that k is also the
covariance function of a measurable Gaussian process (U(x))zep, from Proposition 2.9. Define
o(z) = k(z,2)Y? and set C, = 2P/*T((p + 1)/2)/v/7 (C, = E[|X|P] where X ~ N'(0,1)). Then
the following bounds hold.

e if 1 < p < 2, there exists a symmetric, nonnegative and trace class operator S over L?(D)
and a bounded operator A : L?(D) — LP(D) such that £, = ASA*. Moreover,

vE) < inf APUS) < lolp <GP intAPY(S). (3.29)

Ex=ASA* Er=ASA*
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o if 2 < p< +ow0, then & is symmetric, nonnegative and nuclear, and

CrPu (&) < o) < v(&). (3.30)

Observe that if p = 2 then Cy = 1 and equation (3.30) yields |o[% = v (&) = Tr(&).
It is expected that the nuclear norm of &£, cannot directly appear on the right hand side of
equation (3.29), as not all nuclear operators are Gaussian covariance operators when 1 < p < 2
(Proposition 2.8). Proposition 3.6 in fact suggests that for general Banach spaces X of cotype
2, the following map defined over the set of Gaussian covariance operators B : X* — X

B~ inf |A|? 31
Lnf APu(S), (331)
B=ASA*
is the natural measurement of the “size” of such operators. When X is of type 2, this would
be the case for the nuclear norm B — v(B).

Remark 3.7. Proposition 3.6 is interesting from an application point of view because it states
that the operator norms appearing in this proposition, as well as the L? norm of the standard
deviation function o, are suitable quantities for quantitatively controlling the LP norm of the
sample paths of the underlying Gaussian process. Explicitly, we have the following LP control
in expectation: E[||U[P] = Cplo|h (see equation (3.33)). Applying this fact recursively, we
obtain that the W™ P-Sobolev norm of the sample paths of the Gaussian process in question is
controlled as follow, denoting o4 (z) = 0%““k(z, z)'/? (choosing a representative of 0% *k which
is the covariance of a measurable Gaussian process)

E[|Uyms] =Cp Y, loalb. (3.32)

lal<m

If such a control cannot be obtained, then it means that the sample paths of U do not lie in
W™P(D) in the first place. Finally, we have the following asymptotic behaviour of the constant

when p — +00 : Cp 7 ~ exp(1)/(p — 1).

Proof. (Proposition 3.6) We begin with the following general fact concerning the measurable
Gaussian process (U(x))zep, observing from Fubini’s theorem that

BlI013] - E| [ (06| - [ Blo@rla - [ Gotara - ool 63
D
where C, = 2P/2T'((p + 1)/2)/+/7. Indeed, given X ~ N(0,02), then E[| X |P] = CpoP.
Suppose now that 1 < p < 2. Let po be a Gaussian measure on L?(D) and A : L?(D) —
L?(D) a bounded operator such that p = ug 4 (pushforward of o through A, see Section 2.1.1)

and S the trace class covariance operator associated to po (see Proposition 2.8). Recall also
that from Proposition 2.9, 4 = Py. Then (explanation below),

Cololl =BV = | 0Llpee) = | sigcan (339
= oo, IA0lBotde) <1417 | lolEota) (339
L*(D L2(D

p/2
<|Ap j (9, 9" 2o (dg) < |A|p( | <g,g>L2u0<dg)) (3.36)
L2(D) L2(D)

< AP Te(S)P? = |APu(S)"2. (3.37)
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In equation (3.34), we used equation (3.33) and pushforward integration to write the integral
w.r.t. P as an integral w.r.t. p = Py. Likewise in equation (3.35) where we write the integral
w.r.t. p as an integral w.r.t. uo using the pushforward identity u = po 4. In equation (3.36),
we used Jensen’s inequality for concave functions (0 < p/2 < 1). In equation (3.37), we used
the trace identity for Gaussian measures over Hilbert spaces from [6], equation 2.3.2 and the
one following p. 49. Moreover, from the nuclear norm estimate of [48], Proposition 47.1 pp.
479-480,

V(&) = v(ASA*) < [AJv(S)]| A% < | AlPv(S) (3.38)
. In equations (3.37) and (3.38), taking the infimum over all representations & = ASA* yields
: 2 2 -5 2
e < o APUS), lo <7 b 1APu(S) (3.39)
Er=ASA* ER=ASA*

To prove the remaining inequality (infe, —aga% [A|*v(S) < |o|2), we use an explicit decompo-
sition & = ASA* by first setting

Af(z) = f(x)o(z) P2, (3.40)
Using Holder’s inequality with a = 2/p, 1/a + 1/b =1 (notice that a > 1), we obtain
A7l = [ @ Patort-r2ds (3.41)
D
p/2 1/b
< (J |f(x)|2d:1:> (f o(x)bp(lp/Q)dx) . (3.42)
D D

But b= 45 = % = 1_;/2 and b(1 — p/2) = 1, which together with equation (3.41) yields

|AF(5 < 1 fIBlolpt =772, (3.43)

Thus A : L*(D) — LP(D) is bounded and A < Hoﬂll,_p/Q. One also verifies that A* :
L(D) — L?(D) is given by A* f(x) = f(z)o(2z)'~P/?, with | A| = |A*|. Introduce the functions
ko(z,y) = k(z,y)o(x)P?> Lo(y)?/?>~1, and oo(z) = ko(z,z)"/?; ko is the covariance function of
the measurable Gaussian process V (z) := o(x)?/?>~'U(z), and verifies

loo|2 =f oo(x)de=f ko(x,x)dx=f o(@)Pdz = |o|2 < +o0. (3.44)
D D D

Therefore &, the integral operator over L?(D) associated to ko, is trace class (Proposition
3.1(i7)). Observe also that k = (A ® A)ko which also yields that & = A&, A*. Thus,

L AP(S) < [APv(E,) < o} lol; = ol (3.45)
sk;ASA*

Combining equations (3.39) and (3.45) yields the desired result of equation (3.29).

Suppose now that p > 2. Recall that y = Py;. We successively use the transfer theorem for
pushforward measure integration, Jensen’s inequality for probability measures (p/2 = 1) and
the nuclear norm estimate from [32], Theorem 3:

BUIE) = | Ialgp@) = | isgean = [ )

p/2
> ( | f|§u<df>) > U(E)?, (3.47)
Lr(D)
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which together with equation (3.33) yields [of2 > C;Q/py(é'k). We now prove the last remain-
ing inequality, i.e. |02 < v(&). For this, consider k(z,y) = Y, nthn(x)¢n(y), a nuclear
representation of k in LP(D x D), with |¢nll, = |én]p = 1 and ], |un| < +00. Denote by
v the function v : @ — 3% 11,0, (¥)¢pn (). Minkowski’s inequality in LP/?(D) shows that
x> 3% | tn (2) ¢ (z)| is finite a.e. and in fact that v e LP/2(D):

4+
D bntndn

n=0

[olp2 =

400
< 3 linl [0
n=0

p/2

+00 +0
< ) ltnl % [@nllpldnlls = D linl < +o0. (3.48)
n=0

n=0

In equation (3.48) above, we used used the Cauchy-Schwarz inequality on ¢,y [|,/2. From the
nuclear decomposition of k, it is very tempting to write ||o|2 = |v]|,/2, but unfortunately the
diagonal of D x D has a null Lebesgue measure. This equality turns out to be true but this
fact is non trivial and deferred to Lemma 3.8 below. From this lemma and equation (3.48)
which holds whatever the nuclear decomposition of &, taking the infimum over all nuclear
representations of £ in equation (3.48) yields ||o|? < v(€). This finishes the proof. O

The next lemma, which was key in the proof of equation (3.30), states that evaluating the
LP?-norm of the diagonal of a nuclear representation of a Gaussian covariance operator K in
L?(D),p = 2, yields the same result as evaluating LP/2_norm of the diagonal of the covariance
function & of any measurable Gaussian process (U(z))zep such that & = K. This fact is not
obvious at all, as the diagonal of D x D has null Lebesgue measure and different representatives
of k in LP(D x D) have no reason a priori to agree on sets of null measure. However, the
assumptions that the representation is nuclear and that U is measurable turn out to be strong
enough to yield the desired conclusion. The proof ideas for this result should largely be credited
to [10]; we generalized them in a straightforward fashion from L?(D) to LP(D) and applied them
to the Gaussian process (U(z))zep of Proposition 3.6. They are based on the Hardy-Littlewood
maximal inequality.

Lemma 3.8. Let 2 < p < +00, D < R? be an open set and (U(x))zep ~ GP(0,k) be a
measurable Gaussian process whose sample paths lie in LP(D) a.s.. From Propositions 2.9 and
2.7, & : LYD) — LP(D) is nuclear and there exists sequences () < R, (¢n), (6n) < LP(D)
such that k = Y pnthn ® ¢p in LP(D x D), with |V, |, = |onlp = 1 and 3, |pn| < +00. Then

x> 3 n(2) b0 (2)| s finite a.e. and vz > D unthn(T)Pn(x) is nonnegative a.e..
Moreover,

+o0 p/2 )
oy~ [ Hwartas = [ (X mva@on) w-lolfi G
n=0

A remarkable consequence of this result is that the L?/2-norm of the diagonal of a nuclear
representation of & = >, pnty, ® ¢y, is invariant w.r.t. said nuclear decomposition, while
its finiteness fully characterizes the nuclearity of &, (Proposition 3.6(¢7)); the same invariance
property does not hold for »; ||, hence the need to define the nuclear norm of &, as the
infimum over such quantities.

