Reinforcement Learning in Queues - Archive ouverte HAL
Article Dans Une Revue Queueing Systems Année : 2022

Reinforcement Learning in Queues

Résumé

Introduction: Control and optimization in queues have been an active area of research for decades, see for instance [10,11]. Most of the literature up to the present has focused on the model-based setting, a term used to describe the situation in which a model is known. In the coming years, we will witness a huge interest from the community in the model-free approach, a setting that does not assume knowledge of an exact underlying mathematical model. In this short note I provide a personal view of some of the challenges that lie ahead in the transition from model-based to model-free solutions in a queueing context.
Fichier principal
Vignette du fichier
questa.pdf (229.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03766768 , version 1 (01-09-2022)

Identifiants

Citer

Urtzi Ayesta. Reinforcement Learning in Queues. Queueing Systems, 2022, Special Issue, 100, pp.497-499. ⟨10.1007/s11134-022-09844-w⟩. ⟨hal-03766768⟩
98 Consultations
208 Téléchargements

Altmetric

Partager

More