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Introduction

Control and optimization in queues have been an active area of research for
decades, see for instance [10,11]. Most of the literature up to the present has fo-
cused on the model-based setting, a term used to describe the situation in which
a model is known. In the coming years, we will witness a huge interest from the
community in the model-free approach, a setting that does not assume knowl-
edge of an exact underlying mathematical model. In this short note I provide
a personal view of some of the challenges that lie ahead in the transition from
model-based to model-free solutions in a queueing context.

Model-based control in queues

A large body of literature is available within the framework of Markovian deci-
sion processes (MDP), also known as stochastic dynamic programming, which
provides a rich and powerful modeling tool from an analytical and computa-
tional viewpoint. Formally, an MDP is a stochastic control process where the
objective is to minimize a long-run cost. At each time step, depending on the
state and action taken by the MDP, the decision maker incurs a cost and the
process reaches a new random state. The so-called value function captures the
total cost of the optimal policy, and classical results show that it is the unique
solution of a fixed point equation known as Bellman’s Optimality Equation, see
[8] for precise details.

When applied to queueing networks, typical objectives have been to mini-
mize the queue length, delays, or a more sophisticated measure like energy. In a
wide variety of problems, MDPs have led to the establishment of structural re-
sults such as optimality of switching curves and threshold policies, see Figure 1.
The key idea to establish such results is to show that the value function enjoys
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Fig. 1 a) A switching curve (left) and a threshold policy (right); b) Load balancing
and scheduling in queueing systems, where classes/queues can be cast as arms of an
MABP/RMABP.

monotonicity properties, see for instance [9,6].

If we focus on resource allocation problems in queueing systems, see Fig-
ure (1) b), the class of MDPs known as multi-armed bandit problems (MABP)
and restless multi-armed bandit problems (RMABP) have received a lot of at-
tention since they provide a natural framework to study them, see [4]. MABP
and RMABP have in common that their solution is given in terms of index poli-
cies, i.e., one can define for each bandit an index — that only depends on its
own state — and the index policy activates in each time step the bandit with the
highest index. Index policies are optimal for MABPs, known in this case as Git-
tins’ index policy, and asymptotically optimal for RMABPs, known as Whittle’s
index policy, see [5]. Classical results in resource allocation, like optimality of
Join the Shortest Queue or cu-rule, can be interpreted in terms of optimality of
Gittins’ index in an MABP, and asymptotic optimality of the cu/#-rule in terms
of asymptotic optimality of Whittle’s index in a RMABP.

Model-free control of queues.

The section above provides a brief illustration of the breadth and depth of the
results available in the model-based setting. In the model-free case, a model is
substituted by a so-called environment that for every present state and action,
returns a sample of the one-step cost, and the next state. By interacting with
the environment, reinforcement learning (RL) algorithms based on @-learning,
see [12], are capable of finding the value function that solves the MDP. In the
last 5 years, this approach has been extremely successful at solving very com-
plex problems with large state dimensions, obtaining in particular supra-human
performance in games [2]. A key feature of this approach is the use of a neural
network to approximate the value function. It is important to mention that this
success relies on large amounts of computational resources, and a precise tuning
and adaptation of the algorithm to the problem under consideration. Many of
these successes have been obtained in an episodic setting (like games) in which
there is a certainty that the episode will eventually finish, at which moment a
reward will be observed. This situation differs dramatically from what we typ-
ically encounter in a queueing setting. Without aiming at being exhaustive, 1
hereby mention a few examples that illustrate the challenges of applying RL in
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queues, and that are representative of topics that — I expect — will be studied in
detail in the coming years.

As a first example let us consider the case of modulated queues, for which
there is a broad literature in the model-based setting. Here, the parameters of the
modulated queue change dynamically over time as the state of the modulating
process evolves. In the model-based situation, this can be handled by simply
adding the state of the modulating queue to the state descriptor of the value
function. Interesting problems arise in the hybrid situation in which the state
of the modulated queue is known, but not that of the modulating process. As
outlined in [1], one could envision the deployment of algorithms that exploit a
model-free type of approach to infer the state of the modulating process, and
combine it with a model-based formulation regarding the modulated queue. As
a second example, we consider queues with blocking in which threshold policies
are optimal. In such a queue the probability of visiting blocking states can be
extremely small, and the challenge is to improve the exploration so that the
RL algorithm can learn the optimal thresholds (see Figure 1 a)). In [7], we
explore how Fleming-Viot particle systems combined with RL can help find
the optimal thresholds in a model-free setting. As a third example we mention
an intermediate situation between the model-based and model-free dichotomy,
in which the RL algorithm leverages knowledge on the underlying MDP, for
instance existence of switching curves or optimality of index policies, in order
to develop more efficient learning algorithms. In [3] the standard Q-learning
algorithm is modified in order to propose algorithms that learn (faster) the
Whittle indices of an RMABP.
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