Proof of Lemma 3.8. We first prove the statement when D = R?. We begin with some defini-
tions and observations. For 7 > 0, denote C,. := [~r,7]¢ and C,(z) := x + C,. For f € LP(R?)
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(resp. g € LP(RY x Rd) denote its average over Cy.(z) (resp. Cr(z) x Cr(x)) as

A2d)g
|C | Je A

A(d)f (s,t)dsdt (3.50)

()

The functions A f and Agd) g are defined pointwise and continuous. The point of averaging
over cubes rather than balls is that we have A$~2d) = Agd) ® Agd)

Hardy-Littlewood maximal functions of f and g, as

. One then introduces the

M@ f(z) == sup )|dt, MPDg(z,y) = sup —— f f (s,t)|dsdt.
r>o|C\ r>0 |Cr|? Je, (@) C(:v

M@ f (resp. M (24) g) is measurable, nonnegative and defined pointwise over R? (resp. R? x R?).
For all z € R%, we obviously have the pointwise majoration

AW f ()| < M f (), (3.51)

and likewise for M 2% g. A key point for us will be the Hardy-Littlewood maximal theorem
( [44], Theorem 1 p. 5), which states that there exists a constant S, > 0 such that for all
feLP(RY),

M D f], < Splfllp- (3.52)

This theorem allows a first general observation, given f € LP(R?). Indeed, the Lebesgue

differentiation theorem ( [44], Corollary 1 p. 5) states that As-d)f(x) — f(z) a.e.; but we also
have the pointwise domination

AW f(2) ~ F(@)] < JAD F@)] + [F@)] < MO (@) + [f(@)] ae. (3.53)

From equation (3.52), the function on the right-hand side of equation (3.53) lies in LP(R¢) and
Lebesgue’s dominated convergence theorem in LP(D) yields that we also have the convergence

1A f = fllio ey —= 0. (3.54)
We will also use that the nonlinear operator M is submutliplicative and subadditive:

MCED () @ o) (x,y) < MDyp(z) M Dep(y), (3.55)
MD () + @) (x) < MDip(z) + MDp(z). (3.56)

With equations (3.54), (3.55) and (3.56), we now prove the desired result. We first focus on
the decomposition k = >} j1n1)n, ® ¢y, for which the following pointwise equality holds ( [10],
Corollary 2.2 and Lemma 2.3, or equation 3.6 from [10])

ACD Z pin ADY, (2) A D, (y), V(z,y) e R x RE (3.57)
We now prove that from this decomposition, we can deduce a first important fact, which is

hm ACD (2, x) 2 tnn(X)dn(x)  a.e.. (3.58)

n=0
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For this, first observe that for all 2 € R? and n € Ny, the following domination holds:
[t | [ASD P (2) AL ()] < ptn| x M Dy, (@) M Dy (). (3.59)

But the series obtained by summing the right-hand side term of equation (3.59) is an a.e. finite
function of z, as Minkowski’s inequality in L?/?(R%) and equation (3.52) yield:

+0 +©
2 i MO MO < 3 ] > [M DMt D],

n=0 p/2  n=0
+o0
< D il X M@, | [M D] (3.60)
n=0
T +00
< O ] X Splnlplénly = S2 D7 1l < +o0. (3.61)
n=0 n=0

We used the Cauchy-Schwarz inequality in equation (3.60). Choose now a conull set T' = R%,
on which the Lebesgue differentiation theorem applies for all ¢,, and ¢,, and on which z —
3 | M D, (2) M D, () is finite (such a set exists from the finiteness of its LP/?-norm).
For all z € T, the Lebesgue dominated convergence theorem for the discrete measure ZneNO O
(using the domination (3.59)) yields the equality (3.58).

We now focus on the Gaussian process (U(z)),ere. Since its sample paths U,, lie in LP(R9)
almost surely, equation (3.54) yields that for almost every w € €,

|AYT, - U2 —0. (3.62)

We also have that for every such w e  and r > 0,
| 4S9 Us = Usllp < 1A Usllp + Uulp < IMOULp + [Uallp < (Sp + DUsllp,  (3.63)

and from Fubini’s theorem, the right-hand side of equation (3.63) lies in L?(P):
Elw — |Us[p] = E[IUZ] = an E[|U(z)[P]dx = Cyplo]f < +o0. (3.64)

Thus, from equations (3.62), (3.63), (3.64) and Lebesgue’s dominated convergence in L?(IP),

E[|AYU - U|E] — 0. (3.65)

r—0

In particular, using the reverse triangle inequality on the norm V — E[[V/[?] 1P we have
E[|AAU[5] — E[IUI5] = Cylal?- (3.66)

We then wish to use equations (3.66) and (3.58) to prove the desired result. For this, observe

that from the linearity of the operator AP, (Ag,d)U (2))zep is a centered measurable Gaussian
process whose covariance function is given by

Cov(ADU (z), ADU () = (AD & AD)k(z,y) — ACVk(z,y), V(z,y) e RIxRY  (3.67)

(Note then that Aggd)k(x, x) = Var(ASd)U(x)) > 0, which also shows that the limit in equation
(3.58) is nonnegative a.e.) The proof of the Gaussianity of (Agd)U (2))zep is carried out similarly
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as for Lemma 2.5, and the expression of its covariance function follows from the measurability
of U and Fubini’s theorem. Fubini’s theorem and the fact that E[| X |P] = CpsP if X ~ N(0, s?)
then lead to

/2
E[JADT|2] = J E[|A£d)U(m)|p]dx=Cpf (A2Vk(z,2))" . (3.68)
R4 R4

We will finally apply Lebesgue’s dominated convergence theorem on equation (3.68) when r goes
to zero, using the limit given in equation (3.58). For this, observe that equation (3.51) together
with the sublinear properties of M@ (equations (3.55) and (3.56)) lead to the domination

+00
AP k2, 2)] < MEDk(a,2) < Y pn| MO (1) M D () Vo e R, (3.69)
n=0

and the right-hand side of equation (3.69) indeed lies in LP/?(D), from equation (3.61). We
finally conclude from Lebesgue’s dominated convergence theorem that

p/2 +0 p/2
li B[ AOUIR) = G, [ lim (429k(z.2)) W‘@J(E%%@%@>d%
r—0 Rre 70 Re \ ;=0
which, together with equation (3.66), finishes the proof.
To deal with the general case where D is only an open subset of R?, extend any function
f € LP(D) to a function f € LP(R?) by setting f(z) = f(x) if z € D, f(z) = 0 elsewhere. f
remains measurable, and all the arguments and results stated above are preserved. O

4 Sobolev regularity for Gaussian processes : the Hilbert
space case, p = 2

In the case p = 2, we provide an alternative proof of the integral and spectral criteria of
Proposition 3.1, based on the study of the “ellipsoids” of Hilbert spaces (see Section 4.2).
These geometrical objects are well understood in relation with Gaussian processes (see [21]
or [46], Section 2.5). Compared with the general case p € (1,+m), we draw additional links
between the different Mercer decompositions of the kernels 0“*k, the evaluation of the trace
of £ and the Hilbert-Schmidt nature of the imbedding of the reproducing kernel Hilbert space
(see Section 4.1 below) associated to k in H™ (D).

4.1 Reproducing Kernel Hilbert Spaces (RKHS, [5])

Consider a general set D and a positive definite function k& : D x D — R, i.e. such that given
any n € N and (z1,...,2,) € D", the matrix (k(z;,2;))1<i,j<n is nonnegative definite. One
can then build a Hilbert space Hj of functions defined over D which contains the functions
k(z,-),x € D and verifies the reproducing identities

k() k(2! ), = k(z,2") Vz,x' € D, (4.1)
k() frm, = f(@) Vo eD, Vf e Hy.

Hy, is the RKHS of k. This space is exactly the set of functions of the form f(z) = 3% a;k(z;, x)

such that HfH%{k = ZT;C:I a;ajk(z;,x;) < 4oo. If for all x € D, k(z,-) is measurable, then H

only contains measurable functions. One may then consider imbedding Hy in some Sobolev
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space H™ (D). Recall that in H™ (D), functions are equal up to a set of Lebesgue measure zero.
If such an imbedding i : Hy, — H™(D) is well-defined (i.e. if f € Hj then its weak derivatives
0° f exist and lie in L?(D) for all |a| < m), we will sometimes use the same notation for f € Hy,
and its equivalence class f € H™(D); strictly speaking, the latter should be denoted i(f). It
may then happen that i is not injective, as with the RKHS associated to the Kronecker delta
k(x,x') = 04 4 (in this case, we even have i(Hy) = {0}).

