High-Harmonic Generation and Correlated Electron Emission from Relativistic Plasma Mirrors at 1 kHz Repetition Rate - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Ultrafast Science Année : 2022

High-Harmonic Generation and Correlated Electron Emission from Relativistic Plasma Mirrors at 1 kHz Repetition Rate

Résumé

We report evidence for the first generation of XUV spectra from relativistic surface high-harmonic generation (SHHG) on plasma mirrors at a kilohertz repetition rate, emitted simultaneously with energetic electrons. SHHG spectra and electron angular distributions are measured as a function of the experimentally controlled plasma density gradient scale length L_g for three increasingly short and intense driving pulses: 24 fs and a_0 = 1.1, 8 fs and a_0 = 1.6, and finally 4 fs and a_0 ≈ 2.1, where a_0 is the peak vector potential normalized by m_e c/e with the elementary charge e, the electron rest mass m_e , and the vacuum light velocity c. For all driver pulses, we observe correlated relativistic SHHG and electron emission in the range L_g ∈ [λ/20, λ/4], with an optimum gradient scale length of L_g ≈ λ/10. This universal optimal L_g-range is rationalized by deriving a direct intensity-independent link between the scale length L_g and an effective similarity parameter for relativistic laser-plasma interactions.
Fichier principal
Vignette du fichier
Haessler et al_2022_High-Harmonic Generation and Correlated Electron Emission from Relativistic.pdf (914.81 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03767700 , version 1 (02-09-2022)

Identifiants

Citer

Stefan Haessler, Marie Ouillé, Jaismeen Kaur, Maïmouna Bocoum, Frederik Böhle, et al.. High-Harmonic Generation and Correlated Electron Emission from Relativistic Plasma Mirrors at 1 kHz Repetition Rate. Ultrafast Science, 2022, 2022, pp.1 - 9. ⟨10.34133/2022/9893418⟩. ⟨hal-03767700⟩
45 Consultations
27 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More