Convergence of the empirical measure in expected Wasserstein distance: non asymptotic explicit bounds in $\mathbb{R}^d$ - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2023

Convergence of the empirical measure in expected Wasserstein distance: non asymptotic explicit bounds in $\mathbb{R}^d$

Résumé

We provide some non asymptotic bounds, with explicit constants, that measure the rate of convergence, in expected Wasserstein distance, of the empirical measure associated to an i.i.d. $N$-sample of a given probability distribution on $\mathbb{R}^d$.
Fichier principal
Vignette du fichier
3readdb.pdf (471.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03768963 , version 1 (30-08-2023)

Identifiants

Citer

Nicolas Fournier. Convergence of the empirical measure in expected Wasserstein distance: non asymptotic explicit bounds in $\mathbb{R}^d$. ESAIM: Probability and Statistics, 2023, 27, pp.749-775. ⟨10.1051/ps/2023011⟩. ⟨hal-03768963⟩
32 Consultations
8 Téléchargements

Altmetric

Partager

More