Remark 4.1. In Proposition 4.4, we will be interested in the Hilbert-Schmidt nature of the
imbedding i. However, it may happen that Hj is not separable, such as with the RKHS
associated to the Kronecker delta ¢, .. This results in additional care required for defining
the notion of Hilbert Schmidt operators, as the definition from Section 2.1.3(i4) cannot hold.
Still, this case is dealt with in Proposition 4.4(iv). See [36] and [6], Remark 3.2.9 p. 103 for
discussions on non separable RKHS.

4.2 Ellipsoids of Hilbert spaces and canonical Gaussian processes [21]

Let (H;{,»n) be a separable Hilbert space. We introduce (V;)zen the canonical Gaussian
process of H, defined as the centered Gaussian process whose covariance function is the inner
product of H :

E[VaVy] = (&, y)m. (4.3)
A subset K of H is said to be Gaussian bounded (GB) if

P(sup |Vz| < +0) = 1. (4.4)
zeK

The GB property was first introduced for studying the compact sets of Hilbert spaces, see [21] on
that topic. In equation (4.4), the random variable is defined as sup ¢ i |Va| := sup,e 4 |Va| where
A is any countable subset of K, dense in K. Different choices of A only modify sup,.y |Vz| on
a set of probability 0 ( [21], p. 291), which leaves equation (4.3) unchanged. We will use the
two following results below, taken from [21].

Proposition 4.2 ( [21], p. 293 and [21], Proposition 3.4). We have the two following facts.
(i) If K is a GB-set, then its closed, convex, symmetric hull is a GB-set.
(i) The closure of a GB-set is compact.

Given a self-adjoint compact operator T': H — H, introduce a basis of eigenvectors x,, and
its real eigenvalues A,, A, — 0. The image of the closed unit ball of H, B = Bg(0,1) is the
following “ellipsoid” ( [21], p. 312)

T(B) = { Z anty S.t. 2 a2 /N2 < 1}. (4.5)
An>0 An>0
The main result we will use is the following.

Proposition 4.3 ( [21], Proposition 6.3). Suppose that T is compact and self-adjoint. Then
T(B) is a GB-set if and only if >, A2 < 00, i.e. T(B) is a “Schmidt ellipsoid”.

neN 'n

We can now state our result pertaining to the H™(D)-regularity of Gaussian processes,
given an arbitrary open set D < R
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Proposition 4.4 (Sample path Hilbert-Sobolev regularity for Gaussian processes). Let D < RY
be an open set. Let (U(x))zep ~ GP(0,k) be a measurable centered Gaussian process, defined
on a probability set (Q, F,P), such that its standard deviation function o lies in L}, (D). The
following statements are equivalent:

(i) (Sample path regularity) The sample paths of U lie in H™(D) almost surely.

(ii) (Spectral structure) For all || < m, the distributional derivative 0%k lies in L*(D x D)
and the associated integral operator

£0 f(x) = fp k(. ) £ (y)dy (4.6)

is trace class. Equivalently, there exists a representative ko of 0%k in L*(D x D) which is
the covariance function of a measurable Gaussian process. For all such k., denoting o,(x) =
ko(x,2)Y2, we have

Tr(&) = JD ko(z,z)dr < +00. (4.7

(iii) (Mercer decomposition) The kernel k has the following Mercer decomposition
+oo
k(z,y) = Z Abn(2)bn(y)  in L*(D x D), (4.8)
n=0

where (\,) is a nonnegative sequence and (¢y) is an orthonormal basis of L*(D). Moreover,
for all |a| < m and for all n € Ny such that \, # 0, 0%¢,, € L*(D), 0%k € L>(D x D) and the
following facts hold:

+00 to
D Anlognl3 < 400, 0*k(x,y) = D And®Gn(2)0Gn(y) in L*(D x D). (4.9)
n=0 n=0

In this case, £ in equation (4.6) is well-defined and trace class, with Tr(Ey) = Ifo A 0%hn 3.

(iv) (imbedding of the RKHS) Hy, < H™(D), the corresponding natural imbedding i : Hy —
H™ (D) is continuous and ii* : H™(D) — H™(D) is trace class. Equivalently, ker(i)* endowed
with the topology of Hy, is a separable Hilbert space and j := i|yer(s)t ker(i)t — H™(D) is
Hilbert-Schmidt. Moreover, the Hilbert-Schmidt norm of j (see Section 2.1.5(ii) and (ii1)) is
given by

31%rs = Tr(id*) = >, Tr(ER). (4.10)

loelsm

Note that Point (iv) above agrees with the definition of Hilbert-Schmidt operators on gen-
eral, non necessarily separable Hilbert spaces ( [6], p. 367). Before proving this result, we
discuss Proposition 4.4 in relation with previous results from the literature. First, point (iv)
is not without reminding Driscoll’s theorem ( [27], Theorem 4.9) which is well-known in the
machine learning/RKHS community; this theorem states the following. Let k and r be two
positive definite functions defined over D, and let U ~ GP(0, k). Suppose that H, < H, with
a Hilbert-Schmidt imbedding, then the sample paths of U lie in H, almost surely.

Second, Proposition 4.4 and equation (4.7) in particular, is a generalization of Theorem
1 from [42] in the case of Gaussian processes; By removing the assumption in [42] that the
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covariance function be continuous on its diagonal as well as its symmetric cross derivatives,
the sufficient condition derived in [42] becomes also necessary. Finally, Proposition 4.4 shows
that if p = 2, then in the nuclear decomposition of £ (see Proposition 3.1(i7)) one can choose
A% =\, and ¢ = 0%y, It is not obvious that this should hold when p < 2 and it in fact fails
when p > 2 (see Remark 3.4 and Proposition 3.5).

Example 4.5 (Hilbert-Schmidt imbeddings of Sobolev spaces). Proposition 4.4 can be com-
pared with the results found in [45] and its Corollary 4.5 in particular. This corollary states
that if D < R? is sufficiently smooth, if Hy < H!'(D) with a continuous imbedding and if
t > d/2, then the sample paths of the centered Gaussian process with covariance function k lie
in H™(D) for all real number m € [0,t — d/2). For example, this holds when k is a Matérn
covariance function of order ¢ — d/2; its RKHS is then exactly H*(D) ( [45], Example 4.8).

In the particular case where in addition m is an integer, we recover this result from Propo-
sition 4.4. Indeed, it is known that when m € (0,t — d/2), the imbedding of H'(D) in H™(D) is
Hilbert-Schmidt. When the involved indexes are nonnegative integers, this is known as Maurin’s
theorem ( [1], Theorem 6.61, p. 202). Maurin’s theorem is generalized to fractional exponents
in [49], Folgerung 1 p. 310 (in German) or [29], Proposition 7.1 (in French). If H, < H'(D)
with a continuous imbedding, then the inclusion map of Hy in H™(D) is Hilbert-Schmidt for
all m € [0,t — d/2) n Ng. From Proposition 4.4(iv), we obtain that the sample paths of the
corresponding Gaussian process indeed lie in H™ (D).

However, not all RKHS that are subspaces of H™ (D) with a Hilbert-Schmidt imbedding
are contained in some H'(D) with ¢t > m + d/2, as the following trivial example shows. Fix
any € > 0 and consider the rank one kernel k(x,z’) = f(x)f(x") where f is chosen such that
f e H"(D) and f ¢ H™ (D) (choose a representative of f in L*(D) so that f is a function
in the classical sense). Then Hjy = Span(f) and the imbedding of Hy, in H™(D) is Hilbert-
Schmidt since it is rank one; but Hy ¢ H™¢(D). Proposition 4.4 yields that the associated
trivial Gaussian process U(z)(w) = &(w) f(x) where £ ~ N(0,1) has its sample paths in H™ (D)
(it was obvious in the first place).

Example 4.6 (One dimensional case). We build a covariance function which is not pointwise
differentiable at any (g,¢") € Q x Q, and such that the corresponding Gaussian process has its
sample paths in H'(R). Let hq(x) :== max(0,1 — |z — a|) be the hat function centered around
a € R. Tt lies in HY(R) but it is not differentiable at * = a,a — 1 and a + 1. Let (g,) be an
enumeration of Q. Then the following positive definite function over R

+001

B(x,a') = 3] grhg, (2)ha, (@), (4.11)

n=0

is not differentiable in the classical sense at each point (z,’) of the form (g, ¢m), but the
map i*, with i : H;, — H'(R) the canonical imbedding, is trace-class (use equations (4.9) and
(4.10)):

Tr(ii*) = Tr(sk) + Tr(E}) (4.12)
Z a3 + 2 i, 13 (4.13)
Qi Z X< 2= 10, (4.14)

Before proving Proposition 4.4, we will require a number of lemmas concerning the Mercer
decomposition of Hilbert-Schmidt operators over L?(D). They are proved in Section 6.

] Mg
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Lemma 4.7. Let k be a measurable positive definite function defined on an open set D. Suppose
that o € L} (D). Then k € L} (D x D). Given a multi-index o, its distributional derivative

loc loc
D>k exists and we can introduce the associated continuous bilinear form over CP (D),

bulip. ) = D™ k(@) = [ k() p(a)® i) dady. (4.15)
Suppose that it verifies the estimate

Vo, € By, [balp, )| < Calol2]¢]2, (4.16)

where Eo is the set given in Lemma 2.2. Then b, can be extended to a continuous bilinear
form over L*(D) and there exists a unique bounded, self-adjoint and nonnegative operator Fi
L?(D) — L*(D) such that

V(P7 1/) € CSO(D)v ba(go? 1/)) = <]:l?50a w>L2('D)' (417)

Lemma 4.8. Let k € L?(D x D) be a positive definite function and o a multi-index. Suppose
that the weak derivative 0%k exists and lies in L>(D x D). Then the bilinear form b, from
equation (4.15) verifies the estimate (4.16) with Co = |0“%k|2. Introduce Fy, the bounded
operator from Lemma 4.7. Introduce also &, the integral operator defined on L?(D) associated
to 0%k,

E Nz J 0k (x,y) f(y)dy. (4.18)

Then & = F and & is self-adjoint and nonnegative.

Lemma 4.9. Let k € L?>(D x D) be a positive definite function and & be its associated non-
negative definite Hilbert-Schmidt operator. Let

+o
z,y) = > Xigi(2) i (y) (4.19)
i=0

be a symmetric, nonnegative expansion of k in L?(D x D) where (\;) is a nonnegative sequence
decreasing to 0; it may or may not be its Mercer expansion (i.e. (¢;) may or may not be an
orthonormal basis of L?(D); they are still assumed to be elements of L?(D) though,).

(i) If the partial mived weak derivative 0%%k exists and lies in L?(D x D), then for all i € Ny
such that \; # 0,0%¢; € L*(D).

(ii) Assume that for all i € Ny such that \; # 0,0%¢; € L?(D), and that the bilinear form by
from equation (4.15) verifies the estimate (4.16). Let Fy* be the bounded operator from Lemma
4.7. Then

+0
= > Xl il 72, (4.20)

=0

whether these quantities are finite or not. If in equation (4.20), either one of them is finite,
then the series of functions Yy, A0 ¢i(2)0%bi(y) is norm convergent in L*(D x D) (i.e.
Dien, Mil 0% ® 0%¢il|l L2 < +0), 04k lies in L*(D x D) and we have the following equality:

k() Z/\ ¢i(x)0%i(y) in  L*(D x D). (4.21)

1=0
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Moreover, F is the (Hilbert-Schmidt) integral operator with kernel 0*%k, i.e. F = EF =
Eponaf. Finally, equation (4.21) then holds for asymmetric derivatives, as for all |, |B] < m,
we also have Y, Ai[|0° ¢ ® 0“4 12 < +00.

We can now prove Proposition 4.4.
Proof. (Proposition 4.4) We successively prove (ii) = (i), (i) = (i), (it1) = (i),
(111) = (i), (i171) = (iv) and (iv) = (i17).
Before all things, the assumptions and Lemma 2.5 show that the sample paths of U lie in

L} .(D), that the random variable given by the formula
Ug :Qow+— (=1)led JD U(z)(w)0“p(z)dx (4.22)

is well defined and that (U$)er, is a Gaussian sequence (see equation (2.22) for the definition
of FQ)

(i1) = (i) : From Lemma 4.8, £ is a self-adjoint, nonnegative Hilbert-Schmidt operator; it is
actually trace-class by assumption. We can thus define A, := /&7, which is a Hilbert-Schmidt,
self-adjoint, nonnegative operator. From Proposition 4.3, A, (B) is a GB-set (B is the closed
unit ball of L?(D)). Therefore, using the canonical Gaussian process of L?(D),

P( sup |Vy] <+4w) =1, (4.23)
Yela(B)

which, since Fo < B, yields in particular that

P( sup |VAQ(L,0)| < +OO) = 1. (4.24)
PEF,

We now observe that the two Gaussian sequences (Va4 (,))per, and (US)ger, have the same
finite dimensional marginals. Indeed, they are both centered Gaussian sequences with the same
covariance:

E[Va, (0)Van )] = (Aalp), Aa(@))r2 = (AZ(0), )12 = (EF@ )12 (4.25)
E[USUS] = E[ [ v@eewa | U(y)aawy)dy]

- f Kz, )0 () (y)dedy
DxD

- f k(. y)p (@) (y)dady = (Ep, ) e, (4.26)
DxD

As in the proof of Proposition 3.1 (e.g. equation (3.27)), we deduce that the two random
variables sup ep, |US| and sup,ep, [Va, (,)| have the same law, and from equation (4.24), we
obtain that

P(sup |Ug| < +0) = P(sup [Vy, ()] < +o0) = 1. (4.27)
PEFS PEFS

Since equation (4.27) holds for all |a] < m, this provides a set of probability 1 on which all the
sample paths of U lie in H™ (D), which proves (7).
(i) = (éi) : From Lemma 2.4 and the assumption from (7),

P(sup [UZ| < +0) = 1. (4.28)
e,
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From Proposition 2.6, we have that

Co =E[ sup |U;‘|2] < 400. (4.29)
pEFS

Introduce b,, the continuous bilinear form over C (D) given by

ba(p, ) = f Bz, )% ()% (y)ddy. (4.30)

DxD

Consider now ¢ and 9 in F5. Then,

pbatoidl=| [ Dk(x,wa%(x)aw(y)dmdy' _ [E[UeUs])
1
<EOUSUS < GBI + (U5)7] < E[swp (U2)7] = Cor (43)

From Lemma 4.7, b, can be extended to a continuous bilinear form over L?(D) and there exists
a unique bounded, self-adjoint and nonnegative operator &' which verifies

Vo, e CF(D), f k(x,y)0%0(x) 0% (y)drdy = ba (@, 1) = {EF 0, ¥ L. (4.32)

DxD

Since & is self-adjoint and nonnegative, we can introduce its square root A, := /&y, which is
also a bounded, self-adjoint and nonnegative operator. As in equation (4.27), we can introduce
(Va.(¢))per, and observe that (Va, (,))per, and (U3)ger, have the same law. Thus,

P(sup |Va, (p)| < +00) = P(sup US| < +o0) = 1. (4.33)
peFy pEF>

Therefore, A, (F3) is a GB-set. From Proposition 4.2(ii), Conv(A,(F»)) is compact. One then
checks by elementary considerations that Conv(A,(Fz)) = An(B), where B is the unit ball
of L?(D). This shows that A, is a compact operator. But from Proposition 4.2(i), A,(B) =
Conv(Aq(F»)) is also a GB-set. From Proposition 4.3, A, is Hilbert-Schmidt and & is trace-
class. In particular, & is a Hilbert-Schmidt operator with a kernel k, that lies in L*(D x D).
Moreover,

Vo, € CF(D), D*k(p® v) :fp  Hw9) ()0 ) dady (4.34)
_ f ka2, y)o(@)(y)dedy = Th, (@) (4.35)
DxD

Equation (4.35) shows that the distributional derivative D*®k and the regular distribution T},
coincide on the set 2(D) ® Z(D). From the Schwartz kernel theorem ( [48], Theorem 51.7),
D>k =Ty, in 9'(D x D), which shows that 0%k exists in L?(D x D) and that 0%k = k.
For the existence of a representative k., with the desired properties, we refer to the previous
Proposition 3.1(i¢). Finally, the equality Tr(€;) = {k(z,z)dz when k is also the covariance
function of a measurable Gaussian process is e.g. given in the proof of Proposition 3.11.15
of [6], p. 150. This finishes to prove (i%).

(i4) == (i4i): If (i4), then from Lemma 4.8 (using the notations from Lemmas 4.7 to 4.9),
F = &Y. From Lemma 4.9(7), the functions (¢,,) lie in H™(D) and from Lemma 4.9(43), since
&y = Fi is assumed trace class, equation (4.9) holds, as well as the trace formula.
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(i1i) = (i) if 377 A |0%bn |3 < +oo, then from Lemma 4.9(ii), F& = £, and still from
Lemma 4.9(i7), Tr(EY) < 400, i.e. &Y is trace class. As previously, for the existence of a
representative k, with the desired properties, we refer to the equivalence between Points (%)
and (4i1) from Proposition 3.1. As previously, the trace formula is given in [6], p. 150.

(#i1) = (iv): we first study how finite difference operators behave on elements of Hy in order
to use Lemma 2.1(7i¢). First, using the reproducing formula (4.2), observe that for suitable x
and y e D,

Ayf(x) = fle+y) — f(@) = k(@ +y,) = k@, )m, = S, Bk, ) m,- (4.36)

More generally, for any finite difference operator A(,, . .,y of order £ < m, and any open set
Dy € D such that Zle lyi| < dist(Dy, 0D),

Aty ey (@) = Ay K (@5 )b (4.37)
The Cauchy-Schwarz inequality in Hy yields
Ao f @) <N B G,y B, ), - (4.38)
Furthermore, using the bilinearity of (-, -)p, , we have that
1A, w0 k(@ ), = [ @ Ay K] (2, 2). (4.39)

We then deduce that (explanation below)

Vi€ Hy, |8y flZ2(m) = L) (A, f) (@) de

0

<13, fD Ay @ Diyrg K@ 2)de  (4.40)
+o0

<72, A L (D, $0)(@)2da (4.41)
=1 0
—+ 00

< B D s (13 P+ el?) (4.42)
i=1

< |f%1k( ) Tr(e;;“)) (ol eP?)- (4.43)

lal<m

We used equations (4.38) and (4.39) to obtain equation (4.40). In equation (4.41), we dis-
tributed Ay, .y ® Ay, ...y, Over the Mercer decomposition of & (which exists by the as-
sumption (#4)). In equation (4.42), we used the fact that ¢; € H™(D) (see Lemma 4.9(7))
conjointly with the finite difference control of Lemma 2.1(7i7). In equation (4.43), the we used
the trace equality from Lemma 4.9(¢i). From equation (4.43) and Lemma 2.1(ii4) again, we
obtain that f lies in H™ (D). Consider now any open set Dy € D. Equation (4.43) applied to
&%, the finite difference approximation of 0* from equation (2.11) with h = (h1, ..., hg) € (R%)?

and |a] < m such that Z?:l a;h; < dist(Dy, 0D), yields that

VF € He 105 facoy < |f|%{k( v Tr(em). (1.44)

lal<m

32



From the constant estimate “|0* |2 < C” from Lemma 2.1(#i¢), we then obtain that
T ey [0y < 161 (3 ToCER) ). (1.45)
lal<m
Summing the inequality (4.45) for all |a| < m, we obtain that

| £l < ClLf | (4.46)

with C = (N lal<m Tr(é';j))l/2 and N is the number of multi-indexes « such that |a| < m
Therefore H, < H™(D) and the corresponding imbedding i : Hy — H™(D) is continuous.
Using the reproducing formula (4.2), its transpose i* : H™ (D) — Hj, is given by

() (@) = () ke, = (fyilka))am = f Oy k(2,y)0" f(y)dy. (4.47)

lal<m

Above, 0y denotes differentation w.r.t. the y coordinate (note that i*(f) is indeed defined
pointwise, since i*(f) € Hy). Let (1;) be an orthonormal basis of H™ (D) and k = Y}, \it); ®1;
be the Mercer decomposition of k provided by the assumption (¢i¢). The trace of the nonnegative
self-adjoint operator #i* is given by (explanation below)

= Z@j’ii*(%»w =0 37 @y, 0%ii* ()2

7 I8l<m
- X [ Pw@di )@
7 |Bl<m
=2 2 f ()oY J Oy k(,y)0; (y)dyda (4.48)
J |Bl<m la|<m

:ZZ’\i DI Jpwaﬁ 9i(2)0%¢i(y) 0", (2)0%; (y)dydax (4.49)

la|<m |B|l<m

:Z;)‘i( fa%” )% (x dx) ZZA( > <8“¢i,5“¢j>L2)2

|a|]<m

:Z)\iz<¢i,¢j>Hm :ZAiH@HHm = > DA%l = ), Tr(&R).  (4.50)

lal<m i laj<m

|| <m

In equation (4.48), we used the fact that i*(1);) given by equation (4.47) is a representative of
ii*(;) in H™(D). In equation (4.49), we used the fact that the series of functions >, \;0%¢; ®
0%¢; is norm convergent (Lemma 4.9(i¢)) to distribute the partial derivatives over to the Mercer
decomposition of k. We also used Fubini’s and Tonelli’s theorems ad libitum, as all the series
> i’ ¢ ® 0“¢; are norm convergent. Since Z‘a‘gm Tr(&y) is finite by assumption, equation
(4.50) finishes to prove (iv) when Hy, is separable.

When Hj, is not separable, observe that ker(4) is closed in Hy, since i is continuous. Therefore
Hj, = ker(i)@ker(i)* and ker(i)* endowed with the topology of Hy, is a Hilbert space. Moreover,
i* : H™(D) — Hj, is compact since #* is trace class. Thus its closed range im(i*) is separable
( [16], Exercise 3 p. 176). Finally, observe that im(i*) = ker(i)* ( [16], Theorem 4.12) so that
ker(i)* is a separable Hilbert space. Consider now j := i ker(i) L, the restriction of i to ker(i)*.
Then ii* = jj*, so that equation (4.50) indeed yields that j is Hilbert-Schmidt.
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(iv) = (ii1): by assumption, #* is a compact self-adjoint nonnegative operator acting on
the Hilbert space H™ (D). There exists a decreasing nonnegative sequence (u;)jen and an
orthonormal basis of eigenvectors of it*, (1) jen such that for all f € H™(D),

+o0
= > iy, fyumip; in H™(D). (4.51)
j=1
Since 7¢* is assumed trace class,
+00
0 D mlleeslie = Z 155 3rm = 2 fj < +0o0. (4.52)
la|<m j=1 Jj=1

We now show that the following equality holds in L*(D x D):
00
2,y) = D uti (@)1 (y)- (4.53)
=1

In conjunction with equation (4.52), this equation will allow us to use Lemma 4.9(4i), which
will imply the point (ii7). First, one easily shows that Z 1 M5 @ 1, the right-hand side of
equation (4.53), is indeed in L?(D x D) (e.g. use that ZJ pj < +0). The upcoming equation
(4.63) will then show that k is indeed in L?(D x D). Now, decompose i(k,) € H™(D) on the
basis (¢;)en, given any x € D:

Z@p], 2D Emi;  in H™(D). (4.54)

In equation (4.54), the scalar (¢;,i(k; )= is obtained through the reproducing formula (4.2):

Wi ilke)ymm = G (V5), kapm, = % (1;)(@). (4.55)
Moreover, 1; is an eigenvector of 4i*: p;1; = it*(¢;) in H™(D). In particular,
lpjs — % ()| L2 (p) = 0. (4.56)

But the pointwise defined function i*(1);) is a representative of 4i* (¢;) in H™ (D), since ¢ is the
imbedding of Hy in H™ (D). Setting S = >, p1; = Tr(éi*), one then has (explanation below)

‘k - Z pit; ®wg . LMJ (k. Z it (z ) ddy (4.57)
f j (kf Zﬂﬂ/h )dydw (4.58)
f j (itk) ZW/’J )dyd:r (4.59)

+00 2
( iy --%*(w]-)—wj(x))) dyde  (460)

Jj=1
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N D2 (= Yi* () — b (2)) 2 duda

<, LS;M%@) (1) = (@) dyde (4.61)
400 ' . 2 '71i7;* N 2 -

< S; 14 L Vi(y) dy L (14 () — b, (x))d (4.62)

+
< S il 7y Iy~ id* (¥5) — ¢332y = O (4.63)
j=1

Above, we used Tonelli’s theorem in equation (4.58). We imbedded k, in H™ (D) in equation
(4.59). We used equations (4.54) and (4.55) in equation (4.60). We used Jensen’s discrete
inequality on the squaring function (-)* with the weights 1;/S (u;/S = 0,3, p1;/S = 1) in
equation (4.61). We imbedded ¢*(;) in H™ (D) and used Tonelli’s theorem in equation (4.62).
We used equation (4.56) in equation (4.63).

Therefore we have proved that equation (4.53) holds. Since, for |a| < m, }; u; o%;]3 <
+o0, we have 0%k = 3, p;0%; ® 0% in L*(D x D) and & = F from Lemma 4.8.
By the assumption that ¢4* is trace class and using the trace equalities from Lemma 4.9(ii)
(TH(ER) = Te(Fg) = 3, 151025 3),

+o0 +o0
D Te(EN) = X D mllowslie = D) mllslEm = Y py = Tr(i*) < 400 (4.64)
j=1 i

jal<m laf<m j=1

Therefore, Lemma 4.9(i7) implies that every & is indeed trace-class, which shows (4ii). O

5 Concluding remarks and perspectives

Given p € (1, +0) and m € Ny, we showed that the W P-Sobolev regularity of integer order
of a measurable Gaussian process ((U(x))zep ~ GP(0,k) is fully equivalent to the fact that
0%k lies in LP(D x D) combined with the integrability in LP(D) of the standard deviation
associated to 0%k, provided we use a suitable representative of 0%k in LP(D x D). Using
general results on Gaussian measures over Banach spaces of type 2 and cotype 2, we translated
this criteria as the existence of suitable nuclear decompositions of the covariance. These can be
understood as generalizations to Banach spaces of the eigenfunction expansion of symmetric,
nonnegative and trace class operators. In the Hilbert space case p = 2, we linked this property
with the Hilbert-Schmidt nature of the imbedding of the RKHS in H™(D), and gave explicit
formulas for the traces of the involved integral operators in terms of the Mercer decomposition
of the kernel.

The results presented in this article provide a theoretical background w.r.t. the use of
Gaussian processes for solving physics-related machine learning problems, in particular when
modeling solutions of PDEs as sample paths of some Gaussian process. These results also come
along with suitable quantities for controlling the Sobolev norm of the corresponding sample
paths (see Remark 3.7). The application of the Gaussian process principles identified here to
PDE-related machine learning problems, e.g. following the approach of [11], is certainly an
interesting continuation of the results of this article. Controlling the small ball probability (see
e.g. [33] for further details) of the Sobolev norm of a Gaussian process, perhaps in terms of some
nuclear norm, is also a relevant question for further applications of Gaussian process techniques
in such machine learning problems. Finally, the following question (which was implicit in this
article) is interesting for probability theory: are all Gaussian measures over W™ P (D) induced
by some Gaussian process? Proposition 2.9 states that this is true for m = 0, i.e. L?(D).
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The following directions are interesting for generalizing the results presented here. First,
similar spectral/integral criteria should be obtained for fractional Sobolev and Besov spaces.
Second, similar results should be sought to tackle the limit cases p = 1 and p = +00. Linked to
the case p = 1, results should be sought for the space of functions of bounded variations ( [9],
p. 269), which are important in many problems related to physics. In particular, those spaces
are adapted to the study of nonlinear hyperbolic PDEs, where shocks (discontinuities in the
solution) may appear and solutions may only be understood in the weak or distributional sense
( [43], Lemma 2.2.1 and Proposition 2.3.6).
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6 Proofs of intermediary results and lemmas

Proof. (Lemma 2.1) This proof follows exactly the lines of the proof of Proposition 9.3 from [9].
(i) < (i1): suppose that uw € W™P(D), use the fact that the distributional derivative D%u is
a regular distribution represented by a function that lies in LP(D), denoted by 0%u

Vo e C*(D), f u(x)0%p(x)dx = ( WIJ u (6.1)

D
Holder’s inequality yields (2.12) with C,, = |0%u|r. Conversely, suppose that (2.12) holds and
consider any |a| < m. Since C¥(D) is dense in LI(D) (whatever the open Set D [ ], Section
2.30), equation (2.12) shows that the linear form L, : ¢ — (1)l { u (x)dx,p €

C¥ (D), can be extended to a continuous linear form over L4 (D) From RlebZ representatlon
lemma, there exists v, € LP(D) such that Ly (¢) = (va, @)rr e for all ¢ € LY(D). In particular,
this is valid for all ¢ € CP(D), which shows that for all |a| < m, 0%u exists and is equal to v,
Thus u € W™P(D). Finally, Hélder’s inequality and the density of CZ°(D) in L1(D) yield

(g P& u(p) e
J,e P JD S -~

[0%ullLepy = sup
<PHL<1(D)
(i4i) = (4i): suppose (iii), let us show (éi). Let || < m and let ¢ € CP(D). Note K :=

peCr (D)\{0}

= sup
peCP (D)\{0}

Supp(y) its compact support and consider an open set Dy such that K € Dy € D. Let a € Ng
and h = (hy,....,hq) € (Ri)d be such that Z‘j:l a;h; < dist(Dg, D). Recall that §5 from
equation (2.11) is a finite difference approximation of ¢* and from (ii7),

J opu(z)p(x)dx
D

Note also that we have the discrete integration by parts formula since h is suitably chosen:

J Spu(z)p(x)dr = fpu(x)(éﬁf)*cp(ac)d:r. (6.3)

< HSOHLQ(DO)\|5?7U||LP(DO) < CH<P||Lq(D)~ (6.2)

Therefore,

| wt)am)pla)da] < Clilusco) (6.4
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The Lebesgue dominated convergence theorem yields that the left hand side converges to
| § u(z)0“p(z)dz|. We therefore have (id).

(i) = (#ii): We will use recursively the fact that if O = R? is an open set and if f €
WhP(O) n C*(0), then for all open set Oy < O and y € R? such that Oy + ty < O for
all ¢ € [0,1], we have

d
HAnyI[),p(oo) = HTyf - f“ip(oo) < |y|pHVinp(o) = ‘y|p Z Haw,-inp(oy (6.5)

Jj=1

This is a slight generalization of equation (4) p. 268 in [9], found in the proof of Proposition
9.3 in [9]. The proof of equation (6.5) is an exact copy of the proof of equation (4) p. 268 in [9],
which relies on writing the quantity u(x + h) —u(z) as the integral of the derivative of the map
t— u(x +th),t € [0,1].

We first show equation (2.14) under the assumption that uw € W™P(D) n C*(D). The
Meyers-Serrin theorem ( [1], Theorem 3.17), which asserts the density of W"?(D) n C*(D)
in W™P (D) for arbitrary open sets D = R?, will imply that equation (2.14) holds for general
u e W™P(D). Let Dy € D be an open set, £ < m and (y1,...,y¢) € (R?) be such that
Zle ly;| < dist(Dg, D). We begin by constructing a sequence of open sets (Dy)o<k<e starting
from Dy such that Dy € Dy < ... € D, € D, which additionally verify Dy_1 + tyr < Dy for
all t € [0,1] and all k € {1,...,¢}, with Zf:k ly;| < dist(Dg—1,0D) for all k € {1,...,£}. This
will enable us to use equation (6.5) recursively over k € {1,...,£}, to obtain the desired finite
difference control (2.14). We detail below this construction. We define this sequence recursively
as follow, for all k € {1, ..., £} and starting from the open set Dy,

D= | (Droa +tm). (6.6)
te[0,1]

This sequence clearly verifies Dy_1 + tyr < Dy for all t € [0,1]. If Dy_q is open, then
Dy_1 + tyg is also open, hence Dy is open. We now check that the property that Zfzk lyi| <
dist(Dg_1,0D) is inherited recursively (it is true for £ = 1). With the assumption that
Zf;k lys| < dist(Dg—1, D), we indeed have that

dist(Dy,0D) = inf —y| = inf + typ —
lb( k ) aceDIkI,lyeaDm y| zeDk,l?,te[O,l] |Z Yk y|
yedD
> inf (——t): inf 'f(——t) 6.7
em Mgy 20 =l ) = o 8o ity (e = = el ) (6D
yedD
0
> inf |z —y|—|yx| = dist(Dp_1,0D) — |y > D |uil- (6.8)

€Dy _1,y€0D
Ry i=k+1

In particular, dist(Dy, 0D) > 0. In equation (6.8), we used the assumption that Zf:k ly:| <
dist(Dg—1,0D). One also checks that Dy € D, as follow. Given x € Dy, write = z + ty; for
some z € D1 and t € [0,1]. This yields

¢
|z — 2| < y| < Z |yl = 7. (6.9)
i—k

Hence, x € B(z,1y). Moreover, B(z,r) < D, since z € Di_1 and ri < dist(Dg_1, D) (indeed,
one checks that B(z,r) < D for all z € D and r > 0 such that r < dist(z, 0D), e.g. by observing
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that 0D < {y : |z—y| > r}, thus (taking the complement) B(z,r) < Dulnt(D¢), that z € D and
that B(z,r) is path connected). From equation (6.9), we obtain that Dy < | J,ep, , B(@,7%) <

D, with dist(|,ep,_, B(w,7%), D) = dist(Dy—1,0D) —rx > 0. This finally yields that Dy, € D.
In particular, D, € D.

Given the sequence (Dy)o<k<e, We can now prove the finite difference control (2.14). First,
one easily checks that classical partial derivatives and finite difference operators all commute
together, as long as both are well-defined. Recall that

A( Ay1 oA(yz,...,yz)‘ (610)

YiseYe)

Note now that A, ,,yu lies in WHP(Dy) n C*(Dy), since Zsz ly;] < dist(D1,0D). Using
equation (6.5) with O = Dy, Op = Do and f = Ay, . 44,

|‘A(y17---,yz)u||1£p(1>o) = ”Ayl(A(yz,---,ytz)u)Hip(DU) < |yl|pHV(A(y27---7yz)“)”ip(pl) (6.11)

d
< |y1|p Z Ha% (A(yzy---yyl)u)HI[)/p('Dl)

j=1

d
< lyf” Z HA(yzw--»yz)(axj“) ”ZLP(DI)' (6.12)
j=1

We used equation (6.5) in equation (6.11). We also commuted finite difference operators and
partial derivatives in equation (6.12). If m = 1, then we have proved equation (2.14) for
u e WHP(D) n C*(D). If m > 2, note that for all j, dy,u € W™ LP(D) n C*(D). In
particular, 0, u € WP(D) n C®(D). One can then proceed by induction and perform the
above step sequentially over k € {1, ..., £} (recall that £ < m), successively using equation (6.5)
for O = Dy, Og = Dp—1and f = Ay, y)U € WLP(Dy,) n C®(Dy) (the latter holds because

Zf=k+1 ly;| < dist(Dy, dD)). This yields

HA(yl,m,ye)uHip(Do) < fyaf? x o x fyel? Z HA(ka,m,ye)(aﬁ“)”ip(m)

|Bl=k
< fyaf? xox [yef? Z ”aBUHIZ,p(DZ)
|Bl=¢
<y l? <X Pl e ooy < Tyal? x oyl lulfymp py- - (6.13)
This shows equation (2.14) with C' = |lulyym»py (in fact, the equations above show that

finite differences A(yhm)yg)u of order £ < m are more accurately controlled by derivatives
of order ¢, taking Cp = (35— H&ﬁu”’zp(m)l/p). The general case where u € W™P(D) is
settled by equation (6.13) conjoined with the Meyers-Serrin theorem. We finally show that
[0%ulLr(py < C, given any C which verifies equation (2.14). For this, copy the previous steps
of (i#i) = (ii), which prove that for all ¢ € CF(D), the control from equation (2.12) holds
for this C'. Using the extremal equality case of Holder’s inequality in equation (2.12) indeed
yields

f u(x)mdx < C. (6.14)
D

||5QUHL D) = sup
°(®) Il Lo (o)

peC (D)\{0}

This finishes the proof. O
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Proof. (Lemma 2.4) We begin by explicitly constructing the family (®%). First, use the fact
that L4(D) is a separable Banach space ( [1], Theorem 2.21) : let (f)nen < L%(D) be a dense
countable subset of LY(D). For all n € N, let (¢nm)men < CL (D) be such that ¢y, —> fp for
the LI(D) topology (recall that C(D) is dense in LI(D), [1], Corollary 2.30). We relabel the
countable family (¢nm)n,men s (¢n)nen, which is thus dense in LI(D). Second, let (hy)neny <
CP (D) be a dense subset of CX (D) for its LF-space topology (see Lemma 2.3). We then define
E, to be the set of all finite linear combinations of elements of (¢, ) and (h,) with rational
coeflicients :

E, = Spang{yn,n € N} + Spang{h,,, m € N} (6.15)

= U { Z q;pi + Z ’I"jh,j, (ql, ey QnyT1, ...,Tm) € Qner} (616)
j=1

n,meN =1

Note that F, is countable, as a countable union of countable sets. We then define the family
(®2) to be an enumeration of E, : E, = {®%,n € N}.
Proof of (i): Suppose that T' = T, for some v € LP(D). Then the control (2.18) is obviously
true. Now, suppose that this countable control holds : let us show that T" = T, for some
v e LP(D).

We begin by showing that the map Tjg, (restriction of 7" to the set F,) can be uniquely
extended to a continuous linear form T over L%(D). Begin with the fact that for all f,g € E,,
then f — g € E, and from equation (2.23),

T(f) =T =T(f =gl < Clf = glq- (6.17)

Equation (6.17) shows that 7] g, is Lipschitz over E, and therefore uniformly continuous on
E,. Since R is complete and E, is dense in L(D), Tjg, can be uniquely extended by a map

T defined over L?(D), which is itself uniformly continuous ( [40], Problem 44, p. 196). We
briefly recall the construction procedure of T over L(D). Given f € L4(D) and (f,)  E, any
sequence such that ||f, — f|L« — 0, one shows that the sequence (T(f,))nen is Cauchy, thus
convergent and one sets T(f) := lim,, T'(f,,). One proves that the value T(f) does not depend
on the sequence (f,), which implies that T is well defined and coincides with 7' on E,.

We now check that 7' remains linear. Let f,g € LY(D) and A € R. Let (fn),(g9n) < E,
and (A,) < Q be sequences such that f, — f,g, — ¢ both in LY(D) and A, — A. Then
Anfn+gn — Af +gin LY(D), and the sequence (A, f, + g») is contained in E,. Since T is well
defined, we have that

TS +¢) = lim T(Anfo +ga) = i M T(fa) +T(gn) = NT(f) + T(9). (6.18)

Thus, T is a (uniformly) continuous linear form over L9(D). Riesz’ representation lemma yields
a function v € LP(D) such that

Vfe LI(D), T(f)=JDf(:v)v(x)dx. (6.19)

We now need to check that in fact T(p) = T(p) if ¢ € C®(D), to show that T is indeed

an extension of 7. For this, notice that 7" and T both define continuous linear forms over
C* (D), w.r.t. its LF-topology (v lies in L}, .(D)). Note also that T and T coincide on E,, by

loc
construction of T :

VneN, T(®,)—T(®,) = 0. (6.20)
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But E, is chosen so that it contains (h,,), which is a dense subset of C° (D). Given ¢ € C(D),
consider (j,) a subsequence of (h,,) such that j,, — ¢ for the topology of C* (D). Then,

(T =T)(p) = lim (T = T)(jn) = lim 0 =0, (6.21)

n—0o0

which shows that in fact, T(¢) = T(p).

Proof of (i7): if b can be extended to a continuous linear form over L4(D), then the estimate
(2.20) is obviously true, by continuity over L4(D) of the said extension. Suppose now that
(2.20) holds. Let ¢ € E,;. Then L, the continuous linear form over C°(D) defined by

Ve CX(D), Ly(v) = b, 9), (6.22)

verifies

Vi e By, [Lo(4)] < Cllolql ] (6.23)

From the point (¢), L, is a regular distribution with a representer v, € L?(D) which is unique
in LP(D). Define the map B : E; — LP(D) by By = v,. Then B verifies

Ve By, Ve LYD), [KBe,¥yre Ll = [Lo(¥)] < Clelq¢]q- (6.24)

Taking the supremum w.r.t. ¥ € LI(D) yields
Voe Ey, |Belp < Clelq. (6.25)

Observe now that the bilinearity of b yields B(¢ + M) = By + ABy if ¢, ¢ € E, and A € Q.
Taking the exact same steps as for the proof of point (i) and using equation (6.25), B : E; —
LP(D) is Lipschitz continuous over E;, and can thus be uniquely extended as a uniformly
continuous map B : LY(D) — LP(D). This relies on the fact that E, is dense in LI(D) and that
LY(D) is complete. As previously, one checks that B is linear. Being uniformly continuous, it is
then a bounded operator from L?(D) to LP(D) (its adjoint B* is then automatically bounded).
Denote by b the continuous bilinear form over L(D) defined by

b(f,9) = (Bf.g)rr.Le, Vf,geLI(D). (6.26)

We now need to check that b indeed coincides with b over C¥(D), so that it is indeed an
extension of b. For this, let ¢, € CP (D) and (¢y,), (¥,) two sequences of elements of E, that
converge to ¢ and v respectively, in the LF topology. Then b and b coincide on Ej:

b(Pns Um) = b(Pn, ¥m)- (6.27)

Observe that the following chain of equalities holds. It relies on the sequential continuity (for
the LF topology of C¥ (D)) of the linear forms ¢ — b(p, ), — b(p,v¥) and T, : ¢ — T, (¢) =
{v,¢)pa, e for any v € L9(D), as well equation (6.27).

n—aoo n—00 Mm—00 n—00 m—00
= Jim Yz <Bn, ¥m)reLe = lm lim T, (¥m) = lim Tp,, ()
= lim (Bop, ¥pre,re = lim {pn, BXY)ra o = Hm Ty (0n) = Ty (9)
=, B*¢>LQ,LP = <BSD71/)>LP,LQ = 5(8077/))« (6.28)
The uniqueness of b follows from the uniqueness of B as an extension of B. O
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Proof. (Lemma 2.5) Let (K,,) be an increasing sequence of compact subsets of D such that
U, Kn = D. From the measurability of U and Tonelli’s theorem, w — {,. |U,(x)|dz is mea-
surable and we have that

E[L{n U(x)|dx] = JKn E[|U(x)|]dz = \/zf ) o(z)dr < +o0. (6.29)

From equation (6.29), w — SKn |Uy(x)|dz is finite almost surely. Since the family (K,) is
countable, one obtains a set 5 < Q of probability one such that for all w € € and for all
ne N, |Uy(z)|dr < +00. Given now any compact subset K of D, there exists N € N such
that K ¢ Ky and thus for all w € Qo, §, [U,(x)|dz < +00. Therefore, the sample paths of U
lie in L} (D) almost surely. From this fact and Fubini’s theorem, we next obtain that given

loc
any ¢ € C¥ and |a| < m, the following map

Ug : Qow— L) U, (z)0%p(x)dx (6.30)

is a well defined random variable (i.e. it is measurable; see e.g. [20], Theorem 2.7, p. 62).
Moreover, one can show that it is a limit in probability of suitably chosen Riemann sums of the
integrand ( [20], Theorem 2.8, p. 65). But here, those Riemann sums are all Gaussian random
variables because U is a Gaussian process. Thus UZ is a Gaussian random variable. a a limit
in probability of Gaussian random variables. This also shows that {Ug,p € CX(D)} is in fact
a Gaussian process, since the linearity of 0% yields

2 U = Uk aions (6.31)
=1

and thus 2?21 a;Ug, is a Gaussian random variable. An alternative proof of the Gaussianity
of Ug is found in [6], Example 2.3.16. p. 58-59. O

Proof. (Proposition 3.5) Let v > 0, set s, == n™7, my, = (s, + Sn+1)/2 and consider the
functions defined on (0, 1) by

(bn(m) = ]]-[sn,+1,mn,](x) - ]]-[mn,sn)(x)7 1/Jn(37) = J: ¢n(s)d8 (632)

The functions v, are nonnegative hat functions supported on [sy41, $n], with slope +1. Con-
sider now the following covariance functions defined for all (z,y) € (0,1)? by

The infinite sums above have in fact only one non zero term given any fixed (x,y) € (0,1)2,
hence the functions g and k are well-defined. We now prove the announced properties on k.
(7) : since for fixed (x,y) € D x D, the sums in equation (6.33) only involve one basis function
at a time, it is clear that for all z,y # s, or m,, d.0,k(x,y) = g(z,y). It is also clear that
g and k are the covariance functions of the measurable Gaussian processes given by U(z) =
S Gibn(x) and V(z) = Y1 &0 (x) respectively, where (&;) is a sequence of independent
standard Gaussian random variables (again, these Gaussian processes are well-defined as only
one basis function is activated at a time, given z € (0, 1)).
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(1) : observe that g(z,z) = 1 for all € (0,1) (except possibly for z = s, or m,, for some
n € N). Likewise,

2

k(x,z) = Lm ng(s,t)dsdt < LI J: lg(s,t)|dsdt < <J: g(s, 5)1/2d5> =22 (6.34)

Hence,

1 1 1 1
f gz, z)P2dx = j dr < +oo, f k(z,z)P?de < J 2Pdx < +o0. (6.35)
0 0 0 0

(i1) : we have that

Spn—Mn

Sy — My )P 9 \P
oty =2 [ e <2 gz (20) s, - ma (030)
Hence, since |s,, — m,| < C/n"*! for some C' > 0, (s,, — my,)>* P < C"/n2+2/P)+D) for some
C">0and Y, [¢n]2 < +o0. Next,

Sn

4y = 16alg = [ do = 50— sy ~ O, (637

Sn+1

for some C' > 0. Thus, [¢n[2 ~ C’'/n20+0/P and Y |¢nl? converges only if v > p/2 — 1.
Therefore, our conterexample is found by taking any v € (0,p/2 — 1] (observe that when p < 2,
this interval becomes empty!) O

Proof. (Lemma 4.7) First, the map k is measurable over D x D. Then, given a compact set
K < D x D, there exists a compact set Ko < D such that K < Ky x Kj (see e.g. the text
before equation (3.11)). Then, using the Cauchy-Schwarz inequality for k,

L{ |k(z, y)|dzdy < L{OXKO o(x)o(y)dzdy = (JKO U(x)dm)2 < 40o0. (6.38)

Therefore, k € L}, (D x D) and for all mutli-index «, b, is a bilinear continuous form over
C¥(D). From Lemma 2.2, b, can be uniquely extended to a continuous bilinear form over
L*(D). Denote by F¢ the associated bounded operator over L?(D). We now need to show that
Fi is self-adjoint and nonnegative. First note that for all ¢, ¢ € CX(D),

(Fie, ¥z = JD . k(z,y)0%p(x)0* ¢ (y)dydz = {p, Fpyre. (6.39)

Equation (6.39), conjoined with the density of C®(D) in L?*(D) and the continuity of the
bilinear form (f,g) — (F&f,g)r2 yields that (F2f,gore = {f, Fgyr2 for all f,g € L*(D).
Therefore F} is self-adjoint. For the positivity, consider again ¢ € C(D). Then from Fubini’s
theorem (justified below),

(For ) = L ()0 ()0 o)y - fD BU@U )0 o) pla)dyda

- E[ ( L U(x)aw(x)dxﬂ > 0. (6.40)
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Indeed the following integrability condition holds, setting K = Supp(y) :

E[ j a%o(m)&%(y)U(m)U(y)|dwdy]:f 1% 0(2)0 ()[BT (2)U ()|} dedy
DxD K

x K

<[ @ pwlototisr - ( | a&w(xno(x)dx)z

< sup 80‘30(30)2( JK o(x)dx)2 < 40, (6.41)

zeK

Equation (6.41), conjoined with the density of C®(D) in L?*(D) and the continuity of the
quadratic form f — (F&f, fyr2 yields that (F2 f, fyr2 = 0 for all f € L?(D). Therefore F is
nonnegative. O

Proof. (Lemma 4.8) From the definition of b, over C¥ (D),

ba(i0,4) = L} K ()0 (y)drdy = L 0z, y)pla) ) dady
=&, )12, (6.42)

From Cauchy-Schwarz’s inequality, it verifies

Vo, € CL(D), |balp,¥)| < 0% kl2]el2]v]2 (6.43)

From Lemma 4.7, there exists a unique bounded, self-adjoint and nonnegative operator F¢'
over L*(D) such that b, (¢, 1) = (Fp, )y for all ¢,1p € C(D). The uniqueness of F2 and
equation (6.42) yield Fi = &, and thus & is self-adjoint and nonnegative. O

Proof. (Lemma 4.9) (i) : Let n € Ny be such that A\, # 0. Let ¢ € CX (D). Then

An ( JD ¢n(x)6o‘<p(x)dx) i < :ij i ( JD qﬁi(x)&a(p(x)dx) :
< fA fm 61(2)61(4) 20 ()0 () ddy
< | hewe@ ey

<[ oek(eg)eta)ely)dady
DxD
< [0k L2 (pxD) HSOH%%D)- (6.44)

Therefore, from Lemma 2.1, 0%¢,, € L?(D).
(i) : introduce the finite rank kernel k,, defined by

kn(z,y) = Z Aidi () Pi(y)- (6.45)
i=1
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Then its mixed derivative 0%k, (z,y) is equal to Y. ; A\;0%®;(2)0%¢;(y) in L*(D x D) and the
associated operator £ is trace class, with

+0o0 +00 n
IEDRCGRIND IS YD IP RGN (6.46)
j=1 j=li=1
n +0 n
= DN 2 (0% b7 = D Nill 0] 7e (6.47)
=1 j=1 i=1
Now, observe that £ < Fi* in the sense of the Loewner order. Indeed, let first p € C°(D):
+0
(FR = &)@, oyre = €k — &) 0%0, 0012 = Y Al 0% )i = 0, (6.48)
i=n+1

The density of C°(D) in L*(D) and the continuity of the quadratic form f — ((FF—&EX ) f, for>
over L*(D) yields indeed that £ < Fg. Taking the trace :

n +00
DIAil%¢il7. = Tr(ER) Z@ Giy b1 < D (FRby, b2 = Tr(Ff). (6.49)
i=1 j=1 j=1

Taking the limit when n goes to infinity yields Y% A;|0%¢;[2, < Tr(Fg). This shows that

if 370N 0%¢i]2, = +oo, then Tr(Fg) = +o0. Suppose now that Tr(F{) < +o. Equation
(6.49) shows that the series of functions Y}, \;0%¢; ® 0“¢; converges in norm in L*(D x D).
Moreover, we check that it is equal to 0%k : taking ¢ € C*(D x D), then

f k(z,y)0%“p(x, y)drdy = Z )\iJ @i (x)di(y) 0 p(z, y)dady (6.50)
DxD 7 DxD
—ZALW (£)3°6.(y) e, y)drdy (6.51)

JDXp (ZA 0%¢i(x) 0% dily )) (z,y)dzdy. (6.52)

Moreover, since we have shown that 0%k € L?(D x D), Lemma 4.8 implies that F2 = &y, We
can then write, following the steps of equation (6.46),

+00 +00
Te(Fy) = Te(&E) Z<5k birdivre = Y, D Mi0%Bi, ¢)7a = O, Aill0%ill7e- (6.53)
a5 i-1

Suppose now that 3.7 \;[0%¢;|2. < +o0. Then as observed before, the series of functions
D A0 ® 0%, converges in norm in L?(D x D), one verifies that 0%k exists in L?(D) and
is in fact given by

0%k = > Xid"¢; ®0%¢; in L*(D x D). (6.54)
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Finally, since 0%k € L?(D x D), £ is bounded over L?(D) and from equation (6.54),

to +00
Z Aillo* il 7. = Z Ai Z@a(ﬁu D)7 (6.55)
+00 9
ORIGRICHET) (6:56)
= 5[, S 0010020, 0ty (657
= D (ER0s 0p)1e = TH(E]). (6.58)

Therefore £ is trace class and Tr(EQ) = 7% A;|0%$;]2.. Moreover, from Lemma 4.8, £ =
Fir. To see that this also finishes to prove equation (4.20) in the infinite case, observe that
if Tr(FQ) = +o0, then the previous computation implies that the series Y, X;[0%¢; |3 = +oo:
if this were not the case, Lemma 4.8 would apply again and we would have £ = F}¥, which
would then be trace class. For asymmetric derivatives, simply observe that for all ||, |5] < m,

[06il3 + 073
5 :
Therefore the norm convergence of the series ), Ail|0%¢; ® 0%¢;||r2 for all |a| < m implies

that of all the series of the form Y, Ai[0%¢; ® 0° ;]2 converge, provided that || < m and
|B] < m. As previously, one then deduces that 0% k = >/ X;0%¢; ® °¢;. O

0% @ % pill2 = |0%¢il|2|0° 52 <

(6.59)
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